École Doctorale des Sciences de l'Environnement d'Île-de-France
Année Universitaire 2012-2013

Modélisation Numérique de l'Écoulement Atmosphérique et Assimilation de Données

Olivier Talagrand
Cours 5

22 Avril 2013

Optimal Interpolation

Random field $\Phi(\xi)$
Observation network $\xi_{1}, \xi_{2}, \ldots, \xi_{p}$
For one particular realization of the field, observations

$$
y_{j}=\Phi\left(\xi_{j}\right)+\varepsilon_{j}, j=1, \ldots, p \quad, \quad \text { making up vector } \boldsymbol{y}=\left(y_{j}\right)
$$

Estimate $x=\Phi(\xi)$ at given point ξ, in the form

$$
x^{a}=\alpha+\Sigma_{j} \beta_{j} y_{j}=\alpha+\beta^{\mathrm{T}} \boldsymbol{y} \quad, \quad \text { where } \beta=\left(\beta_{j}\right)
$$

α and the β_{j} 's being determined so as to minimize the expected quadratic estimation error $E\left[\left(x-x^{a}\right)^{2}\right]$

Optimal Interpolation (continued 1)

Solution

$$
\begin{array}{ll}
& x^{a}=E(x)+E\left(x^{\prime} y^{\prime \mathrm{T}}\right)\left[E\left(y^{\prime} y^{, \mathrm{T}}\right)\right]^{-1}[y-E(y)] \\
\text { i.e., } \quad & \beta=\left[E\left(y^{\prime} y^{\prime \mathrm{T}}\right)\right]^{-1} E\left(x^{\prime} y^{\prime}\right) \\
& \alpha=E(x)-\boldsymbol{\beta}^{\mathrm{T}} E(\boldsymbol{y})
\end{array}
$$

Estimate is unbiased $\quad E\left(x-x^{a}\right)=0$

Minimized quadratic estimation error

$$
\begin{aligned}
E\left[\left(x-x^{a}\right)^{2}\right] & \left.=E\left(x^{\prime 2}\right)-E\left[\left(x^{\prime a}\right)^{2}\right]\right) \\
& =E\left(x^{\prime 2}\right)-E\left(x^{\prime} y^{\prime}\right)\left[E\left(y^{\prime} y^{\prime \mathrm{T}}\right)\right]^{-1} E\left(y^{\prime} x^{\prime}\right)
\end{aligned}
$$

Estimation made in terms of deviations from expectations x^{\prime} and y^{\prime}.

Optimal Interpolation (continued 2)

$$
\begin{aligned}
& x^{a}=E(x)+E\left(x^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\left[E\left(\boldsymbol{y}^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\right]^{-1}[\boldsymbol{y}-E(\boldsymbol{y})] \\
& y_{j}=\Phi\left(\xi_{j}\right)+\varepsilon_{j} \\
& E\left(y_{j}^{\prime} y_{k}^{\prime}\right)=E\left[\Phi^{\prime}\left(\xi_{j}\right)+\varepsilon_{j}^{\prime}\right]\left[\Phi^{\prime}\left(\xi_{k}\right)+\varepsilon_{k}^{\prime}\right]
\end{aligned}
$$

If observation errors ε_{j} are mutually uncorrelated, have common variance r, and are uncorrelated with field Φ, then

$$
E\left(y_{j}^{\prime} y_{k}^{\prime}\right)=C_{\Phi}\left(\xi_{j}, \xi_{k}\right)+r \delta_{j k}
$$

and

$$
E\left(x^{\prime} y_{j}^{\prime}\right)=C_{\Phi}\left(\xi, \xi_{j}\right)
$$

Optimal Interpolation (continued 3)

$$
x^{a}=E(x)+E\left(x^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\left[E\left(\boldsymbol{y}^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\right]^{-1}[\boldsymbol{y}-E(\boldsymbol{y})]
$$

Vector

$$
\boldsymbol{\mu}=\left(\mu_{j}\right) \equiv\left[E\left(y^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\right]^{-1}[\boldsymbol{y}-E(\boldsymbol{y})]
$$

is independent of variable to be estimated

$$
\begin{aligned}
& x^{a}=E(x)+\Sigma_{j} \mu_{j} E\left(x^{\prime} y_{j}^{\prime}\right) \\
& \begin{aligned}
\Phi^{a}(\xi) & =E[\Phi(\xi)]+\Sigma_{j} \mu_{j} E\left[\Phi^{\prime}(\xi) y_{j}{ }^{\prime}\right] \\
& =E[\Phi(\xi)]+\Sigma_{j} \mu_{j} C_{\Phi}\left(\xi, \xi_{j}\right)
\end{aligned}
\end{aligned}
$$

Correction made on background expectation is a linear combination of the p functions

$$
E\left[\Phi^{\prime}(\xi) y_{j}^{\prime}\right]\left[=C_{\Phi}\left(\xi, \xi_{j}\right)\right], j=1, \ldots, p
$$

$E\left[\Phi^{\prime}(\xi) y_{j}^{\prime}\right]$, considered as a function of estimation position ξ, is the representer associated with observation y_{j}.

Optimal Interpolation (continued 4)

Univariate interpolation. Each physical field (e.g. temperature) determined from observations of that field only.

Multivariate interpolation. Observations of different physical fields are used simultaneously. Requires specification of cross-covariances between various fields.

Cross-covariances between mass and velocity fields can simply be modelled on the basis of geostrophic balance.

Cross-covariances between humidity and temperature (and other) fields still a problem.

4.: Schematic illustration of correlation functions and cross-correlation functions for multi-variate analysis derived by the geostrophic assumption.

After N. Gustafsson

After A. Lorenc, MWR, 1981

After A. Lorenc, MWR, 1981

Optimal Interpolation (continued 5)

Observation vector y

Estimation of a scalar x

$$
\begin{aligned}
& x^{a}=E(x)+E\left(x^{\prime} \boldsymbol{y}^{\mathrm{T}}\right)\left[E\left(\boldsymbol{y}^{\prime} \boldsymbol{y}^{\mathrm{T}}\right)\right]^{-1}[\boldsymbol{y}-E(\boldsymbol{y})] \\
& \begin{aligned}
E\left[\left(x-x^{a}\right)^{2}\right] & \left.=E\left(x^{\prime 2}\right)-E\left[\left(x^{\prime}\right)^{2}\right]\right) \\
& =E\left(x^{\prime 2}\right)-E\left(x^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\left[E\left(\boldsymbol{y}^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\right]^{-1} E\left(\boldsymbol{y}^{\prime} x^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Estimation of a vector \boldsymbol{x}

$$
\begin{aligned}
& \boldsymbol{x}^{a}=E(\boldsymbol{x})+E\left(\boldsymbol{x}^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\left[E\left(\boldsymbol{y}^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\right]^{-1}[\boldsymbol{y}-E(\boldsymbol{y})] \\
& \begin{aligned}
E\left[\left(\boldsymbol{x}-\boldsymbol{x}^{a}\right)\left(\boldsymbol{x}-\boldsymbol{x}^{a}\right)^{\mathrm{T}}\right] & =E\left(\boldsymbol{x} \boldsymbol{x}^{\prime} \mathrm{T}^{\prime}\right)-E\left(\boldsymbol{x}^{\prime a} \boldsymbol{x}^{\prime} a \mathrm{~T}\right) \\
& =E\left(\boldsymbol{x} \boldsymbol{x}^{\prime \mathrm{T}}\right)-E\left(\boldsymbol{x}^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\left[E\left(\boldsymbol{y}^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\right]^{-1} E\left(\boldsymbol{y}^{\prime} x^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Best Linear Unbiased Estimate

State vector x, belonging to state space $S(\operatorname{dim} S=n)$, to be estimated.
Available data in the form of

- A 'background' estimate (e.g. forecast from the past), belonging to state space, with dimension n

$$
x^{b}=x+y^{b}
$$

- An additional set of data (e.g. observations), belonging to observation space, with dimension p
$y=H x+\varepsilon$
H is known linear observation operator.

Assume probability distribution is known for the couple $\left(\xi^{b}, \varepsilon\right)$.
Assume $E\left(\xi^{b}\right)=0, E(\varepsilon)=0, E\left(\xi^{b} \varepsilon^{\mathrm{T}}\right)=0$ (not restrictive)
Set $E\left(\zeta^{b} \zeta^{b \mathrm{~T}}\right)=P^{b}($ also often denoted $B), E\left(\varepsilon \varepsilon^{\mathrm{T}}\right)=R$

Best Linear Unbiased Estimate (continuation 1)

$$
\begin{align*}
& x^{b}=x+\xi^{b} \tag{1}\\
& y=H x+\varepsilon \tag{2}
\end{align*}
$$

A probability distribution being known for the couple ($\xi^{b}, \boldsymbol{\varepsilon}$), eqs (1-2) define probability distribution for the couple $(\boldsymbol{x}, \boldsymbol{y})$, with
$E(\boldsymbol{x})=\boldsymbol{x}^{b}, \boldsymbol{x}^{\prime}=\boldsymbol{x}-E(\boldsymbol{x})=-\xi^{b}$
$E(y)=H x^{b}, y^{\prime}=y-E(y)=y-H x^{b}=\varepsilon-H \xi^{b}$
$\boldsymbol{d} \equiv \boldsymbol{y}-H \boldsymbol{x}^{b}$ is called the innovation vector.

Best Linear Unbiased Estimate (continuation 2)

Apply formulæ for Optimal Interpolation

$$
\begin{aligned}
& \boldsymbol{x}^{a}=\boldsymbol{x}^{b}+P^{b} H^{\mathrm{T}}\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1}\left(\boldsymbol{y}-H \boldsymbol{x}^{b}\right) \\
& P^{a}=P^{b}-P^{b} H^{\mathrm{T}}\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1} H P^{b}
\end{aligned}
$$

x^{a} is the Best Linear Unbiased Estimate (BLUE) of x from x^{b} and y.

Equivalent set of formulæ

$$
\begin{aligned}
& \boldsymbol{x}^{a}=\boldsymbol{x}^{b}+P^{a} H^{\mathrm{T}} R^{-1}\left(\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}^{b}\right) \\
& {\left[P^{a}\right]^{-1}=\left[P^{b}\right]^{-1}+H^{\mathrm{T}} R^{-1} H}
\end{aligned}
$$

Matrix $K=P^{b} H^{\mathrm{T}}\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1}=P^{a} H^{\mathrm{T}} R^{-1}$ is gain matrix .

If probability distributions are globally gaussian, BLUE achieves bayesian estimation, in the sense that $P\left(\boldsymbol{x} \mid \boldsymbol{x}^{b}, \boldsymbol{y}\right)=\mathcal{N}\left[\boldsymbol{x}^{a}, \boldsymbol{P}^{a}\right]$.

