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-  Kalman Filter. Continuation	



-  Ensemble Kalman Filter. 	



-  Kalman Smoother. Brief theory. An example.	



-  Variational assimilation. Principle. The adjoint 
approach. Results	
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Sequential Assimilation.  Kalman Filter  	


  
  System evolves in time according to equation	



 xk+1 = Mkxk + ηk    k = 0, …, K-1	


 E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj 	



	

 Mk linear	



  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	



	

 	

 	

 	

 	

  

  E(ηkεj
T) = 0  (errors uncorrelated in time) 

3 



	

 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1Hk Pb
k	



  Forecast step 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = Mk Pa

k Mk
T + Qk  

	

 Kalman filter (KF, Kalman, 1960)	



	

 Must be started from some initial estimate (xb
0, Pb

0)	
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 If  all  operators  are  linear,  and  if  errors  are  uncorrelated  in  time, 
Kalman filter produces at time k the BLUE xb

k (resp. xa
k) of the real 

state xk from all data prior to (resp. up to) time k, plus the associated 
estimation error covariance matrix Pb

k (resp. Pa
k).	



	

 If  in  addition  errors  are  globally  gaussian,  the  corresponding 
conditional  probability  distributions  are  the  respective  gaussian 
distributions N [xb

k, Pb
k] and N [xa

k, Pa
k].	
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 Kalman filter. A simple example (Ghil et al.)	



	

 Shallow-water equations (aka équations de Saint-Venant)	



	

 	



  

	

 	



	

 Periodic domain D. Equations conserve energy 
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 Equations linearized in the vicinity of state of rest	


	

 (ϕ = Φ0, U = 0)	



	

 	



  

	

 	



	

 Conserve quadratic energy 
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 Unidimensional domain	



	

 	



  

	

 	

 ‘Ocean’	

 	

 	

 ‘Continent’	


	

 	

 (no observation)	

 	

 	

 (observations) 

8 

€ € € € € 



M. Ghil et al. 9 



M. Ghil et al. 
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 Uncertainty evolves in time under the effect of	



	

 - Introduction of observations (decreases uncertainty)	



	

 - Model error (increases uncertainty)	



	

 -  Dynamics  of  the  system  (increases  or  decreases  uncertainty 
depending on stability of the state of the system) (dynamics is neutral 
in previous example)	
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 Nonlinearities ?	



	

 Linearity of observation and model operators have been explicitly used in	



	

 d ≡ y - Hxb = Hx + ε  - Hxb  = H(x - xb) + ε = - Hζb + ε	



	

 Mk xa
k - Mkxk = Mk(xa

k – xk)  	



	

     	


	

 If H nonlinear, and x – xb  small	


	

 H(x) – H(xb) ≈ H’(x - xb)	


	

 where H’ is Jacobian matrix of H (matrix of partial derivatives) at point xb	



	

 Similarly, if Mk nonlinear, and xa
k – xk small	



	

 Mk (xa
k) – Mk(x) ≈ Mk’(xa

k – xk)	


	

 where Mk’ is Jacobian matrix of Mk at point xa

k                     	



 Tangent Linear Approximation 
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 Nonlinearities ?	



	

 Model is usually nonlinear, and observation operators (satellite observations) tend more and more 
to be nonlinear.	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 [yk - Hk(xb
k)]	



	

  Pa
k = Pb

k - Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 Hk’ Pb
k	



  Forecast step 

  xb
k+1 =  Mk(xa

k)	


	

  Pb

k+1 = Mk’ Pa
k Mk’T + Qk  

	

 Extended Kalman Filter (EKF, heuristic !)	
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 Costliest part of computation	


	

 	

 	

 	


	

 	

 Pb

k+1 = Mk Pa
k Mk

T + Qk  

	

 Multiplication  of  one  vector  by  Mk  =  one  integration  of  the  model 
between times k and k+1	



	

 Computation of Mk Pa
k Mk

T  ≈ 2n integrations of the model 	



	

 Need  for  determining  the  temporal  evolution  of  the 
uncertainty on the state of the system is the major difficulty 
in  assimilation  of  meteorological  and  oceanographical 
observations	
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Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral 
truncation T21, unit m. After F. Bouttier)	
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Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 16 



Two solutions :	



• Low-rank filters	


   Use low-rank covariance matrix, restricted to modes 

in  state  space  on  which  it  is  known,  or  at  least 
assumed,  that  a  large  part  of  the  uncertainty  is 
concentrated (this requires the definition of a norm 
on state space).	



 Reduced  Rank  Square  Root  Filters  (RRSQRT, 
Heemink)	



 Singular Evolutive Extended Kalman Filter (SEEK, 
Pham)	


	

 ….	
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Reduced Rank Square Root Kalman Filter (RRSQRT, Verlaan and Heemink, 
1997)	



A covariance matrix P can be written as 	



P = S ST	



where  the  column  vectors  of  S  are  the  (orthogonal)  principal  components 
(eigenvectors)  of  P  (the  modulus  of  each  vector  is  the  square  root  of  the 
associated eigenvalue).	



The principle of RRSQRT is to restrict the background error covariance matrix Pb 

to r « n principal components, thereby approximating Pb by (the time index k is 
dropped)	



Pb ≈ Sb SbT	



where Sb has dimensions n x r.	
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RRSQRT (continuation 1)	



Setting Ψ  ≡  (HSb)T, the gain matrix of the Kalman filter and the analysis error 
covariance matrix respectively become   	



K = Sb Ψ (ΨTΨ + R)-1	



and	



Pa = Sa SaT	



with	



Sa = Sb [Ir - Ψ (ΨTΨ + R)-1ΨT] 1/2	
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RRSQRT (continuation 2)	



In the prediction phase, the column vectors of Sa are evolved by the tangent linear 
model (an evolution of a perturbed state by the full model is also possible). If a 
model error is to be introduced, that is done by reducing the order r of Sa to r-
q, and introducing q new column vectors meant to represent the model error.	



Orthogonality  of  the  column  vectors  is  lost  in  the  prediction,  and  has  to  be 
reestablished. And, even if process is started from dominant column vectors, 
that dominance may of course be lost.	



Advantages  :  in  addition  to  reduced  computational  cost,  numerical  errors  are 
smaller when dealing with square root covariance matrices, as done here, than 
with full matrices (better conditioning).    	
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Singular Evolutive Extended Kalman Filter (SEEK, Pham, 1996)	



Based on the fact that, because of the linearity of Kalman Filter, the rank of the 
covariance matrix Pa

 or Pb cannot increase in either the update or the model 
evolution. SEEK performs a linear filter starting from a low rank Pb

0, and so 
runs the exact Kalman filter in the case of a perfect model. The algorithmic 
implementation  takes  advantage  of  the  rank-deficiency  of  the  covariance 
matrix. The rank of the latter is conserved (or decreased), but the subspace 
spanned by the directions with non-zero error evolves, in both the update and 
the dynamic evolution.	



In case model error is present, corresponding covariance matrix Qk is projected 
onto the directions with non-zero error (this is of course an approximation).        
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Singular Evolutive Interpolated Kalman Filter (SEIK, Pham, 2001)	



Non-trivial extension of SEEK to nonlinear model or observation operators. Rank 
deficiency is now forced.	



22 



Second solution :	



•  Ensemble filters	


 	

 Uncertainty is represented, not by a covariance matrix, but by 

an ensemble of point estimates in state space that are meant to 
sample the conditional probability distribution for the state of 
the system (dimension L  ≈ O(10-100)).	



	

 Ensemble  is  evolved  in  time  through  the  full  model,  which 
eliminates any need for linear hypothesis as to the temporal 
evolution.	



	

 Ensemble Kalman Filter (EnKF, Evensen, Anderson, …)	
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How to update predicted ensemble with new observations ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time : y = Hx + ε	



•  Gaussian approach	


 	

 	


	

 Produce sample of probability distribution for real observed quantity Hx 	


	

 yl = y - εl 

	

 where εl is distributed according to probability distribution for observation error ε.   	

 	



	

 Then use Kalman formula to produce sample of ‘analysed’ states	



	

 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 l = 1, …, L	

	

 (2)	



	

 where Pb
 is the sample covariance matrix of predicted ensemble {xb

l}.	



	

 Remark.  In  case  of  Gaussian  errors,  if  Pb  was  exact  covariance  matrix  of 
background error, (2) would achieve Bayesian estimation, in the sense that {xa

l} 
would be a sample of conditional probability distribution for x, given all data up to 
time k.	



24 



C. Snyder 25 



⎯  EnKF   ⎯ 3DVar (prior, solid; posterior, dotted) 

Prior  

posterior 

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 
analysis in terms of root-mean square difference averaged over the entire month  

Month-long Performance of EnKF vs. 3Dvar with WRF 

(Meng and Zhang 2007c, MWR, in review ) 
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The case of a nonlinear observation operator ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time :   y = H(x) + ε  	

    H nonlinear	



Two possibilities	



1. Take tangent linear approximation (as in Extended KF) and introduce jacobian H’ 	



2. Come back to original formula	



xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	



That  formula does not  require  any other  link between x and y  than the one defined by the 
covariances matrices Cxy and Cyy.	



Here, as shown on the occasion of the derivation of the BLUE, E(x) is the backgound xb, and y - 
E(y) is the innovation y – H(xb)   	



Solution. Compute Cxy and Cyy as sample covariances matrices of the ensembles {xb
l} and {yl - 

H(xb
l)}, where the yl’s  are, as before, the perturbed observations yl = y - εl.     	
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But problems	



- Collapse of ensemble for small ensemble size (less than a few hundred). Collapse originates in 
the fact that gain matrix Pb

 HT
 [HPbHT 

 + R]-1 is nonlinear wrt background error matrix Pb, 
resulting in a systematic sampling effect. Solution : empirical ‘covariance inflation’.	



-  Spurious  correlations  appear  at  large  geographical  distances.  Empirical  ‘localization’ (see 
Gaspari and Cohn, 1999, Q. J. R. Meteorol. Soc.)	



-  In formula	



	

 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 	

 l = 1, …, L	

	



Pb, which is covariance matrix of an L-size ensemble, has rank L-1 at most. This means that 
corrections made on ensemble elements are contained in a subspace with dimension L-1. 
Obviously very restrictive if L « p , L « n.	
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Houtekamer and Mitchell (1998) use two ensembles, the elements of each of 
which are updated with covariance matrix of other ensemble.	
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There exist many variants of Ensemble Kalman Filter	



Ensemble Transform Kalman Filter (ETKF, Bishop et al., Mon. Wea. Rev., 2001)	



Requires  a  prior  ‘control’ analysis  xc
a,  emanating  from a  background  xc

b.  An  ensemble  is 
evolved about that control without explicit use of the observations (and without feedback to 
control)	



More precisely, define L x L matrix T such that, given Pb = ZZT, then Pa = ZTTTZT (not trivial, 
but possible). Then the background deviations xb

l – xc
b are transformed through Z → ZT into 

an ensemble of analysis deviations xa
l – xc

a.	



	

 (does not avoid collapse of ensembles) 	



Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., Physica D, 2007)	



Each gridpoint is corrected only through the use of neighbouring observations. 	
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Other variants of Ensemble Kalman Filter	



‘Unscented’ Kalman Filter (Wan and van der Merve, 2001, Wiley Publishing)	



Weighted Kalman Filter (Papadakis et al., 2010, Tellus A)	



Inflation-free Ensemble Kalman Filters (Bocquet and Sakov, 2012, Nonlin. Processes 
Geophys.)	



An iterative ensemble Kalman filter in the presence of additive model error (Sakov et 
al., 2017, Q. J. R. Meteorol. Soc.)   	
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Bayesian properties of Ensemble Kalman Filter ?	



Very little is known.	



 Le Gland et al. (2011). In the linear and gaussian case, the discrete pdf 
defined by the filter, in the limit of infinite sample size L, tends to the 
bayesian gaussian pdf. 

	

 No result  for  finite  size  (note  that  ensemble  elements  are  not  mutually 
independent)	



	

 In  the  nonlinear  case,  the  discrete  pdf  tends  to  a  limit  which  is  in 
general not the bayesian pdf.	



	

 Situation still not entirely clear	





Time-correlated Errors	



  Example of time-correlated observation errors	



  z1 = x + ζ1	

 	



  z2 = x + ζ2	

 	



	

 	

 E(ζ1) = E(ζ2) = 0   ;  E(ζ1
2) = E(ζ2

2) = s    ;     E(ζ1ζ2) = 0 	



	

 	

 BLUE of x from z1 and z2 gives equal weights to z1 and z2. The weights given to 
	

 z1 and z2. will remain equal in sequential assimilation.	



	

 	

 Additional observation then becomes available 	


	

 	

 	


	

 	

 z3 = x + ζ3	

 	


	

 	

 E(ζ3) = 0    ;    E(ζ3

2) = s    ;    E(ζ1ζ3) = cs    ;    E(ζ2ζ3) = 0 	



	

 	

  BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)	
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Time-correlated Errors (continuation 1)	



  Example of time-correlated model errors	



	

 	

 Evolution equation	


`	

 	

 xk+1 = xk + ηk	

  E(ηk

2) = q	


	

 	

 	


	

 	

 Observations	


	

 	

 yk = xk + εk , 	

  k = 0, 1, 2	

	

 E(εk

2) = r, 	

errors uncorrelated in time	


	

 	

 	


 Sequential  assimilation.  Weights  given  to  y0  and  y1  in  analysis  at  time  1  are  in  the  ratio 

r/(r+q). That ratio will be conserved in sequential assimilation. All right if model errors are 
uncorrelated in time.	



   
  Assume  E(η0η1) = cq	


	

 	

  Weights given to y0 and y1 in estimation of x2 are in the ratio 	



	

 	

 	

 	

 	

  	


  	



€ 

€ 

ρ =
r − qc

r + q + qc
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Conclusion	



 Sequential assimilation, in which data are processed by batches, the data of one 
batch being discarded once that batch has been used, cannot be optimal if data in different 
batches are affected with correlated errors. This is so even if one keeps trace of the 
correlations. 

	

 Solution	



	

 	

 Process all correlated in the same batch (4DVar, some smoothers)	


	

 	

 	

 	

 	

  	


  	



€ 
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Two questions	



	

 -  How  to  propagate  information  backwards  in  time  ? 
(useful for reassimilation of past data)	



	

 - How to take into account possible dependence in time ?	



Kalman Filter, whether in its standard linear form or in its Ensemble form, 
does neither.	



36 



	

 Kalman smoother 	



	

 Propagates information both forward and backward in time, as does 4DVar, 
but uses Kalman-type formulæ	



	

 Various possibilities 	



  Define new state vector  xT ≡ (x0
T, …, xK

T)	


	

 and use Kalman formula from a background xb and associated covariance 

matrix Πb.	


	

 ‘Observation operator’ must include the model equations	


	

 Can take into account temporal correlations         

  Update sequentially vector (x0
T, …, xk

T) T for increasing k	


	

 Cannot take into account temporal correlations  

	

 Algorithms exist in ensemble form	
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 E. Cosme (2015)	



	

 Ensemble  smoother  based  on  Singular  Evolutive 
Extended Kalman Filter (SEEK) 	



	

 Of  second  type  above.  Retropropagates  corrections  on 
fields backwards in time, but  without modifying relative 
weights given to previous data, i.e.  cannot be optimal in 
case of temporal dependence between errors.	
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E. Cosme, 
HDR, 
2015, 
Lissage 
d’ensemble 
SEEK 

Données 
synthétiques 
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E. Cosme, HDR, 2015, Lissage d’ensemble SEEK 
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Other variants of Ensemble Kalman Smoothers	



An  iterative  ensemble  Kalman  smoother  (Bocquet  and  Sakov,  2014.  Q.  J.  R. 
Meteorol. Soc.)	



An  Iterative  Ensemble  Kalman  Smoother  in  Presence  of  Additive  Model  Error 
(Fillion et al., 2019, SIAM/ASA J. Uncertainty Quantification) 	
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Bayesian Estimation (see course 2) 	



Data of the form	



z = Γx + ζ, 	

 ζ ∼ N [0, S]	



Known data vector z belongs to data space D, dimD = m,	


Unknown state vector x belongs to state space X, dimX = n 	


Γ known (mxn)-matrix, ζ unknown ‘error’	



Probability that x = ξ given ?      x = ξ ⇒ ζ = z - Γξ	



P(ζ = z - Γξ) ∝ exp[ -(z - Γξ)T S-1 (z - Γξ)/2 ] ∝ exp[ -(ξ -xa)T (Pa)-1 (ξ -xa)/2 ]	



where	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 z	


	

 	

 	

       Pa = (Γ T S-1Γ)-1	



Then conditional  probability distribution is	



	

 	

 	

       P(x | z) = N [xa, Pa]	
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Bayesian Estimation (continuation 1) 	



z = Γx + ζ, 	

 ζ ∼ N [0, S]	


Then	



	

 	

 	

        P(x | z) = N [xa, Pa]	



with	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 z	


	

 	

 	

       Pa = (Γ T S-1Γ)-1	



Determinacy condition : rankΓ = n. Data contain information, directly or 
indirectly, on every component of state vector x. Requires m ≥ n.	
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Variational form	



P(x | z) ∝ exp[ -(z - Γξ)T S-1 (z - Γξ)/2 ] ∝ exp[ -(ξ -xa)T (Pa)-1 (ξ -xa)/2 ]	



Conditional expectation xa minimizes following scalar objective function, defined 
on state space X 

ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - z)]T S-1 [Γξ - z]	



Pa = [∂2J /∂ξ2]-1  	
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If data still of the form	



z = Γx + ζ, 	

 	



but  ‘error’  ζ  , which still has expectation  0  and  covariance  S,  is  not 
Gaussian, expressions  	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 z	


	

 	

 	

      Pa = (Γ T S-1Γ)-1	



	

 do  not  achieve  Bayesian  estimation,  but  define  least-variance  linear 
estimate  of  x  from  z  (Best  Linear  Unbiased  Estimator,  BLUE),  and 
associated estimation error covariance matrix.    	



	

 	





From course 4	


Best Linear Unbiased Estimate	


State vector x, belonging to state space S (dimS = n), to be estimated.	


Available data in the form of	



  A ‘background’ estimate  (e.  g.  forecast  from the  past),  belonging  to  state 
space, with dimension n 	



	

 xb  =  x  + ζb	

 	



  An additional set of data (e. g. observations), belonging to observation space, 
with dimension p	



	

 y  =  Hx + ε	



	

 H is known linear observation operator.	



Assume probability distribution is known for  the couple (ζb, ε).	


Assume E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 (not restrictive)	


Set E(ζbζbT) ≡ Pb (also often denoted B), E(εεT) ≡ R 	



46 



From course 4	


Best Linear Unbiased Estimate (continuation 1)	



	

 xb  =  x  + ζb	

 	

 	

  (1)	


	

 y  =  Hx + ε	

 	

 	

  (2)	



	

 A  probability  distribution  being  known  for  the  couple  (ζb,  ε),  eqs  (1-2) 
define probability distribution for the couple (x, y), with 	



	

 E(x) = xb ,  x’ = x - E(x) = - ζb	



	

 E(y) = Hxb ,  y’ = y - E(y) = y - Hxb = ε - Hζb	



	

 d ≡ y - Hxb is called the innovation vector.	
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From course 4	


Best Linear Unbiased Estimate (continuation 2)	



	

 Apply formulæ for Optimal Interpolation	



	

 	

 	

 xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	


	

 	

 	

 Pa = Pb

 - Pb
 HT

 [HPbHT 
 + R]-1 HPb	



 	

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.	


	

 	


	

 Equivalent set of formulæ 	


	

 	


	

 	

 	

 xa = xb + Pa

 HT
 R-1 (y - Hxb)	



	

 	

 	

 [Pa]-1 = [Pb]-1
 + HT

 R-1H	



 	

 Vector d ≡  y – Hxb is innovation vector	


	

 Matrix K ≡ Pb

 HT
 [HPbHT + R]-1 = Pa

 HT
 R-1 is gain matrix.	



	

 If  probability  distributions  are  globally  gaussian,  BLUE  achieves  bayesian 
estimation, in the sense that P(x | xb, y) = N [xa, Pa].	
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From course 4	


Best Linear Unbiased Estimate (continuation 6)	



	

 Variational form of the BLUE	



	

  BLUE xa minimizes following scalar objective function, defined on state space	



	

 ξ ∈  S  →	



•      J(ξ) ≡  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)	



  ≡ 	

         Jb                    + 	

                     Jo	



	

 	

 	

 	

 ‘3D-Var’ 	

	



	

 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	


	

 	


	

 Used operationally in USA, Australia, China, …	
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 Case of data that are distributed over time	



	

 Suppose for instance available data consist of 	



	

 	

 - Background estimate at time 0	


	

 	

    x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

    yk = Hkxk + εk	

 E(εkεj

T) = Rk δkj	



	

 	

  - Model (supposed for the time being to be exact) 	


	

 	

    xk+1 = Mkxk  k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	



	

 Then objective function	


	

 	


ξ0 ∈  S  → 	



J(ξ0) ≡  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk] 	



	

 	

              ≡ 	

                         Jb                    + 	

                     Jo	



	

 subject to ξk+1 = Mkξk ,	

 k = 0, …, K-1	
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J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
  Background  is  not  necessary,  if  observations are  in  sufficient  number  to 

overdetermine the problem. Nor is strict linearity.	



Four-Dimensional Variational Assimilation	



	

 	

 	

 	

   	


	

 	

 	

 	

  ‘4D-Var’ 	
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 How to  minimize  objective  function  with  respect  to  initial  state  u  = ξ0  (u  is 

called the control variable of the problem) ?	



	

 Use  iterative  minimization  algorithm,  each  step  of  which  requires  the 
explicit knowledge of the local gradient ∇u J ≡  (∂J/∂ui) of J with respect to u.	
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 How to numerically compute the gradient ∇u J ?	



	

 Direct  perturbation,  in  order  to  obtain  partial  derivatives  ∂J/∂ui  by  finite 
differences  ?  That  would  require  as  many  explicit  computations  of  the 
objective function J as there are components in u. Practically impossible.	



	

 Gradient computed by adjoint method.	
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Adjoint Method	



	

 Input vector u = (ui), dimu = n	


	

 Numerical  process,  implemented  on  computer  (e.  g.  integration  of 

numerical model)	



u → v = G(u)	


	

 v = (vj) is output vector, dimv = m	



	

 Perturbation δu = (δui) of input. Resulting first-order perturbation on v	



	

 δvj = Σi (∂vj/∂ui) δui 	



	

 or, in matrix form	


	

 δv  =  G’δu	



	

 where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix, of G. 	
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Adjoint Method (continued 1)	



	

 	

 	

 	

        δv  =  G’δu	

 	

 	

 (D)	



•  Scalar function of output 	


J(v)  =  J[G(u)]	



	

 Gradient ∇u J of J with respect to input u?	



	

 ‘Chain rule’	

 	

  	



∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)	



 	

  or 	


	

          ∇u J  =  G’T ∇v J 	

 	

  	

 (A)	
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Adjoint Method (continued 2)	



	

 G is the composition of a number of successive steps	



G = GN ° … ° G2 ° G1	


	

 	


	

 ‘Chain rule’	

 	

  	



G’ = GN’ … G2’ G1’	



 	

 Transpose	



G’T = G1’T G2’T … GN’T	



	

 Transpose, or adjoint, computations are performed in reversed order of direct computations.	



	

 If  G  is  nonlinear,  local  jacobian  G’ depends  on  local  value  of  input  u.  Any  quantity  which  is  an 
argument  of  a  nonlinear  operation  in  the  direct  computation  will  be  used  again  in  the  adjoint 
computation. It must be kept in memory from the direct computation (or else be recomputed again in 
the course of the adjoint computation).	



	

 If  everything  is  kept  in  memory,  total  operation  count  of  adjoint  computation  is  at  most  4  times 
operation count of direct computation (in practice about 2).	
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Adjoint Method (continued 3)	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
 subject to ξk+1 = Mkξk ,	

 k = 0, …, K-1	



Control variable 	

  ξ0 = u	



Adjoint equation	



 λK = 	

        HK
T RK

-1 [HK ξK - yK]	


 ….	


 λk =  Mk

Tλk+1 + Hk
T Rk

-1 [Hk ξk - yk]	

 	

  	

 k = K-1, …, 1	


 ….	


 λ0 =  M0

Tλ1    + H0
T R0

-1 [H0 ξ0 - y0]   +  [P0
b]-1 (ξ0 - x0

b) 	



	

 	

 	

 	

 ∇u J  = λ0 	

 	



Result of direct integration (ξk), which appears in quadratic terms in expression of	


objective function, must be kept in memory from direct integration.	
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Adjoint Method (continued 3)	



Nonlinearities ?	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]  
 subject to ξk+1 = Mk(ξk) ,	

 k = 0, …, K-1	



Control variable 	

  ξ0 = u	



Adjoint equation	



 λK = 	

        HK’T RK
-1 [HK(ξK) - yK]	



 ….	


 λk =  Mk’Tλk+1 + Hk’T Rk

-1 [Hk(ξk) - yk]	

 	

  	

 k = K-1, …, 1	


 ….	


λ0 =  M0’Tλ1      + H0’T R0

-1 [H0(ξ0) - y0]   +  [P0
b]-1 (ξ0 - x0

b) 	



	

 	

 	

 	

 ∇u J  = λ0 	

 	



Not approximate (it gives the exact gradient ∇uJ), and really used as described here.	



58 



Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 59 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 
60 



Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 
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Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 

Same as before, but at the end of a 24-hr 4D-Var 
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 
63 



Same as before, but at the end of a 24-hr 4D-Var 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 
64 



ECMWF, Results on one FASTEX case (1997) 65 



	

 Strong  Constraint  4D-Var  is  now  used  operationally  at 
several  meteorological  centres  (Météo-France,  UK 
Meteorological  Office,  Canadian  Meteorological  Centre, 
Japan Meteorological  Agency,  …) and,  for  a  number  of 
years, at ECMWF. The latter now has a ‘weak constraint’ 
component in its operational system. 	
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Cours à venir	



 Vendredi 26 mars 
 Vendredi 2 avril 
 Vendredi 9 avril 
 Vendredi 16 avril 
 Vendredi 7 mai 
 Vendredi 14 mai 
 Vendredi 21 mai 
 Vendredi 28 mai	




