Ecole Doctorale des Sciences de I'Environnement d’Ile-de-France

Année Universitaire 2020-2021

Modé€lisation Numérique

de ’Ecoulement Atmosphérique
et Assimilation de Données

Olivier Talagrand
Cours 7

21 Mai 2021



- Miscellaneous remarks and complements

- Weak constraint variational assimilation.
Principle. The dual algorithm for variational
assimilation. Examples.

- Impact of Stability and Instability on

Assimilation. Quasi-Static Variational
Assimilation



Bayesian Estimation (see course 2)

Data of the form
z=Tx+§ &~ N0, S]

Known data vector z belongs to data space D, dimD = m,
Unknown state vector x belongs to state space X, dimX'=n
I'known (mxn)-matrix,  unknown ‘error’

Probability that x = §given? x=&=C=2z-1%&
P(E=z- T8 xexpl-(z- IS (z-TE)/2] x exp[ -(&§-x)" (P! (§-x4)/2]

where

X =(ITSY TSz
Pa=(I'TS-')!

Then conditional probability distribution is

P(x | 2) = N[xe, P4]



Bayesian Estimation (continuation 1)

z=TIx+ ¢ E~ N0, S]
Then

P(x | z) = N[x9, P9]
with
X =(I'TS')' TSy

Pa=(ITS)!

Determinacy condition : rankI = n. Data contain information, directly or
indirectly, on every component of state vector x. Requires m > n.



Variational form
P(x | 2) < exp[ -(z - TS (z- I'E)/2] = exp[ -(&-x)T (Po)y! (§-x9)/2 ]

Conditional expectation x* minimizes following scalar objective function, defined
on state space X~

EEX—= A5 = U2)[IE-)]" S [IE-7]

Pt=[9°7 /08"



Ee X —= J5 = U2)[I5-)]" STIE-7]
S = E(&EY) is covariance matrix of data error &

Consider quantity D =z,TS1z,=zT[E(EEN]! 2,

where z,and z, are any two vectors in data space

Change of coordinates z = Tw
=Ty = S=E(CC") =E[T)(Tx)'1=TEQx")T"
D=w T [TEQuxHT ' Tw,

D =w "[E(p)]! w,



Expression D=z"18!"z
defines proper scalar product, and associated norm, on data space

Mahalanobis norm



Prasanta Chandra Mahalanobis (1893 -1972)



From Course 5

If data still of the form

z=Ix+C,

but ‘error’ £ , which still has expectation 0 and covariance S, is not
Gaussian, expressions

x4 = (FT S—l[)—l I‘T S—l z
Pa = (FT S—l]")—l

do not achieve Bayesian estimation, but define least-variance linear
estimate of x from z (Best Linear Unbiased Estimator, BLUE), and
associated estimation error covariance matrix. Significance of x* and P¢

is different from Gaussian (and Bayesian) case.



From Course 4
Best Linear Unbiased Estimate

State vector x, belonging to state space S (dim.$'= n), to be estimated.
Available data in the form of

" A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n

xt =x+&

= An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx+e¢
H is known linear observation operator.
Assume probability distribution is known for the couple (&7, €).

Assume E(&) =0, E(e) =0, E(&¢T) = 0 (not restrictive)
Set E(&PEPT) = PP (also often denoted B), E(e€") = R 10



xo=x+&
y = Hx+ ¢

E(&eT) = 0 (not restrictive)
If E({%eT) = 0, one can estimate € from £? through

&'=E(el") [E(CTN]'E

Then & = ¢- & is uncorrelated with &, i.e. E(g&7T) =0
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Alternatively, if E(&%¢") =C = 0, the gain matrix C,, [C,,]"! is modified,
And the expressions for x* and P¢ become

x¢=x"+[P"H"- C][HP’H" + R - HC - C"H™]"! (y - Hx?)
P:=P°—[PPH"- C1[HP’"HT + R - HC - CTH'|"'[HP"- C™]
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Structure of gain matrix
x*=xP+ P°HT[HP"H" + R] "' (y - Hx?)
x*=xt+P*HTR' (y - Hx)

X' = (TSN ISz
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How to write the adjoint of a code ?

Operation a =b x ¢
Input b, ¢ Output a but also b, ¢

For clarity, we write

a=bxc
b’=b
c’'=c¢

dJ/da, 0J/db’, JdJ/dc’ available. We want to determine 8J/db, JJ/dc

Chain rule

3/ db = (8J/3a)(dal db) + (3J/db’)(db’1db) + (3/dc’)(dc’ | Ib)
c 1 0

al/ob = (dJ/da) c + dJ/db’
Similarly

aJ/dc = (dJ/da) b + dJ/dc’

14



Gradient test

Positive gradient test Negative gradient test
10 10
10 ! ! ! b ; ! '

Gradient test

= (Gradient test

In(residue(c))
In(residue(c))

e - J(optimal control variable)

e = 273 zero machine
residue(a) = (J(X + adx) — J(x)) — aVI(x)dx
M. Jardak
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How to take model error into account in
variational assimilation ?
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Weak constraint variational assimilation

Allows for errors in the assimilating model

* Data
- Background estimate at time O

X = xy+ &P E(ELELT) = PP
- Observations at times k=0, ..., K

v, = Hx, + ¢ E(g.6.T) = R0y
- Model

Xy = Mx, + 1, E(Mmmne" = 0,0 k=0, ...,K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear
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Then objective function

(o> 515 s Ek) —
J(&, &5 - Ek)
= (1/2) (xo" - &) [P"1" (%" - &)
+(1/2) Zic, .kl - HEN R i - Hi&il

+(172) 2, xilEeer - MUELT Ot 8y - ML

Can include nonlinear M, and/or H,.

Implemented operationally at ECMWF for the assimilation in the stratosphere.

Becomes singular in the strong constraint limit Q, — 0
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Dual Algorithm for Variational Assimilation (aka Physical Space
Analysis System, PSAS, pronounced ‘pizzazz’; see in particular book
and papers by Bennett)

x4 =xP+ PPHT[HP’HT + R]"! (y - Hx?)
xX=xX+ PP H"Al'd=x*+ PP H"m
where A = HPPH'+ R, d =y - Hx* and m = A! d maximises
w— K(u)=-12) y" Au+du

Maximisation is performed in (dual of) observation space.
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Dual Algorithm for Variational Assimilation (continuation 2)

Extends to time dimension, and to weak-constraint case, by defining state vector as

x=00 T, x DT
or, equivalently, but more conveniently, as
x=0x0n", DT
where, as before
M= X - Mix, k=0,...,K-1

The background for x, is x,”, the background for 1, is 0. Complete background is
xb = (x,T, 07, ..., 00T
It is associated with error covariance matrix

PP =diag(P, Qy, ..., Ox.1)

20



Dual Algorithm for Variational Assimilation (continuation 3)
Define global observation vector as

Y=oty eyt
and global innovation vector as

d=(d,",d,....d")T

where d.=y,—H x}/ withx,=Mx’, k=0,...

21



Dual Algorithm for Variational Assimilation (continuation 4)
For any state vector § = (&1, v,', ..., U ,T)T, the observation operator H
E—=HE=(u,,...,u)"
is defined by the sequence of operations
uy = Hy&,

thenfork =0, ..., K-1

Sie1 = M5 + v,
Uy = Hiyy S

The observation error covariance matrix is equal to

R =diag(R,, ..., Ry)

22



Dual Algorithm for Variational Assimilation (continuation 5)

Maximization of dual objective function
w— Ku)=-(1/2) t!" A u+du

requires explicit repeated computations of its gradient

V,K =-Au+d=-(HP’"H"+ R)ju+d

Starting from u = (u,", ..., ug')" belonging to (dual) of observation space, this requires 5 successive steps
- Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above, viz.,

Set xXk=0
Then, fork=K-1,...,0

— T
Vk - Xk+1T+ Hk+1 Mk+1
X = M v,

Finally Ay =X + Hy' 1y

The output of this step, which includes a backward integration of the adjoint model, is the vector

(A'()Ta V()T 9 ey V[(.]T)T
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Dual Algorithm for Variational Assimilation (continuation 6)

- Step 2. Multiplication by P”. This reduces to

& =Py A
v=0,v, , k=0,...,K-1

- Step 3. Multiplication by H. Apply the process defined above on the vector (&,",

Uy, ..., Uk DT, thereby producing vector (i4,!, ..., u. )T

- Step 4. Add vector Ru, i. e. compute

@ = S+ Ry 1y
G =V + R, L k=1,..K

- Step 5. Change sign of vector ¢ = (¢, ..., x")T, and add vectord = y - Hx?,

24



Dual Algorithm for Variational Assimilation (continuation 7)

Temporal correlations can be introduced.

Dual algorithm remains regular in the limit of vanishing model error. Can be used

for both strong- and weak-constraint assimilation.

No significant increase of computing cost in comparison with standard strong

constraint variational assimilation (Courtier, Louvel)

25
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Dual Algorithm for Variational Assimilation (continuation)

Requires

= Explicit background (not much of a problem)

= Exact linearity (much more of a problem). Definition of iterative nonlinear
procedures is being studied (Auroux, ...)

28
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Dual Algorithm for Variational Assimilation is now used, in
the weak-constraint form, at Centre Européen de Recherche

et de Formation Avancée en Calcul Scientifique
(CERFACS) in Toulouse (A. Weaver, S. Giirol) for
assimilation of oceanographical observations.
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Conclusion on Sequential Assimilation

Pros

‘Natural’, and well adapted to many practical situations

Provides, at least relatively easily, explicit estimate of estimation
error

Cons

Carries information only forward in time (of no importance
if one is interested only in doing forecast)

In a strictly sequential assimilation (i.e., any individual piece

of information 1s discarded once it has been wused), optimality is
possible only if errors are uncorrelated in time.



Conclusion on Variational Assimilation

Pros

Carries information both forward and backward in time (important for
reassimilation of past data).

Can easily take into account temporal statistical dependence (Jarvinen et al.)
Does not require explicit computation of temporal evolution of estimation error
Very well adapted to some specific problems (e. g., identification of tracer sources)

Cons

Does not readily provide estimate of estimation error

Requires development and maintenance of adjoint codes. But the latter can
have other uses (sensitivity studies).

e Dual approach seems most promising. But little used.

e Can be implemented in ensemble form (see course 8).



Variational assimilation has been extended to non Gaussian probability distributions
(lognormal distributions), the unknown being the mode of the conditional distribution
(M. Zupanski, Fletcher).

Bayesian character of variational assimilation ?

- If everything is linear and gaussian, ready recipe for obtaining bayesian sample

Perturb data (background, observations and model) according to their error
probability distributions, do variational assimilation, and repeat process

Sample of system orbits thus obtained is bayesian

- If not, very little can be said at present



If there 1s uncertainty on the state of the system, and dynamics of
the system 1s perfectly known, uncertainty on the state along
stable modes decreases over time, while uncertainty along

unstable modes increases.

Stable (unstable) modes : perturbations to the basic state

that decrease (increase) over time.
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Consequence : Consider 4D-Var assimilation, or any form of smoother,
which carries information both forward and backward in time, performed
over time interval [f, ;] over uniformly distributed noisy data. If
assimilating model is perfect, estimation error is concentrated in stable
modes at time 7#,, and in unstable modes at time ¢,. Error is smallest

somewhere within interval [7,, ¢,].

Similar result holds true for Kalman filter (or more generally any form
of sequential assimilation), in which estimation error is concentrated in

unstable modes at any time.
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4DVar. =40, 6,=10"

4DVar-AUS. 1=40, 6,=10"
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Figure 3. Time average RMS error within 1, 3, 5 days assimilation windows as a function of t' = ¢t — 7, with o, = .2, 10~° for the model
configuration I = 40. Left panel: 4DVar. Right panel: 4DVar-AUS with N = 15. Solid lines refer to total assimilation error, dashed lines

refer to the error component in the stable subspace eis, ...,

Trevisan et al., 2010, Q. J. R. Meteorol. Soc.
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Lorenz (1963)

dx/dt = o(y-x)
dyldt = px -y -xz
dz/dt = -z + xy

with parameter values o= 10, p =28, f=8/3 = chaos
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Twin (strong constraint) experiment. Observations y, =
Hx, + ¢ at successive times k, and objective function of
form

3(50) = (1/2) Zk[yk - Hkgk]T Rk_l [yk - Hkék]

x, denotes here the complete state vector, and H, i1s the
unit operator (all three components of x, are observed)

No ‘background’ term from the past, but observation y, at
time k= 0.
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Pires et al., Tellus, 1996 ; Lorenz system (1963)
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Quasi-Static Variational Assimilation (QOSVA). Increase
progressively length of the assimilation window, starting each
new assimilation from the result of the previous one. This
should ensure, at least 1f observations are 1n a sense
sufficiently dense 1n time, that current estimation of the
system always lies in the attractive basin of the absolute
minimum of objective function (Pires et al., Swanson et al.,

Luong, Jarvinen et al.)



Quasi-Static Variational Assimilation (QSVA)

0 Data Assimilation over [0 T]with T=N .dt = M. dt T
4D-Var over [0 1] starting from the observations

0 T
_—)

4D-Var over [0 21] starting from the minimizer found above
s
0 27

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




Cloud of points Linear tangent

u(C(z, x)) Cloud of points QSVA raw assimilation system Upper bound
=0 1 1 1 1
t=1 0.36 0.37 0.39 0.46
t=2 59x1072 5.74 45%1072 0.401
=3 33x10°7 294 29x10°7 0.397
=28 1.4x10°2 59.9 * 0.396

In the left column, the estimates are calculated from the ensemble of 100 assimilations (see also Fig. 7). The 2nd
column contains the values obtained from the raw assimilation. In the 3rd column, the estimates are obtained from
the tangent linear system and egs. (3.5-3.9) (the star indicates a computational overflow). The estimates in the right-

hand column are the upper bounds defined by eq. (3.13).
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Fig. 7. Projection of the 100 minimizing solutions, at the end of the assimilation period, onto the plane spanned by
the stable and unstable directions, defined as in Fig. 3. Values of r are indicated on the panels. The projection is not
an orthogonal projection, but a projection parallel to the local velocity vector (dx/dr. dy/dr, dz/dr) (central manifold ).

Pires et al., Tellus, 1996 ; Lorenz system (1963)
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