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-  Bayesian estimation. Continuation. 	



-  Reminder  on  elementary  probability  theory. 
Random  vectors  and  covariance  matrices, 
random functions and covariance functions	



-  Optimal  Interpolation.  Principle,  simple 
examples, basic properties. 	
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 Purpose of assimilation : reconstruct as accurately as possible the state of the 
atmospheric or oceanic flow, using all available appropriate information. The latter 
essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, and 
are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in practice in 
the form of a discretized, and necessarily approximate, numerical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although 
they basically are necessary consequences of the physical laws which govern the flow, these 
properties can usefully be explicitly introduced in the assimilation process. 
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Both observations and ‘model’ are affected with some uncertainty ⇒ 
uncertainty on the estimate. 

 For some reason, uncertainty is conveniently described by probability 
distributions (don’t know too well why, but it works; see, e.g. Jaynes, 
2007, Probability Theory: The Logic of Science, Cambridge University 
Press). 

 Assimilation is a problem in bayesian estimation. 

 Determine the conditional probability distribution for the state of the 
system, knowing everything we know (see Tarantola, A., 2005, Inverse 
Problem Theory and Methods for Model Parameter Estimation, SIAM). 
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Bayesian Estimation   

 Determine  conditional  probability  distribution  of  the  state  of  the 
system, given the probability distribution of the uncertainty on the data	



  z1 = x + ζ1	

  ζ1 = N [0, s1] 	



	

 	

 	

 	

  density function 	

p1(ζ) ∝ exp[ - (ζ2)/2s1]	



  z2 = x + ζ2	

  ζ2 = N [0, s2] 	



	

 	

 	

 	

  density function 	

p2(ζ) ∝ exp[ - (ζ2)/2s2]	



•  ζ1 and ζ2 mutually independent	



What is the conditional probability P(x = ξ | z1, z2) that x be equal to some 
value ξ ?	





  z1 = x + ζ1	

 density function 	

 p1(ζ) ∝ exp[ - (ζ2)/2s1]	


  z2 = x + ζ2	

  density function 	

p2(ζ) ∝ exp[ - (ζ2)/2s2] 	



	

 	

 	

 ζ1 and ζ2 mutually independent	



x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ	



•  P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)	



	

 	

 	

         ∝  exp[ - (ξ -xa)2/2pa]  

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1
 + z2/s2)	



Conditional probability distribution of x, given z1 and z2 :N [xa, pa]	


pa < (s1, s2) independent of z1 and z2 	
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 Conditional  expectation  xa  minimizes  following  scalar  objective 
function, defined on ξ-space	



	

 	

  ξ →   J(ξ) ≡  (1/2) [(z1 - ξ)2 / s1 + (z2 - ξ)2 / s2 ] 

	

  In addition	



	

 	

  pa = 1/ J’’(xa)  

 Conditional probability distribution in Gaussian case 

   P(x = ξ | z1, z2) ∝ exp[ - (ξ -xa)2/2pa]  

	

 	

 	

 	

 	

 J(ξ) + Cst  
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 Estimate	



	

 	

 	

 xa = pa (z1/s1
 + z2/s2)	



	

 with error pa such that	



	

 	

 	

  1/pa = 1/s1 + 1/s2  	



 can also be obtained, independently of any Gaussian hypothesis, as 
simply corresponding to the linear combination of z1 and z2 that minimizes 
the error Ε [(xa-x) 2]  

   Best Linear Unbiased Estimator (BLUE)  
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  z1 = x + ζ1	

 	


  z2 = x + ζ2	

 	



	

 	

 Same as before, but ζ1 and ζ2 are now distributed according to exponential law 
with parameter a, i. e.  	



	

 	

 	

 p (ζ) ∝ exp[-|ζ |/a]   ;    Var(ζ) = 2a2	



Conditional probability density function is now uniform over interval [z1, z2], 	


exponential with parameter a/2 outside that interval	



	

 E(x | z1, z2)  = (z1+z2)/2	



	

 Var(x | z1, z2) = a2 (2δ3/3 + δ2 + δ +1/2) / (1 + 2δ), with δ =  ⏐z1-z2⏐/(2a)	


	

 Increases from a2/2 to ∞ as δ increases from 0 to ∞. Can be larger than variance 2a2	



	

 of original errors (probability 0.08)	
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Bayesian estimation   

State vector x, belonging to state space S (dimS = n), to be estimated.	



Data vector z, belonging to data space D (dimD = m), available.	



	

  z = F(x, ζ)     (1) 

where  ζ  is  a  random  element  representing  the  uncertainty  on  the  data  (or,  more 
precisely, on the link between the data and the unknown state vector).	



For example	



	

 z = Γx + ζ	
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 Bayesian estimation (continued)	



	

 Probability that x = ξ for given ξ ?	



  x = ξ    ⇒   z = F(ξ, ζ) 

	

 	

 P(x = ξ | z) = P[z = F(ξ, ζ)] / ∫ξ’ P[z = F(ξ’, ζ)] 

	

 Unambiguously defined iff, for any ζ, there is at most one x such that (1) is verified.	



	

 ⇔    data  contain  information,  either  directly  or  indirectly,  on  any  component  of 
x. Determinacy condition. Implies m ≥ n. 	
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Difficulties specific to assimilation of meteorological observations :	



	

 -  Very  large  numerical  dimensions  (n  ≈  106-109  parameters  to  be 
estimated,  p  ≈  4-5.107  observations  per  24-hour  period).  Difficulty 
aggravated in Numerical Weather Prediction by the need for the forecast to 
be ready in time.	



	

 - Non-trivial, actually chaotic, underlying dynamics	
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 Bayesian  estimation  is  actually  impossible  in  its  general  theoretical 
form in meteorological or oceanographical practice because	



•  It is impossible to explicitly describe a probability distribution in a space 
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈ 
106-9 of  present  Numerical  Weather  Prediction  models  (the  curse  of 
dimensionality).	



•  Probability distribution of errors on data very poorly known (model errors 
in particular).	
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One has to restrict oneself to a much more modest goal. Two	


approaches exist at present	



  Obtain  some  ‘central’  estimate  of  the  conditional  probability 
distribution  (expectation,  mode,  …),  plus  some  estimate  of  the  
corresponding  spread  (standard  deviations  and  a  number  of 
correlations). 

  Produce an ensemble of estimates which are meant to sample the 
conditional probability distribution (dimension N ≈ O(10-100)).	
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 Coût  des  différentes  composantes  de  la  chaîne  de  prévision 
opérationnelle du CEPMMT (septembre 2015, J.-N. Thépaut) :	



	

 4DVAR: 9.5% 
 HRES FC: 4.5% 
 EDA: 30% 
 ENS: 22% 
 ENS: hindcasts 14% 

 Other: 20% of which BC AN: 3.5% BC FC: 4% BC ENS: 9.5% 

	

 L'EDA fournit  à  la  fois  les  variances  d'erreur  d’ébauche  du  4D-Var,  et 
les  perturbations  initiales  (en  complément  des  vecteurs  singuliers)  de 
l'EPS.	
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 Scalar random variable x 	



	

 Observed  outcome  of  ‘realizations’  of  a  process  that  is  repeated  a  large  number  of 
times. And also, a priori uncertainty on that result.  	



	

 For  any  interval  [a,  b],  the  probability  P(a  <  x  <  b)  is  known  (whether  inequalities 
are strict or not may matter).	



	

 Probability density function (pdf). Function  p(ξ) such that, for any interval [a, b] 	



	

 	



	

 (p(ξ) may contain diracs)	



	

 Expectation. Mean of a large number of realizations of x	



	

 	


	

 (may not exist)	
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E(x) = ξp(ξ)dξ
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P[a < x < b] = p(ξ)d
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∫ ξ

€ 

€ 

p(ξ)
−∞

+∞

∫ dξ =1



	

 Scalar random variable x (continued)	



	

 Variance	



	

 	

 	

 Var(x) ≡ E{[x – E(x)]2} = E(x2) – [E(x)]2 

  

	

 Standard deviation	



	

 	

 	

 σ(x) ≡ √Var(x)    

	

 Centred variable  x’ ≡ x – E(x) 	
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 Couple of random variables x = (x1, x2)T	



	

 For any intervals [a1, b1], [a2, b2], probability P(a1 < x1 < b1 and a2 < x2 < b2) is known	



	

 Extends to any measurable  domain D  ⊂ R2 

   

	

 where p(ξ1, ξ2) is probability density function	



	

 Expectation 	


	

 	

 	

 E(x1 +  x2) = E(x1) +  E(x2)	
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P[(x1,x2)∈D] = p(ξ1,ξ2)d
D
∫ ξ1ξ2



	

 Couple of random variables x = (x1, x2)T	



	

 	


	

 Covariance	



	

 	

 	

 Cov(x1, x2) ≡ E(x1’ x2’) 

   Corr(x1, x2) ≡ Cov(x1, x2) / (σ(x1) σ(x2))  =  cos ϕ 

	

 Covariance  is  a  scalar  product,  and  defines  Euclidean  geometry  (on  space  of  finite-
variance random variables on a given trial space)	



	

 Modulus = standard deviation σ, angle = cos-1 (Corr), orthogonality = decorrelation	



	

 If x1 and x2 uncorrelated,	



	

 	

 	

 Var(x1 +  x2) = Var(x1) +  Var(x2)        (Pythagorean theorem) 

	

 	

 	

 E(x1 x2) = E(x1) E(x2)	
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 Couple of random variables x = (x1, x2)T (continued)	



	

 Independence	



	

 x1  and  x2  independent  :  knowledge  about  either  one  of  the  variables  brings  no 
knowledge about the other one.	



	

 For any intervals [a1, b1], [a2, b2]	



	

 	

 P(a1 < x1 < b1 and a2 < x2 < b2)  = P(a1 < x1 < b1) P(a2 < x2 < b2)	



	

 Equivalently, pdf’s verify	



	

 	

 p(ξ1, ξ2)  = p1(ξ1) p2ξ2)	



	

 Independence implies decorrelation. Converse is not true	


	

 (consider S = sin α, C = cos α, where α is uniformly distributed over [0, 2π])      	
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 Random  vector  x  =  (x1,  x2,  …,  xn)T  =  (xi)  (e.  g.  pressure,  temperature, 
abundance of given chemical compound at n grid-points of a numerical model)	



  Expectation E(x) ≡ [E(xi)] 	

 ;    centred vector    x’  ≡ x - E(x) 	



  Covariance  matrix 	



	

 	

 	

 	

 E(x’x’T) = [E(xi’xj’)]	

 	


	

  dimension nxn	


	

 	


	

 Non-random vector λ = (λi)i = 1, .., n	



	

 	

 	

 G ≡ Σi λi xi’	

 	

 G2 = Σi,j λi λj xi’xj’ 	



	

 	

 	

 E(G2) = Σi,j λi λj E(xi’xj’) =  λT E(x’x’T) λ  ≥ 0   	


	

 	


	

 Covariance  matrix  E(x’x’T)  is  symmetric  non  negative  (strictly  definite  positive 

except if linear relationship holds between the xi’‘s with probability 1).	
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 Change 	


	

 	

 	

 x  →  y ≡  Px	



	

 	

 	

 y’y’T = Px’(Px’)T = P x x’ T PT    	



	

 	

 	

 E(y’y’T)  = P E(x’x’T) PT	



    In change x  →  y, eigenvalues of covariance matrix remain 
>  0,  but  can  be  modified   (conserved  if  PT  =  P-1, 
orthogonal matrix). 	



	

 Eigenvalues can actually take any positive values. 	


	

 In  particular,  covariance  matrix  can  be  made equal  to  the 

unit  matrix,  for  instance  in  the  basis  of  principal 
components. 	
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  Two random vectors	



	

 x = (x1, x2, …, xn)T	


	

 z = (z1, z2, …, zp)T	


	

 	

 	

 	



	

 	

 	

 	

 E(x’z’T) = E(xi’zj’)	

  	



	

         dimension nxp	



	

 	

 Change  	



	

 	

 x  → u ≡  Ax	

 	

 z  →  v ≡  Bz	



	

 	

 	


	

 	

 	

 E(u’v’T) = A E(x’z’T) BT	
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     Covariance  matrices will be denoted	



	

 	

 	

 	

 Cxx  ≡  E(x’x’T) 	



	

 	

 	

 	

 Cxy  ≡  E(x’y’T) 	
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 Random  function  Φ(ξ)  (field  of  pressure,  temperature,  abundance  of 
given  chemical  compound,  …  ;  ξ  is  now  spatial  and/or  temporal 
coordinate) (aka stochastic process if function of time)	



  Expectation E[Φ(ξ)]  ; 	

 Φ’(ξ) ≡ Φ(ξ) - E[Φ(ξ)]	


  Variance      Var[Φ(ξ)] = E{[Φ’(ξ)]2}	



  Covariance function	



	

 	

 	

 (ξ1, ξ2) →  CΦ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)]	



  Correlation function	



	

 	

 	

 CorΦ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)] / {Var[Φ(ξ1)] Var[Φ(ξ2)]}1/2	
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After N. Gustafsson 
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After N. Gustafsson 



After N. Gustafsson 

31 



	

 Covariance function can be 	


	

 	


	

 homogeneous	

 	

 CΦ(ξ1, ξ2) = H(ξ1 - ξ2) 	


	

 	


	

 or isotropic 	

 	

 CΦ(ξ1, ξ2) = K(⎜ξ1 - ξ2⎜) 	


	

 (on the sphere, no difference)	



	

 N points ξ1, ξ2, …, ξN  in state space	


	

 N non-random coefficients λ1, λ2, …, λN	



	

 	

 	

 	

 G ≡ Σi λi Φ’(ξi) 	

 	


	

 	



	

 	

 	

 E(G2) = Σi,j λi λj CΦ(ξi, ξj) ≥ 0   	
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 E(G2) = Σi,j λi λj CΦ(ξi, ξj) ≥ 0 	



	

 covariance  functions  are  of  positive  type  (or  definite 
positive).  Conversely,  a  function of  positive type can be 
shown to be the covariance function of a random function.  	



	

 Examples	


	

 On a  circle,  function  C(ξ1,  ξ2)  =  cos(ξ1-ξ2)  is  covariance 

function of random function Φ(ξ) = 2 cos(ξ + α), where α 
is uniformly distributed over [0, 2π].	



	

 In Rn, squared exponential 	



	

 	

      C(ξ1, ξ2)  = exp[- (ξ1- ξ2)T B-1 (ξ1- ξ2) ]    B > 0    	
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 Bochner-Khintchin  theorem.  Homogeneous  function  C 

(ξ1, ξ2) = H(ξ1 - ξ2) over Rn  of positive type ⇔ Fourier 
Transform of H is real ≥ 0.  
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 Gaussian variables	



	

 Unidimensional	



	

 N [m, a]  ~ (2π a)-1/2 exp [- (1/2a) (ξ-m)2] 

	

 Dimension n	



	

 N [m, A] ~  
   [(2π)n detA]-1/2 exp [- (1/2) (ξ-m)TA-1(ξ-m)] 	
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 Gaussian variables	



	

 Gaussian couple z = (xT, yT) T  with distribution N [0, C]	



	

 pdf  ~  exp [- (1/2) zTC-1z] 	



	

 	


	

 x and y uncorrelated Cxy = 0, Cyx = 0	



	

 	

 	

 zTC-1z = xT Cxx
-1 x  + yT Cyy

-1 y	
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Cxx
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 Gaussian variables	



	

 	

 	

 zTC-1z = xT Cxx
-1 x  + yT Cyy

-1 y	



	

 	

 exp [- (1/2) zTC-1z] =	


                            exp [- (1/2) xT Cxx

-1 x ] exp [- (1/2) yT Cyy
-1 y]    	



	

 	

 p(z)  =  p(x) p(y)   	



	

 For globally Gaussian variables, decorrelation implies independence  	
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-  ‘Optimal  Interpolation’.  Basic  theory  and 
basic properties. A simple example.	
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Optimal Interpolation 

           x ξ1           
     x ξ3	



   X ξ 
 x ξ2	

 	

 	

 	

 x ξ5	



	

 	

 	

 x ξ4	



	

 Observations yj = Φ(ξj) + εj  at points ξj	



	

 Value x = Φ(ξ) at point ξ  ?	
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Optimal Interpolation 
Random field Φ(ξ)	



Observation network ξ1, ξ2, …, ξp	



For one particular realization of the field, observations	



yj = Φ(ξj) + εj   ,  j = 1, …, p        ,	

                making up vector y = (yj)	



Estimate x = Φ(ξ) at given point ξ, in the form	



	

 	

 	

  xa = α + Σj βj yj  = α + βTy	

, 	

 where β = (βj)	



α and the βj’s being determined so as to minimize the expected quadratic 
estimation error E[(x-xa)2]	
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Optimal Interpolation (continued 1) 

	

 E[(x-xa)2] minimum ⇒  E(x-xa) = 0    Estimate xa is unbiased.	



	

 	

 	

  xa = α + Σj βj yj	



	

 	

 	

 E(xa) = α + Σj βj E(yj)  	



	

 	

           xa - E(x) =  Σj βj [yj - E(yj)]	



	

 Computations are to be made on centred variables 	



	

 x’a  ≡  xa  -  E(x)  is  the  linear  combination  of  the  yj’  =  yj  -  E(yj)  that 
minimizes the distance to x’ = x - E(x). It is the orthogonal projection, 
in the sense of covariance, of x’ onto the space spanned by the yj’’s.         	
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Optimal Interpolation (continued 2) 

	

  x’ - x’a uncorrelated with yj’	



	

 	

 	

 E[(x’ – x’a) yj’] = 0	


	

 	

 	

 x’a =  Σk βk yk’ 	



	

 	

     ⇒	

 Σk βk E(yk’ yj’)  = E(x’ yj’)	



in matrix form	

  Cyy β = Cyx	
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Optimal Interpolation (continued 3) 
Solution	


	

 	

 	

   xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]	


	

 	

 	

        = E(x) + Cxy [Cyy]-1 [y - E(y)] 	



	

 	

 i. e.,	

 βT = Cxy [Cyy]-1	


	

 	

        	

 α = E(x) - βTE(y)	



Estimate is unbiased 	

  E(x-xa) = 0	



Minimized quadratic estimation error	



	

 	

 	

  E[(x-xa)2] = E(x’2) - E[(x’a)2]) 	


	

 	

 	

                   = Cxx  - Cxy [Cyy]-1 Cyx	



Estimation made in terms of deviations x’ and y’ from expectations E(x) 
and E(y).	
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Optimal Interpolation (continued 4) 
	

 	

 	

 	


	

 	

 	

  xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]	



	

 	

 	

  yj = Φ(ξj) + εj 	



E(yj’yk’) = E {[Φ’(ξj) + εj’][Φ’(ξk) + εk’]}	



	

 If  observation  errors  εj  are  mutually  uncorrelated,  have  common 
variance r, and are uncorrelated with field Φ, then	



	

 	

 	

  E(yj’yk’) = CΦ(ξj, ξk) + rδjk	


	

 and	


 	

 	

 	

  E(x’yj’) = CΦ(ξ, ξj) 	
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Optimal Interpolation (continued 5) 
	

 	

 	

 	



Unique observation (p=1)  	

  y1 = Φ(ξ1) + ε1	



Value x = Φ(ξ) at some point ξ to be estimated	


(all values assumed to be centred)	



	

 	

 	

 Cyy β  = Cyx  	



Cyy = E(y1
2) = CΦ(ξ1, ξ1) + r	

 Cyx  = CΦ(ξ, ξ1)	
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Optimal Interpolation (continued 6) 
	

 	

 	

 	



 	

 	

 	

 	

 	

       	


	

 	

 	

 	

 	

       x y1	
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xa =Φ a (ξ) =
CΦ (ξ,ξ1)

CΦ (ξ1,ξ1) + r
y1

ξ1	

ξ	





After N. Gustafsson 
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Optimal Interpolation (continued 7) 
	

 	

 	

 	


Two mutually close observations (p=2)  	

 yj = Φ(ξj) + εj    ,  j = 1,2 	



Homogeneous covariance function  CΦ(χ1, χ2) = Γ(χ1- χ2)	



Linear system for weights βj’s  	
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Optimal Interpolation (continued 8) 
	

 	

 	

 	


Two mutually close observations (p=2)  	

 yj = Φ(ξj) + εj    ,  j = 1,2 	



For small δ,	



Sum equals weight that would be given to a unique observation located at 
position d, with error r/2    	

 49 
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β1 + β2 =
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Optimal Interpolation (continued 10) 
	

 	

 	

 	



	

 	

 	

  xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	



	

 Vector	


	

 	

 	

 µ = (µj) ≡ [Cyy]-1 [y - E(y)]	



	

 is independent of variable to be estimated	



	

 	

 	

 xa = E(x) + Σj µj  E(x’yj’) 	
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Optimal Interpolation (continued 11) 
	

 	

 	

 	



	

 	

 	

 xa = E(x) + Σj µj  E(x’yj’) 	



	

 	

 	

 Φa(ξ) = E[Φ(ξ)] + Σj µj  E[Φ’(ξ) yj’]	



	

 Under hypotheses made above, E[Φ’(ξ) yj’] = CΦ(ξ, ξj)   	



	

 	

 	

  Φa(ξ) = E[Φ(ξ)] + Σj µj  CΦ(ξ, ξj) 	



	

 Correction  made  on  background  expectation  is  a  linear 
combination of the p functions CΦ(ξ, ξj)	



	

 CΦ(ξ,  ξj),  considered as  a  function of  estimation position ξ,  is  the 
representer associated with observation yj.	
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Optimal Interpolation (continued 12) 

	

 Univariate  interpolation.  Each  physical  field  (e.  g.  temperature) 
determined from observations of that field only.	



	

 Multivariate  interpolation.  Observations  of  different  physical  fields 
are used simultaneously.  Requires specification of cross-covariances 
between various fields.	



	

 Cross-covariances  between  mass  and  velocity  fields  can  simply  be 
modelled on the basis of geostrophic balance.	



	

 Cross-covariances  between  humidity  and  temperature  (and  other) 
fields still a problem.	
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After N. Gustafsson 57 



After N. Gustafsson 



After A. Lorenc, MWR, 1981 
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After A. Lorenc, MWR, 1981 

60 



Optimal Interpolation (continued 13) 

Observation vector y	



Estimation of a scalar x	



	

 	

 	

  xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	



	

 	

 	

 pa ≡ E[(x-xa)2] = E(x’2) - E[(x’a)2]) 	


	

 	

 	

 	

   = Cxx  - Cxy [Cyy]-1 Cyx	



Estimation of a vector x	



	

 	

 	

  xa = E(x) + Cxy [Cyy]-1 [y - E(y)] 	



	

 	

 	

 Pa ≡  E[(x-xa) (x-xa)T] = E(x’x’T) - E(x’a x’aT) 	


	

 	

 	

 	

               = Cxx  - Cxy [Cyy]-1 Cyx	
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Optimal Interpolation (continued 14) 

	

 	

 	

  xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	


	

 	

 	

  Pa = Cxx  - Cxy [Cyy]-1 Cyx	



If probability distribution for couple (x, y) is Gaussian (with, 
in particular, covariance matrix	



then Optimal Interpolation achieves Bayesian estimation, in 
the sense that	



	

 	

 	

      P(x | y) = N [xa, Pa]	


€ 

C ≡
Cxx Cxy

Cyx Cyy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 
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Convective Instability	



	

 In  dry  atmosphere  in  hydrostatic  balance,  adiabatic  lapse 
rate (vertical gradient of temperature)	



	

 (dT/dz)ad =  - g/Cp 
	

 g ≈ 10 m s-2 , Cp ≈ 103 SI, - g/Cp ≈ - 10 °C/km      	



	

 Water  vapour  is  present  in  the  atmosphere,  and  will 
usually condense, and emit heat, in an ascending motion. 
In practice, dT/dz is observed to have value about - 6 °C/
km, which is close to its adiabatic wet value. 	
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 Reminder 	


	

 Potential temperature 	


	

 θ ≡ T(p0 /p)κ with  κ  ≡ r/Cp  (≈ 0.285 for dry air)    	


	

 Potential  temperature  is  conserved  in  adiabatic 

transformation	



	

 Stratified  atmosphere  at  rest  with  temperature  gradient 
dT/dz and associated gradient of potential temperature dθ/
dz. 	



	

 Particle  displaced  adiabatically  upward  from  its 
equilibrium  position.  Expands  taking  pressure  of 
background stratification.	
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 -  if  background  temperature  larger  than  temperature  of 
displaced  particle,  i.  e.  dT/dz  >  (dT/dz)ad  (potential 
temperature increases with altitude), buoyancy force will 
pull particle back to its original position. Stratification is 
said to be convectively stable. Particle will oscillate with 
Brunt-Väisälä frequency N	



N2 ≡ (g/θ) (dθ/dz)	



	

 In  the  atmosphere,  the  corresponding  period  has  typical 
value of a few minutes.         	



	

 -  if  background  temperature  lower  than  temperature  of 
displaced  particle,  i.  e.  dT/dz  <  (dT/dz)ad  (potential 
temperature  decreases  with  altitude),  particle  will  move 
farther  away  from  its  original  position  ⇒ convective 
instability       	
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 Convective  instability  is  at  the  origin  of  intense 
convective  cells  (cumulus  clouds,  thunderstorms),  with 
core  of  intense  ascending  motion  surrounded  by  slower 
subsiding  motion.  Convective  instability  is  the  main 
process  through which energy is  carried from the  lower 
surface  (continents,  oceans)  into  the  atmosphere.  It  also 
carries water and momentum.	



	

 Convection  occurs  also  in  the  ocean,  when  the  upper 
surface is cooled by radiation.	



	

 A similar  phenomenon  occurs  in  the  ocean  (but  with  no 
thermodynamical  effects  involved)  when  dense  water 
(whose  salinity  has  been  increased  by  evaporation)  is 
transported (for instance by wind) above less dense water. 
This  phenomenon  is  a  component  of  the  thermohaline 
circulation.  	



	

 	





Cours à venir	



 Vendredi 26 mars 
 Vendredi 2 avril 
 Vendredi 9 avril 
 Vendredi 16 avril 
 Vendredi 7 mai 
 Vendredi 14 mai 
 Vendredi 21 mai 
 Vendredi 28 mai	




