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Best Linear Unbiased Estimate	


	
 xb  =  x  + ζb	
 	
 	
  (1)	

	
 y  =  Hx + ε	
 	
 	
  (2)	


	
 with E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 (not restrictive), E(ζbζbT) = Pb, E(εεT) = R 	


	
  Best Linear Unbiased Estimate (BLUE)	

	
 	

	
 	
 	
 xa = xb + Pb

 HT
 [HPbHT + R]-1 (y - Hxb)	


	
 	
 	
 Pa = Pb
 - Pb

 HT
 [HPbHT 

 + R]-1 HPb	


	
 Variational form. BLUE xa minimizes following scalar objective function, defined on state space	


	
 ξ ∈  S  → 	

•      J(ξ)  =  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ) 
    = 	
         Jb	
 	
      + 	
      Jo	


	
  Pa
 is inverse of matrix of second derivatives (hessian) of function  J(ξ) 	




	
 Variational approach can easily be extended to time dimension.	


	
 Suppose for instance available data consist of 	


	
 	
 - Background estimate at time 0	

	
 	
    x0

b  =  x0
  + ζ0

b 	
  E(ζ0
bζ0

bT) = P0
b	


	
 	
 - Observations at times k = 0, …, K	

	
 	
    yk = Hkxk + εk	
 E(εkεj

T) = Rk δkj	


	
 	
  - Model (supposed for the time being to be exact) 	

	
 	
    xk+1 = Mkxk  k = 0, …, K-1	
 	
 	
 	


	
 	
 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	


	
 Then objective function	

	
 	

ξ0 ∈  S  → 	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
 subject to ξk+1 = Mkξk ,	
 k = 0, …, K-1	


	
 	
 	




	
 	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
  Background  is  not  necessary,  if  observations are  in  sufficient  number  to 

overdetermine the problem. Nor is strict linearity. 

 How to  minimize  objective  function  with  respect  to  initial  state  u  = ξ0  (u  is 
called the control variable of the problem) ?	


	
 Use  iterative  minimization  algorithm,  each  step  of  which  requires  the 
explicit knowledge of the local gradient ∇u J ≡  (∂J/∂ui) of J with respect to u.	




	
 How to numerically compute the gradient ∇u J ?	


	
 Direct  perturbation,  in  order  to  obtain  partial  derivatives  ∂J/∂ui  by  finite 
differences  ?  That  would  require  as  many  explicit  computations  of  the 
objective function J as there are components in u. Practically impossible.	


	
 Gradient computed by adjoint method.	




Adjoint Method	


	
 Input vector u = (ui), dimu = n	

	
 Numerical  process,  implemented  on  computer  (e.  g.  integration  of 

numerical model)	


u → v = G(u)	

•  v = (vj) is output vector , dimv = m	


•  Perturbation δu = (δui) of input. Resulting first-order perturbation on v	


•  δvj = Σi (∂vj/∂ui) δui 	


•  or, in matrix form	

•  δv  =  G’δu	


•  where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix, of 
G. 	




Adjoint Method (continued 1)	


	
 	
 	
 	
        δv  =  G’δu	
 	
 	
 (D)	


•  Scalar function of output 	

J(v)  =  J[G(u)]	


	
 Gradient ∇u J of J with respect to input u?	


	
 ‘Chain rule’	
 	
  	


∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)	


 	
  or 	

•              ∇u J  =  G’T ∇v J 	
	
  	
 (A)	




Adjoint Method (continued 2)	


•  G is the composition of a number of successive steps	


G = GN ° … ° G2 ° G1	

	
 	

	
 ‘Chain rule’	
 	
  	


G’ = GN’ … G2’ G1’	


 	
 Transpose	

•              	


G’T = G1’T G2’T … GN’T	


	
 Transpose, or adjoint, computations are performed in reversed order of direct computations.	


	
 If  G  is  nonlinear,  local  jacobian  G’ depends  on  local  value  of  input  u.  Any  quantity  which  is  an 
argument  of  a  nonlinear  operation  in  the  direct  computation  will  be  used  again  in  the  adjoint 
computation. It must be kept in memory from the direct computation (or else be recomputed again in 
the course of the adjoint computation).	


	
 If  everything  is  kept  in  memory,  total  operation  count  of  adjoint  computation  is  at  most  4  times 
operation count of direct computation (in practice about 2).	




Adjoint Approach	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
 subject to ξk+1 = Mkξk ,	
 k = 0, …, K-1	


Control variable 	
  ξ0 = u	


Adjoint equation	


 λK = 	
        HK
T RK

-1 [HK ξK - yK]	


 λk = Mk
Tλk+1 + Hk

T Rk
-1 [Hk ξk - yk]	
 	
  	
 k = K-1, …, 1	


λ0 = M0
Tλ1      + H0

T R0
-1 [H0 ξ0 - y0]   +  [P0

b]-1 (ξ0 - x0
b) 	


	
 	
 	
 	
 ∇u J  = λ0 	
 	


Result of direct integration (ξk), which appears in quadratic terms in expression of	

objective function, must be kept in memory from direct integration.	




Adjoint Approach (continued 2)	


Nonlinearities ?	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]  
 subject to ξk+1 = Mk(ξk) ,	
 k = 0, …, K-1	


Control variable 	
  ξ0 = u	


Adjoint equation	


 λK = 	
        HK’T RK
-1 [HK(ξK) - yK]	


 λk = Mk’Tλk+1 + Hk’T Rk
-1 [Hk(ξk) - yk]	
 	
  	
 k = K-1, …, 1	


λ0 = M0’Tλ1      + H0’T R0
-1 [H0(ξ0) - y0]   +  [P0

b]-1 (ξ0 - x0
b) 	


	
 	
 	
 	
 ∇u J  = λ0 	
 	


Not approximate (it gives the exact gradient ∇uJ), and really used as described here.	




Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 

Same as before, but at the end of a 24-hr 4D-Var 



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Same as before, but at the end of a 24-hr 4D-Var 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



ECMWF, Results on one FASTEX case (1997) 



	
 Strong  Constraint  4D-Var  is  now  used  operationally  at 
several  meteorological  centres  (Météo-France,  UK 
Meteorological  Office,  Canadian  Meteorological  Centre, 
Japan Meteorological  Agency,  …) and,  until  recently,  at 
ECMWF.  The  latter  now  has  a  ‘weak  constraint’ 
component in its operational system. 	


	
 	




	
 Buehner et al. (Mon. Wea. Rev., 2010)	

	
 	

	
 For  the  same  numerical  cost,  and  in  meteorologically  realistic 

situations,  Ensemble  Kalman  Filter  and  Variational  Assimilation 
produce results of similar quality.	




Weak constraint variational assimilation allows for errors in the assimilating	

model	


•  Data	

	
 	
 - Background estimate at time 0	

	
 	
 	

	
 	
   x0

b  =  x0
  + ζ0

b 	
  E(ζ0
bζ0

bT) = P0
b	


	
 	
 - Observations at times k = 0, …, K	

	
 	
 	

	
 	
    yk = Hkxk + εk	
 E(εkεk

T) = Rk	


	
 	
  - Evolution equation	

	
 	
  	

	
 	
   xk+1 = Mkxk + ηk 	
  E(ηkηk

T) = Qk k = 0, …, K-1	
 	
 	
 	


	
 	
 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	




	
 Then objective function	

	
 	


	
 (ξ0, ξ1, ..., ξK) → 	


	
 J(ξ0, ξ1, ..., ξK)   

  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	


	
 	
     + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	


	
 	
     + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]  

  
  Can include nonlinear Mk and/or Hk. 

       
	
 	
 	




Time-correlated Errors	


  Example of time-correlated observation errors	


  z1 = x + ζ1	
 	


  z2 = x + ζ2	
 	


	
 	
 E(ζ1) = E(ζ2) = 0   ;  E(ζ1
2) = E(ζ2

2) = s    ;     E(ζ1ζ2) = 0 	


	
 	
 BLUE of x from z1 and z2 gives equal weights to z1 and z2.	


	
 	
 Additional observation then becomes available 	

	
 	
 	

	
 	
 z3 = x + ζ3	
 	

	
 	
 E(ζ3) = 0    ;    E(ζ3

2) = s    ;    E(ζ1ζ3) = cs    ;    E(ζ2ζ3) = 0 	


	
 	
  BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)	




Time-correlated Errors (continuation 1)	


  Example of time-correlated model errors	


	
 	
 Evolution equation	

`	
 	
 xk+1 = xk + ηk	
  E(ηk

2) = q	

	
 	
 	

	
 	
 Observations	

	
 	
 yk = xk + εk , 	
  k = 0, 1, 2	
	
 E(εk

2) = r, 	
errors uncorrelated in time	

	
 	
 	

  Sequential  assimilation.  Weights  given  to  y0  and  y1  in  analysis  at  time  1  are  in  the 

ratio r/(r+q).  That ratio will  be conserved in sequential  assimilation.  All  right if  model 
errors are uncorrelated in time.	


   
  Assume  E(η0η1) = cq	

	
 	
  Weights given to y0 and y1 in estimation of x2 are in the ratio 	


	
 	
 	
 	
 	
  	

  	


€ 

€ 

ρ =
r − qc

r + q + qc



 Variational  assimilation  has  been  extended  to  non  Gaussian  probability  distributions 
(lognormal distributions), the unknown being the mode of the conditional distribution 
(M. Zupanski, Fletcher).	


	
 Bayesian character of variational assimilation ?	


	
 - If everything is linear and gaussian, ready recipe for obtaining bayesian sample	

	
 	

	
 Perturb  data  (background,  observations  and  model)  according  to  their  error 

probability distributions, do variational assimilation, and repeat process	


	
  Sample of system orbits thus obtained is bayesian	


	
 - If not, very little can be said at present 



Conclusion on Sequential Assimilation	


	
 Pros 	

	
      	
 ‘Natural’, and well adapted to many practical situations	

           Provides, at least relatively easily, explicit estimate of estimation 

error	


	
 Cons 	

	
 	
 Carries information only forward in time (of no importance 	

if one is interested only in doing forecast)	

            In present form, optimality is possible only if errors are independent 

in time	

	
 	
 	


	
 	




Conclusion on Variational Assimilation	


	
 Pros 	

	
  	
 Carries  information  both  forward  and  backward  in  time  (important  for 

reassimilation of past data).	

	
 	
 Can easily take into account temporal statistical dependence (Järvinen et al.)	

	
 	
 Does not require explicit computation of temporal evolution of estimation error	

	
 	
 Very well adapted to some specific problems (e. g., identification of tracer sources)	


	
 Cons 	

	
  	
 Does not readily provide estimate of estimation error 	

	
 	
 Requires  development  and  maintenance  of  adjoint  codes.  But  the  latter  can 

have other uses (sensitivity studies).	

	
  	

•  Dual approach seems most promising. But still needs further development for application 

in non exactly linear cases. 	


•  Is ensemble variational assimilation possible ? Probably yes. But also needs development.	



