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Sequential Assimilation. Kalman Filter

= (Observation vector at time k

Vi = Hix + &
E(g) =0 ; E(gg") =R, G
H, linear

= Evolution equation

X1 = Myx, + 1,

E(n) =0 ; E(Ukan) =0y 6kj
M, linear

u E(nkejT) =0 (errors uncorrelated in time)



At time k, background x?, and associated error covariance matrix P?, known
k k

Analysis step

Xy =x0+ PP H T HPYHT + R (3 - Hx))
Pi =P - PP H [HPYHT + R H PP

Forecast step

xbk+1 = M x%
P =M P M+ O,

Kalman filter (KF, Kalman, 1960)

Must be started from some initial estimate (x*, P,)



Second solution :

o Ensemble filters

Uncertainty is represented, not by a covariance matrix, but by
an ensemble of point estimates in state space that are meant to
sample the conditional probability distribution for the state of
the system (dimension L = O(10-100)).

Ensemble is evolved in time through the full model, which
eliminates any need for linear hypothesis as to the temporal
evolution.

Ensemble Kalman Filter (EnKF, Evensen, Anderson, ...)



But problems

- Collapse of ensemble for small ensemble size (less than a few hundred). Collapse originates in
the fact that gain matrix P°» H' [HP’H" + R]"!' is nonlinear wrt background error matrix P?,
resulting in a systematic sampling effect. Solution : empirical ‘covariance inflation’.

- Spurious correlations appear at large geographical distances. Empirical ‘localization’ (see
Gaspari and Cohn, 1999, Q. J. R. Meteorol. Soc.)

- In formula
x4 =xP,+ PPHY [HPPHT + R]! (y, - Hx?) ,

PP, which is covariance matrix of an L-size ensemble, has rank L-1 at most. This means that
corrections made on ensemble elements are contained in a subspace with dimension L-1.

Obviously very restrictive if L « p , L « n. Localisation, in addition to eliminating spurious
long-range correlations, increases the rank of the gain matrix.



Houtekamer and Mitchell (1998) use two ensembles, the elements of each of
which are updated with covariance matrix of other ensemble.



There exist many variants of Ensemble Kalman Filter

Ensemble Transform Kalman Filter (ETKF , Bishop et al., Mon. Wea. Rev.,2001)

Requires a prior ‘control’ analysis x ¢, emanating from a background x.’. An ensemble is
evolved about that control without explicit use of the observations (and without feedback to
control)

More precisely, define L x L matrix 7 such that, given P? = ZZ", then P¢ = ZTT'Z" (not trivial,
but possible). Then the background deviations x”, — x ” are transformed through Z — ZT into
an ensemble of analysis deviations x%, — x “.

(does not avoid collapse of ensembles)

Local Ensemble Transform Kalman Filter (LETKF , Hunt et al., Physica D, 2007)

Each gridpoint is corrected only through the use of neighbouring observations.



Other variants of Ensemble Kalman Filter
‘Unscented’ Kalman Filter (Wan and van der Merve, 2001, Wiley Publishing)
Weighted Kalman Filter (Papadakis et al., 2010, Tellus A)

Inflation-free Ensemble Kalman Filters (Bocquet and Sakov, 2012, Nonlin. Processes
Geophys.)



Bayesian properties of Ensemble Kalman Filter
Very little is known.

Le Gland ef al. (2011). In the linear and gaussian case, the discrete pdf
defined by the filter, in the limit of infinite sample size L, tends to the
bayesian gaussian pdf.

No result for finite size (note that ensemble elements are not mutually
independent)

In the nonlinear case, the discrete pdf tends to a limit which is in
general not the bayesian pdf.



Situation still not entirely clear.

In any case, Kalman Filter propagates information only forward in time, and
optimality always requires errors to be independent in time. In order to
relax that constraint, it is necessarily to augment the state vector in the
temporal dimension.



Two questions

- How to propagate information backwards in time ?
(useful for reassimilation of past data)

- How to take into account possible dependence in time ?

Kalman Filter, whether in its standard linear form or in its Ensemble form,
does neither.



Time-correlated Errors

Example of time-correlated observation errors

Z1=x+¢§
L,=x+ G,

E(E)=E&)=0 ; E(§)=E&H=s ; E&E=0
BLUE of x from z; and z, gives equal weights to z, and z,.

Additional observation then becomes available

=X+ G

E(C3) =0 E(Csz) =S5 E(Cl §3) =cs o, E(@zé}) =0

BLUE of x from (z,, z,, 23) has weights in the proportion (1, 1+c, 1)



Time-correlated Errors (continuation 1)
Example of time-correlated model errors

Evolution equation

) Xer1 = X+ 1 E(n?)=q
Observations
V=X + €&, k=0,1,2 E(g?) = r, errors uncorrelated in time

Sequential assimilation. Weights given to y, and y, in analysis at time 1 are in the ratio
r/(r+¢q). That ratio will be conserved in sequential assimilation. All right if model errors are
uncorrelated in time.

Assume E(nyn,) = cq
Weights given to y, and y, in estimation of x, are in the ratio

r—qc

r+4q+qc



Conclusion

Sequential assimilation, in which data are processed by batches, the data of one

batch being discarded once that batch has been used, cannot be optimal if data in different
batches are affected with correlated errors. This is so even if one keeps trace of the
correlations.

Solution

Process all correlated in the same batch (4D Var, some smoothers)



Variational Assimilation
Variational form of the BLUE
BLUE x? minimizes following scalar objective function, defined on state space
se §—

© J®=A2)P-HTPTI " -H+ (1/2) (y- HOYTR' (v - HE)

jb + 50

‘3D-Var’

Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.

Used operationally in USA, Australia, China, ...



Variational approach can easily be extended to time dimension.

Suppose for instance available data consist of

- Background estimate at time 0

xob — xO + gob E( g()b CObT) — POb
- Observations at times k=0, ..., K
v, = Hx, + ¢ E(ekejT) =R 6

- Model (supposed for the time being to be exact)
xk+1=Mka k=0,...,K']

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear

Then objective function

g S
JE) = (1/2) (x," - E)T[PT (xo” - &) + (172) Zylyy - HEIT R, [y - Hi&

subject to &, = M,&,, k=0,...,K-1



J(&) = (1/2) (xg” - E)TIPPT! (g - &) + (1/2) Zly - HiG T R [y - Hi&il

Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

How to minimize objective function with respect to initial state u = &, (u is
called the control variable of the problem) ?

Use iterative minimization algorithm, each step of which requires the
explicit knowledge of the local gradient V] = (9/]/0u;) of /] with respect to u.



How to numerically compute the gradient V] ?

Direct perturbation, in order to obtain partial derivatives 0‘)/0u; by finite
differences ? That would require as many explicit computations of the
objective function /] as there are components in u. Practically impossible.

Gradient computed by adjoint method.



Adjoint Method

Input vector u = (u;), dimu =n

Numerical process, implemented on computer (e. g. integration of
numerical model)

u—v=0G~u)
v = (v)) is output vector , dimy = m

Perturbation ou = (du;) of input. Resulting first-order perturbation on v
ov; = Z,(dv/ou;) ou,

or, in matrix form

ov = G’ du

where G’= (dv;/du,) is local matrix of partial derivatives, or jacobian matrix, of G.



Adjoint Method (continued 1)

ov = G’ du

* Scalar function of output
Jv) = JiGw)]
Gradient V] of /] with respect to input u?
‘Chain rule’
dJ/du;= 2,;9J/dv; (dv/du,)

or

V.J=G"V,]

(D)

(A)



Adjoint Method (continued 2)

G is the composition of a number of successive steps

G=Gy.....G,.G,
‘Chain rule’

G =G, ..G, G/
Transpose

GT'=G;TG,T...G"

Transpose, or adjoint, computations are performed in reversed order of direct computations.
If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an
argument of a nonlinear operation in the direct computation will be used again in the adjoint
computation. It must be kept in memory from the direct computation (or else be recomputed again in

the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).



Adjoint Approach

J(&) = (172) (x” - EDTIPPT (xo” - &) + (1/2) Zylyy - HEIT R, [y - Hi&(l
subject to &, = M,§,, k=0,...,K-1

Control variable S=u

Adjoint equation

Ay = Hy " Ry [Hy & - yil

)Lkz M A, +H'R[H &, -yl k=K-1,...,1

A= My"A; + Hy"Ry!' [Hy &y -yl + [P"1! (& - x,")

v,J =4

Result of direct integration (&), which appears in quadratic terms in expression of
objective function, must be kept in memory from direct integration.



Adjoint Approach (continued 2)

Nonlinearities ?

5(50) = (1/2) (xob - é"o)T [Pob]_1 (x()b - 50) +(1/2) zkb’k - Hk(gk)]TRk_l [y - Hk(gk)]
subject to &, = M, (&), k=0,...,K-1

Control variable E=u
Adjoint equation
Ay = Hi "Rt [Hi(Eg) - yil

M= M, ,T)Lk+1 + H, ’TRk_l [H (5 - ¥ k=K-1,...,1

A= My"A + HY PRy [HW(E) - vol + [PPT (& - XD

V.J =%

Not approximate (it gives the exact gradient V), and really used as described here.



60°W o

Temporal evolution of the 500-hPa geopotential autocorrelation with respect to
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.
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FiG. 1. Background fields for 0000 UTC 15 October-0000 UTC 16 October 1987. Shown here are the Northern Hemisphere (a) 500-
WPa geopotential height and (b) mean sea level pressure for 15 October and the (¢) 500-hPa geopotential height and (d) mean sea level
pressure for 16 October. The fields for 15 October are from the initial cstimate of the initial conditions for the 4dDVAR minimization. The
ficlds for 16 October are from the 24-h T63 adiabatic model forecast from the initial conditions. Contour intervals are 80 m and 5 hPa.

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



3.0v

3,02

3.02

Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



00 GMT 16 OCT 1987WIND 850 MBHEIGHT 850 MB

Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



00 GMT 16 OCT 1987WIND 850 MBHEIGHT 850 M8

%%
= 75° >
2
8
S R/
60°N 5o N
"8 GV
b .'.'QS‘N‘- %
- 258 Ae <
R e 4.
N s s hogZ e N\
s b detion ‘she
o e 1
15N
3 Sk
32 % 1
0
040 0
40°W 20°W

3,09

100°W

80°W

60°W

3,02

Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414




D-Var analysis

=l

=

3D-Var verifying analysis

ySis

4D-Var verifying anal

)

ECMWEF, Results on one FASTEX case (1997)




Strong Constraint 4D-Var 1s now used operationally at
several meteorological centres (Météo-France, UK
Meteorological Office, Canadian Meteorological Centre,
Japan Meteorological Agency, ...) and, until recently, at
ECMWEF. The Ilatter now has a ‘weak constraint’
component in its operational system.



500hPa geopotential
Mean square error gkill score
NHem Extratropics (at 200 t090.0, lon -180.0 to 180.0)
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Figure 3: 500 hPa geopotential height mean square error skill score for Europe (top) and the northern hemisphere
extratropics (bottom), showing 12-month moving averages for forecast ranges from 24 to 192 hours. The last point
on each curve 1s for the 12-month period August 2013-July 2014.

Persistence = 0 ; climatology = 50 at long range



HRes and ERA Interim 00,12UTC forecast skill

500hPa geopotential
Lead time of Anomaly correlation reaching 99.5%
NHem ExtratropiCs (iat 20.0 to 90.0, lon -180.0 to 180.0)
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Credit E. Kalléen, ECMWEF



How to write the adjoint of a code ?

Operation a =b x ¢
Input b, ¢ Output a but also b, ¢

For clarity, we write

a=bxc
b’=b
c’=c¢

allda, AJ/db’, JdJ/dc’ available. We want to determine dJ/db, JJ/dc

Chain rule

dJ/0b = (dJ/da)(dal Ib) + (1] b’ ) (b’ /db) + (1] dc’)(dc’/ Ib)
c 1 0

al1db = (] da) ¢ + I/ b’
Similarly

dJldc = (dJ/da) b + dJ/dc’



Gradient test

Positive gradient test Negative gradient test
10 10
10 T T T 10 T T T
: : : : : m— Gradient test

= (Gradient test

In(residue(a))
In(residue(c))

1072 107" 107" 107° 10°
In(c)

e - J(optimal control variable)

e = 272 zero machine
residue(a) = (J(x + adx) — J(x)) — aVI(Xx)dx
M. Jardak



