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-  Miscellaneous remarks and complements	



-  Weak  constraint  variational  assimilation. 
Principle.  The  dual  algorithm for  variational 
assimilation. Examples.	



-  Impact  of  Stability  and  Instability  on 
Assimilation.  Quasi-Static  Variational 
Assimilation  	
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Bayesian Estimation (see course 2) 	



Data of the form	



z = Γx + ζ, 	

 ζ ∼ N [0, S]	



Known data vector z belongs to data space D, dimD = m,	


Unknown state vector x belongs to state space X, dimX = n 	


Γ known (mxn)-matrix, ζ unknown ‘error’	



Probability that x = ξ given ?      x = ξ ⇒ ζ = z - Γξ	



P(ζ = z - Γξ) ∝ exp[ -(z - Γξ)T S-1 (z - Γξ)/2 ] ∝ exp[ -(ξ -xa)T (Pa)-1 (ξ -xa)/2 ]	



where	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 z	


	

 	

 	

       Pa = (Γ T S-1Γ)-1	



Then conditional  probability distribution is	



	

 	

 	

       P(x | z) = N [xa, Pa]	
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Bayesian Estimation (continuation 1) 	



z = Γx + ζ, 	

 ζ ∼ N [0, S]	


Then	



	

 	

 	

        P(x | z) = N [xa, Pa]	



with	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 z	


	

 	

 	

       Pa = (Γ T S-1Γ)-1	



Determinacy condition : rankΓ = n. Data contain information, directly or 
indirectly, on every component of state vector x. Requires m ≥ n.	
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Variational form	



P(x | z) ∝ exp[ -(z - Γξ)T S-1 (z - Γξ)/2 ] ∝ exp[ -(ξ -xa)T (Pa)-1 (ξ -xa)/2 ]	



Conditional expectation xa minimizes following scalar objective function, defined 
on state space X 

ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - z)]T S-1 [Γξ - z]	



Pa = [∂2J /∂ξ2]-1  	
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ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - z)]T S-1 [Γξ - z]	



S = E(ζζT) is covariance matrix of data error ζ	



Consider quantity	

    D = z1
T S-1 z2 = z1

T [E(ζζT)]-1 z2     	


where z1and z2 are any two vectors in data space   	



	

   Change of coordinates  z ≡ Tw	


	

 	


	

 	

 	

  ζ = Tχ    ⇒ S = E(ζζT) = E[Tχ(Tχ)T] = T E(χχT)TT         	



	

 	

 	

 D = w1
T TT [T E(χχT)TT]-1Tw2	



	

 	

 	

 D = w1
T [E(χχT)]-1 w2  	
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Expression 	

 D = z1
T S-1 z2	



defines proper scalar product, and associated norm, on data space	



Mahalanobis norm	





Prasanta Chandra Mahalanobis (1893 -1972)"
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From Course 5	



If data still of the form	



z = Γx + ζ, 	

 	



but  ‘error’  ζ  , which still has expectation  0  and  covariance  S,  is  not 
Gaussian, expressions  	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 z	


	

 	

 	

      Pa = (Γ T S-1Γ)-1	



	

 do  not  achieve  Bayesian  estimation,  but  define  least-variance  linear 
estimate  of  x  from  z  (Best  Linear  Unbiased  Estimator,  BLUE),  and 
associated estimation error covariance matrix. Significance of xa and Pa 

is different from Gaussian (and Bayesian) case.         	



	

 	





From Course 4	


Best Linear Unbiased Estimate	



State vector x, belonging to state space S (dimS = n), to be estimated.	


Available data in the form of	



  A ‘background’ estimate  (e.  g.  forecast  from the  past),  belonging  to  state 
space, with dimension n 	



	

 xb  =  x  + ζb	

 	



  An additional set of data (e. g. observations), belonging to observation space, 
with dimension p	



	

 y  =  Hx + ε	



	

 H is known linear observation operator.	



Assume probability distribution is known for  the couple (ζb, ε).	


Assume E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 (not restrictive)	


Set E(ζbζbT) ≡ Pb (also often denoted B), E(εεT) ≡ R 	
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xb  =  x  + ζb	

 	


y  =  Hx + ε	



E(ζbεT) = 0 (not restrictive)	



If E(ζbεT) ≠  0, one can estimate ε from ζb through 	


	

 	

 	

 	

 	

 	


	

 	

 	

 	

 	

 εa = E(εζbT) [E(ζbζbT)]-1ζb     	



Then  ε’ = ε - εa  is uncorrelated with ζb,    i.e.  E(ε’ζbT) = 0   	
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Alternatively, if  E(ζbεT) = C ≠  0, the gain matrix Cxy [Cyy]-1 is modified,	


And the expressions for xa and Pa become 	



	

 	

 xa = xb +[Pb
 HT - C] [HPbHT 

 + R – HC - CTHT]-1 (y - Hxb)	


	

 	

 Pa = Pb

 – [Pb
 HT - C] [HPbHT 

 + R – HC - CTHT]-1[HPb- CT]	
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Structure of gain matrix	



	

 	

 xa = xb + Pb
 HT

 [HPbHT 
 + R]-1 (y - Hxb)	



	

 	

 xa = xb + Pa
 HT

 R-1 (y - Hxb)	



	

 	

  xa = (Γ T S-1Γ)-1 Γ T S-1 z	
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How to  write the adjoint of a code  ?	


	

 	


	

 Operation  a = b x c	



	

 Input  b, c	

  Output  a  but also b, c	



	

  For clarity, we write	



	

  a = b x c	


	

  b’ = b	


	

  c’ = c	



	

 ∂J/∂a,  ∂J/∂b’,  ∂J/∂c’ available. We want to determine ∂J/∂b,  ∂J/∂c 	



	

  Chain rule	



	

  ∂J/∂b = (∂J/∂a)(∂a/∂b) + (∂J/∂b’)(∂b’/∂b) + (∂J/∂c’)(∂c’/∂b) 	


	

 	

                c	

                     1	

 	

   0	


	

 	


	

  ∂J/∂b = (∂J/∂a) c + ∂J/∂b’	



	

  Similarly	



	

 ∂J/∂c = (∂J/∂a) b + ∂J/∂c’	
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M. Jardak 15 



	

 How  to  take  model  error  into  account  in 
variational assimilation ?	
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Weak constraint variational assimilation 	



Allows for errors in the assimilating model	



•  Data	


	

 	

 - Background estimate at time 0	


	

 	

 	


	

 	

   x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

 	


	

 	

    yk = Hkxk + εk	

 E(εkεk’

T) = Rkδkk’	



	

 	

  - Model	


	

 	

  	


	

 	

   xk+1 = Mkxk + ηk 	

  E(ηkηk’

T) = Qkδkk’ k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	
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 Then objective function	


	

 	



	

 (ξ0, ξ1, ..., ξK) → 	



	

 J(ξ0, ξ1, ..., ξK)   

  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	



	

 	

     + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	



	

 	

     + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]  

  
  Can include nonlinear Mk and/or Hk.	



	

  Implemented operationally at ECMWF for the assimilation in the stratosphere.	



	

 Becomes singular in the strong constraint limit Qk → 0 
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Dual  Algorithm  for  Variational  Assimilation  (aka  Physical  Space 
Analysis  System,  PSAS,  pronounced ‘pizzazz’;  see  in  particular  book 
and papers by Bennett)	



xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	



xa = xb + Pb
 HT

 Λ-1 d = xb + Pb
 HT

 m	



where Λ ≡ HPbHT + R, d ≡ y - Hxb and m ≡ Λ-1 d maximises	



µ  →  K(µ) = -(1/2) µT Λ µ + dTµ 	



Maximisation is performed in (dual of) observation space.	
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Dual Algorithm for Variational Assimilation (continuation 2)	



Extends to time dimension, and to weak-constraint case, by defining state vector as	



	

 	

 	

 	

 x ≡ (x0
T, x1

T
 , …, xK

T)T	



or, equivalently, but more conveniently, as	



x ≡ (x0
T, η0

T
 , …, ηK-1

T)T	



where, as before	



	

 	

 ηk =  xk+1 - Mkxk   ,	

 k = 0, …, K-1 

The background for x0 is x0
b, the background for ηk is 0. Complete background is	



	

 	

 	

 	

 xb = (x0
bT, 0T

 , …,  0T)T	



It is associated with error covariance matrix 	


	

 	

 	

 	

 	


	

 	

 	

 	

  Pb = diag(P0

b, Q0 , …, QK-1)	
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Dual Algorithm for Variational Assimilation (continuation 3)	



Define global observation vector as	



y ≡ (y0
T, y1

T
 , …, yK

T)T	



and global innovation vector as	



d ≡ (d0
T, d1

T
 , …, dK

T)T	



where 	

 	

 dk ≡ yk – Hk xk
b, with xk+1

b ≡ Mkxk
b ,	

 k = 0, …, K-1 	
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Dual Algorithm for Variational Assimilation (continuation 4)	



For any state vector ξ = (ξ0
T, υ0

T
 , …, υK-1

T)T, the observation operator H 	



ξ  → Hξ = (u0
T, …, uK

T)T 	



is defined by the sequence of operations 	



u0 = H0ξ0	



then for k = 0, …, K-1 	



ξk+1 = Mkξk + υk 	


uk+1  = Hk+1 ξk+1 	



The observation error covariance matrix is equal to	


	

 	

 	

 	

 	


	

 	

 	

 	

  R = diag(R0, …,  RK)	
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Dual Algorithm for Variational Assimilation (continuation 5)	



Maximization of dual objective function 	


µ  →  K(µ) = -(1/2) µT Λ µ + dTµ 	



requires explicit repeated computations of its gradient 	



∇µ K  = - Λµ + d = - (HPbHT + R)µ + d	



Starting from µ = (µ0
T, …, µΚ

T)T belonging to (dual) of observation space, this requires 5 successive steps 	



	

 - Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above, viz.,	



	

 	

 Set 	

 χΚ = 0	


	

 	

 Then, for k = K-1, …, 0	


	

 	

 	

 	

    	



	

  νk  = χk+1  +  Hk+1
T

 µk+1	


χk  =  Mk

T
 νk	



	

 	

  Finally	

 	

           λ0  = χ0  +  H0
T

 µ0	



	

 The output of this step, which includes a backward integration of the adjoint model, is the vector 	


	

 (λ0

T, ν0
T

 , …, νK-1
T)T	
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Dual Algorithm for Variational Assimilation (continuation 6)	



	

 - Step 2. Multiplication by Pb. This reduces to	



	

 	

 	

 ξ0 = P0
b λ0	



	

 	

 	

 υk = Qkνk 	

 ,  k = 0, …, K-1 	



	

 - Step 3. Multiplication by H. Apply the process defined above on the vector (ξ0
T, 

υ0
T

 , …, υK-1
T)T, thereby producing vector (u0

T, …, uK
T)T.	



	

 - Step 4. Add vector Rµ, i. e. compute 	


	

 	

 	

 	

  ϕ0  = ξ0 + R0 µ0	


	

 	

 	

 	

 ϕk  = υk-1 + Rk µk	

  ,  k = 1, … K,  	



	

 - Step 5. Change sign of vector ϕ = (ϕ0
T, …, ϕΚT)T, and add vector d = y - Hxb,	
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Dual Algorithm for Variational Assimilation (continuation 7)	



Temporal correlations can be introduced.	



Dual algorithm remains regular in the limit of vanishing model error. Can be used	


for both strong- and weak-constraint assimilation.	



No significant increase of computing cost in comparison with standard strong 	


constraint variational assimilation (Courtier, Louvel)	
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Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999 
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Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999 
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Dual Algorithm for Variational Assimilation (continuation)	



Requires	



  Explicit background (not much of a problem)	



  Exact linearity (much more of a problem). Definition of iterative nonlinear 
procedures is being studied (Auroux, …)	
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Auroux, Doctoral Dissertation, Université de Nice-Sophia Antipolis, Nice, 2003 
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Dual Algorithm for Variational Assimilation is now used, in 
the weak-constraint form, at Centre Européen de Recherche 
et de Formation Avancée en Calcul Scientifique 
(CERFACS) in Toulouse (A. Weaver, S. Gürol) for 
assimilation of oceanographical observations.  
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Conclusion on Sequential Assimilation	



	

 Pros 	


	

      	

 ‘Natural’, and well adapted to many practical situations	


           Provides, at least relatively easily, explicit estimate of estimation 

error	



	

 Cons 	


	

 	

 Carries information only forward in time (of no importance 	


	

 if one is interested only in doing forecast)	


	

 	

 In a strictly sequential assimilation (i.e., any individual piece 	


	

 of  information  is  discarded  once  it  has  been  used),  optimality  is 

possible only if errors are uncorrelated in time.	


	

 	

 	


	

 	

 	



	

 	





Conclusion on Variational Assimilation	



	

 Pros 	


	

  	

 Carries  information  both  forward  and  backward  in  time  (important  for 

reassimilation of past data).	


	

 	

 Can easily take into account temporal statistical dependence (Järvinen et al.)	


	

 	

 Does not require explicit computation of temporal evolution of estimation error	


	

 	

 Very well adapted to some specific problems (e. g., identification of tracer sources)	



	

 Cons 	


	

  	

 Does not readily provide estimate of estimation error 	


	

 	

 Requires  development  and  maintenance  of  adjoint  codes.  But  the  latter  can 

have other uses (sensitivity studies).	


	

  	


•  Dual approach seems most promising. But little used. 	



•  Can be implemented in ensemble form (see course 8).	





 Variational  assimilation  has  been  extended  to  non  Gaussian  probability  distributions 
(lognormal distributions), the unknown being the mode of the conditional distribution 
(M. Zupanski, Fletcher).	



	

 Bayesian character of variational assimilation ?	



	

 - If everything is linear and gaussian, ready recipe for obtaining bayesian sample	


	

 	


	

 Perturb  data  (background,  observations  and  model)  according  to  their  error 

probability distributions, do variational assimilation, and repeat process	



	

  Sample of system orbits thus obtained is bayesian	



	

 - If not, very little can be said at present 



If there is uncertainty on the state of the system, and dynamics of 
the system is perfectly known, uncertainty on the state along 
stable modes decreases over time, while uncertainty along 
unstable modes increases. 

  

 Stable (unstable) modes : perturbations to the basic state 
that decrease (increase) over time. 

  

  

  

  





 Consequence : Consider 4D-Var assimilation, or any form of smoother, 
which carries information both forward and backward in time, performed 
over time interval [t0, t1] over uniformly distributed noisy data. If 
assimilating model is perfect, estimation error is concentrated in stable 
modes at time t0, and in unstable modes at time t1. Error is smallest 
somewhere within interval [t0, t1]. 

 Similar result holds true for Kalman filter (or more generally any form 
of sequential assimilation), in which estimation error is concentrated in 
unstable modes at any time. 
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Linearized Lorenz’96. 5 days	



Jardak and Talagrand 



Trevisan et al., 2010, Q. J. R. Meteorol. Soc.	
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Lorenz (1963)	



 dx/dt = σ(y-x)	


	

 dy/dt = ρx - y - xz	


	

 dz/dt = -βz + xy	



	

 with parameter values σ = 10, ρ = 28, β = 8/3  ⇒  chaos	









	

 Twin  (strong  constraint)  experiment.  Observations  yk  = 
Hkxk + εk at successive times k,  and objective function of 
form     	



	

 	



J(ξ0)  = (1/2) Σk[yk - Hkξk]T Rk
-1 [yk - Hkξk]	



	

 xk  denotes  here  the  complete  state  vector,  and  Hk  is  the 
unit operator (all three components of xk are observed)  

   No ‘background’ term from the past, but observation y0 at 
time k = 0.	





Pires et al., Tellus, 1996 ; Lorenz system (1963) 



Minima in the variations of objective function correspond to solutions that have bifurcated 
from the observed solution, and to different folds in state space. 



 Quasi-Static Variational Assimilation (QSVA). Increase 
progressively length of the assimilation window, starting each 
new assimilation from the result of the previous one. This 
should ensure, at least if observations are in a sense 
sufficiently dense in time, that current estimation of the 
system always lies in the attractive basin of the absolute 
minimum of objective function (Pires et al., Swanson et al., 
Luong, Järvinen et al.) 

. 
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Pires et al., Tellus, 1996 ; Lorenz system (1963) 



Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390 



Cours à venir	



 Vendredi 26 mars 
 Vendredi 2 avril 
 Vendredi 9 avril 
 Vendredi 16 avril 
 Vendredi 7 mai 
 Vendredi 14 mai 
 Vendredi 21 mai 
 Vendredi 28 mai	




