École Doctorale des Sciences de l'Environnement d'Île-de-France

Année Universitaire 2011-2012

Modélisation Numérique de l'Écoulement Atmosphérique et Assimilation de Données

Olivier Talagrand Cours 4 5 Avril 2013

$$z_1 = x + \zeta_1$$
 density function $p_1(\zeta) \propto \exp[-(\zeta^2)/2s_1]$

$$z_2 = x + \zeta_2$$
 density function $p_2(\zeta) \propto \exp[-(\zeta^2)/2s_2]$

$$\zeta_1 \text{ and } \zeta_2 \text{ mutually independent}$$

Conditional probability $P(x = \xi | z_1, z_2)$?

$$z_1 = x + \zeta_1$$
 density function $p_1(\zeta) \propto \exp[-(\zeta^2)/2s_1]$

$$z_2 = x + \zeta_2$$
 density function $p_2(\zeta) \propto \exp[-(\zeta^2)/2s_2]$

$$\zeta_1 \text{ and } \zeta_2 \text{ mutually independent}$$

$$x = \xi \iff \zeta_1 = z_1 - \xi \text{ and } \zeta_2 = z_2 - \xi$$

•
$$P(x = \xi | z_1, z_2) \propto p_1(z_1 - \xi) p_2(z_2 - \xi)$$

 $\propto \exp[-(\xi - x^a)^2/2p^a]$

where $1/p^a = 1/s_1 + 1/s_2$, $x^a = p^a (z_1/s_1 + z_2/s_2)$

Conditional probability distribution of *x*, given z_1 and $z_2 : \mathcal{N}[x^a, p^a]$ $p^a < (s_1, s_2)$ independent of z_1 and z_2

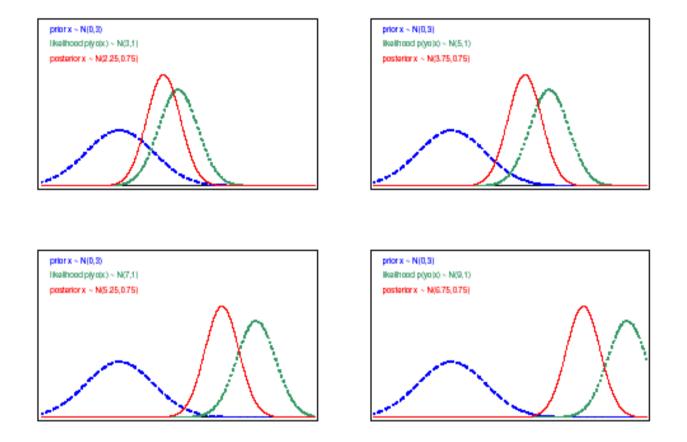


Fig. 1.1: Prior pdf p(x) (dashed line), posterior pdf $p(x|y^o)$ (solid line), and Gaussian likelihood of observation $p(y^o|x)$ (dotted line), plotted against x for various values of y^o . (Adapted from Lorenc and Hammon 1988.)

Conditional expectation x^a minimizes following scalar *objective function*, defined on ξ -space

$$\xi \rightarrow \mathcal{J}(\xi) \equiv (1/2) \left[(z_1 - \xi)^2 / s_1 + \left[(z_2 - \xi)^2 / s_2 \right] \right]$$

In addition

 $p^a = 1/\mathcal{J}"(\xi)$

Conditional probability distribution in Gaussian case

$$P(x = \xi \mid z_1, z_2) \propto \exp[-(\xi - x^a)^2/2p^a]$$

$$\mathcal{J}(\xi)$$

$$z_1 = x + \xi_1$$
$$z_2 = x + \xi_2$$

Same as before, but ζ_1 and ζ_2 are now distributed according to exponential law with parameter *a*, *i*. *e*.

```
p(\zeta) \propto \exp[-|\zeta|/a]; \operatorname{Var}(\zeta) = 2a^2
```

Conditional probability density function is now uniform over interval $[z_1, z_2]$, exponential with parameter a/2 outside that interval

 $E(x \mid z_1, z_2) = (z_1 + z_2)/2$

Var $(x | z_1, z_2) = a^2 (2\delta^3/3 + \delta^2 + \delta + 1/2) / (1 + 2\delta)$, with $\delta = |z_1 - z_2| / (2a)$ Increases from $a^2/2$ to ∞ as δ increases from 0 to ∞ . Can be larger than variance $2a^2$ of original errors (probability 0.08)

(Entropy - *fplnp* always decreases in bayesian estimation)

Bayesian estimation

State vector x, belonging to state space $S(\dim S = n)$, to be estimated.

Data vector z, belonging to data space $\mathcal{D}(\dim \mathcal{D} = m)$, available.

 $z = F(x, \zeta) \tag{1}$

where ζ is a random element representing the uncertainty on the data (or, more precisely, on the link between the data and the unknown state vector).

For example

 $z = \Gamma x + \zeta$

Bayesian estimation (continued)

Probability that $x = \xi$ for given ξ ?

 $x = \xi \implies z = F(\xi, \zeta)$

$$P(x = \xi \mid z) = P[z = F(\xi, \zeta)] / \int_{\xi'} P[z = F(\xi', \zeta)]$$

Unambiguously defined iff, for any ζ , there is at most one x such that (1) is verified.

 \Leftrightarrow data contain information, either directly or indirectly, on any component of *x*. *Determinacy* condition.

Bayesian estimation is however impossible in its general theoretical form in meteorological or oceanographical practice because

- It is impossible to explicitly describe a probability distribution in a space with dimension even as low as $n \approx 10^3$, not to speak of the dimension $n \approx 10^{6-9}$ of present Numerical Weather Prediction models.
- Probability distribution of errors on data very poorly known (model errors in particular).

One has to restrict oneself to a much more modest goal. Two approaches exist at present

- Obtain some 'central' estimate of the conditional probability distribution (expectation, mode, ...), plus some estimate of the corresponding spread (standard deviations and a number of correlations).
- Produce an ensemble of estimates which are meant to sample the conditional probability distribution (dimension $N \approx O(10-100)$).

Random vector $\mathbf{x} = (x_1, x_2, ..., x_n)^T = (x_i)$ (e. g. pressure, temperature, abundance of given chemical compound at *n* grid-points of a numerical model)

- Expectation $E(x) = [E(x_i)]$; centred vector x' = x E(x)
- Covariance matrix

$$E(\mathbf{x}'\mathbf{x}'^{\mathrm{T}}) = [E(x_i'x_i')]$$

dimension nxn, symmetric non-negative (strictly definite positive except if linear relationship holds between the x_i 's with probability 1).

- Two random vectors
 - $\boldsymbol{x} = (x_1, x_2, ..., x_n)^{\mathrm{T}}$ $\boldsymbol{y} = (y_1, y_2, ..., y_p)^{\mathrm{T}}$

$$E(\boldsymbol{x}^{\prime}\boldsymbol{y}^{\prime\mathrm{T}}) = E(x_{i}^{\prime}y_{j}^{\prime})$$

dimension *nxp*

Random function $\Phi(\xi)$ (field of pressure, temperature, abundance of given chemical compound, ...; ξ is now spatial and/or temporal coordinate)

- Expectation $E[\Phi(\xi)]$; $\Phi'(\xi) = \Phi(\xi) E[\Phi(\xi)]$
- Variance $Var[\varphi(\xi)] = E\{[\varphi'(\xi)]^2\}$
- Covariance function

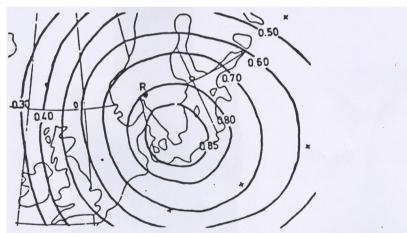
 $(\xi_1, \xi_2) \rightarrow C_{\Phi}(\xi_1, \xi_2) \equiv E[\Phi'(\xi_1) \Phi'(\xi_2)]$

Correlation function

٠

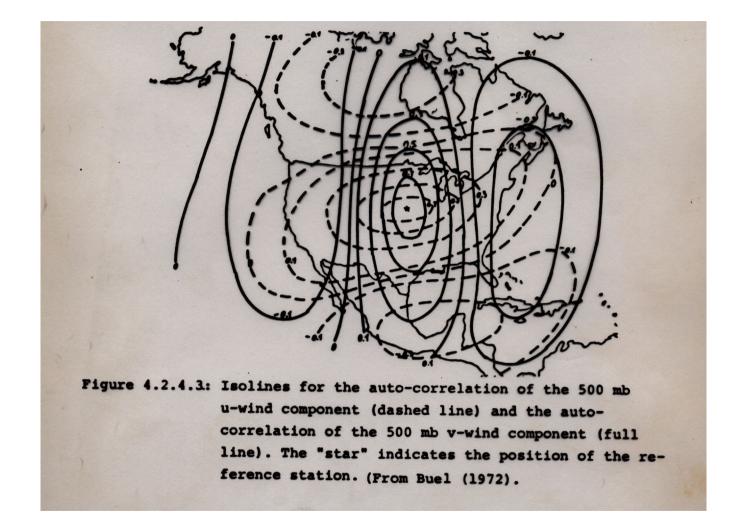
 $Cor_{\varphi}(\xi_{1}, \xi_{2}) = E[\Phi'(\xi_{1}) \Phi'(\xi_{2})] / \{Var[\Phi(\xi_{1})] Var[\Phi(\xi_{2})]\}^{1/2}$

.: Isolines for the auto-correlations of the 500 mb geopotential between the station in Hannover and surrounding stations. From Bertoni and Lund (1963)

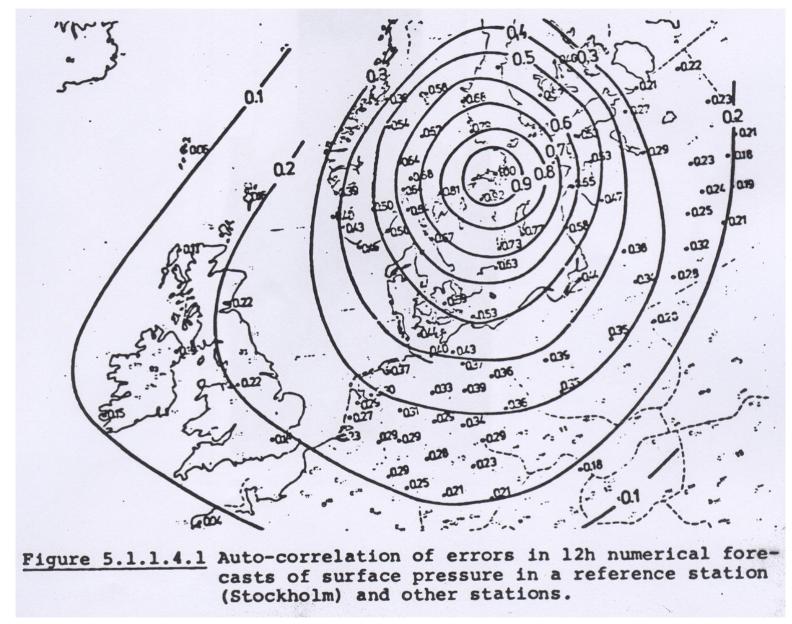


Isolines of the cross-correlation between the 500 mb geopotential in station 01 384 (R) and the surface pressure in surrounding stations.

After N. Gustafsson



After N. Gustafsson



After N. Gustafsson

Optimal Interpolation

Random field $\Phi(\xi)$

Observation network $\xi_1, \xi_2, ..., \xi_p$ For one particular realization of the field, observations

$$y_j = \Phi(\xi_j) + \varepsilon_j$$
, $j = 1, ..., p$, making up vector $\mathbf{y} = (y_j)$

Estimate $x = \Phi(\xi)$ at given point ξ , in the form

 $x^{a} = \alpha + \sum_{j} \beta_{j} y_{j} = \alpha + \beta^{T} y$, where $\beta = (\beta_{j})$

 α and the β_j 's being determined so as to minimize the expected quadratic estimation error $E[(x-x^a)^2]$