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Last course (May 6)

- Weak-constraint Variational Assimilation.
Dual Algorithm for Variational Assimilation

- Complements on Variational Assimilation.
- Mahalanobis Norm
- How to write (and validate) an adjoint code
- Value of objective function at minimum. c2 test

- Compared qualities of Sequential and Variational
Assimilation

- Assimilation and (In)stability. Quasi-Static
Variational Assimilation
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This course

- Assimilation dans l'espace instable

- Filtres particulaires 

- Assimilation Variationnelle d’Ensemble
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Gurumoorthy et al. (2017a, 2017b) have shown that in the linear perfect
model case, the error covariance matrix of the Kalman filter converges to
the neutral-unstable subspace of the system (space spanned by the non-
negative Lyapunov exponents of the system)



Since, after an assimilation has been performed over a period of time,
uncertainty is likely to be concentrated in modes that have been unstable, it
might be useful for the next assimilation, and at least in terms of cost
efficiency, to concentrate corrections on the background in those modes.

Actually, presence of residual noise in stable modes can be damageable for
analysis and subsequent forecast.

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for
the case of 3D-Var)
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Four-dimensional variational assimilation in the unstable subspace
(4DVar-AUS)

Trevisan et al., 2010, Four-dimensional variational assimilation in the unstable
subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136,
487-496.
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Experiments performed on the Lorenz (1996) model

with periodic conditions in j, and value F = 8, which gives rise to chaos.

Three values of I have been used, namely I = 40, 60, 80, which correspond
to respectively N+ = 13, 19 and 26 positive Lyapunov exponents.

In all three cases, the largest Lyapunov exponent corresponds to a doubling time of about 2 days
(with 1 ‘day’ = 1/5 model time unit).

Identical twin experiments (perfect model)
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System produces wavelike chaotic motions, with properties similar to those of 
midlatitude atmospheric waves
- generally westward phase velocity
- typical predictability time : 5 ‘days’
- in addition, quadratic terms conserve ‘energy’ 
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4D-Var-AUS

Algorithmic implementation

Define N perturbations to the current state, and evolve them according to the tangent linear
model, with periodic reorthonormalization in order to avoid collapse onto the dominant
Lyapunov vector (same algorithm as for computation of Lyapunov exponents).

Cycle successive 4D-Var‘s, restricting at each cycle the modification to be made on the current
state to the space spanned by the N perturbations emanating from the previous cycle (if N is
the dimension of state space, that is identical with standard 4D-Var).
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Observing system’ defined as in Fertig et al. (Tellus, 2007):

At each observation time, one observation every four grid points
(observation points shifted by one grid point at each observation time).

Observation frequency : 1.5 hour

Random gaussian observation errors with expectation 0 and standard
deviation s0 = 0.2 (‘climatological’ standard deviation 5.1).

Sequences of variational assimilations have been cycled over windows
with length t = 1, … , 5 days. Results are averaged over 5000 successive
windows.
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No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Best performance for N slightly above number N+ of positive Lyapunov exponents.
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Different curves are almost identical on all three panels. Relative improvement obtained by decreasing
subspace dimension N to its optimal value is largest for smaller window length t.
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Experiments have been performed in which an explicit background term was present, the
associated error covariance matrix having been obtained as the average of a sequence of full
4D-Var’s.

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-AUS. But
they remain qualitatively similar, with best performance for 4D-Var-AUS with N slightly
above N+.
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Minimum of objective function cannot be made smaller by reducing control space. Numerical

tests show that minimum of objective function is smaller (by a few percent) for full 4D-Var

than for 4D-Var-AUS. Full 4D-Var is closer to the noisy observations, but farther away from

the truth. And tests also show that full 4D-Var performs best when observations are perfect

(no noise).

Results show that, if all degrees of freedom that are available to the model are used, the

minimization process introduces components along the stable modes of the system, in which

no error is present, in order to ensure a closer fit to the observations. This degrades the

closeness of the fit to reality. The optimal choice is to restrict the assimilation to the unstable

modes.

These results apply because no explicit background is available at the initial time of the

assimilation window (only the unstable subspace is known). A proper background (obtained

for instance from a properly implemented Kalman Filter, or from an Ensemble Variational

Assimilation) would not only say that the uncertainty is restricted to the unstable space, but

how it is distributed in that subspace. The ‘restriction’ to the unstable subspace would be

automatically made.
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Can have major practical algorithmic implications.

Questions.

- Degree of generality of results ?

- Impact of model errors ?
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Time averaged rms analysis error at the end of the assimilation window (with length t) as a function of increment 
subspace dimension (I = 60, N+=19), for different amplitudes of white model noise.

(W. Ohayon and O. Pannekoucke, 2011).

t = 1 day t = 2 days
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Conclusions

Error concentrates in unstable modes at the end of assimilation window.
It must therefore be sufficient, at the beginning of new assimilation
cycle, to introduce increments only in the subspace spanned by those
unstable modes.

In the perfect model case, assimilation is most efficient when
increments are introduced in a space with dimension slightly above the
number of non-negative Lyapunov exponents.

In the case of imperfect model (and of strong constraint assimilation),
preliminary results lead to similar conclusions, with larger optimal
subspace dimension, and less well marked optimality. Further work
necessary.

In agreement with theoretical and experimental results obtained for
Kalman Filter assimilation (Trevisan and Palatella, McLaughlin).



Exact bayesian estimation ?

Particle filters

Predicted ensemble at time t : {xb
l, l = 1, …, L}, each element with its own

weight (probability) P(xb
l)

Observation vector at same time : y = H(x) + e

Bayes’ formula
P(xb

l|y) = P(y|xb
l) P(xb

l) / P(y)

Defines updating of weights
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Bayes’ formula
P(xbl|y) ~ P(y|xbl) P(xbl)

If error e is independent of all previous data

P(y|xbl) = P[e = y - H(xbl)]

Defines updating of weights; particles are not modified. Asymptotically
converges to bayesian pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.
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C. Snyder, 
http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/Snyder.pdf 22



Problem originates in the ‘curse of dimensionality’. Large dimension
pdf’s are very diffuse, so that very few particles (if any) are present
in areas where conditional probability (‘likelihood’) P(y|x) is large.
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Curse of dimensionality

Standard one-dimensional gaussian random
variable X

P[ çX ç < s ] » 0.84

In dimension n = 100, 0.84100 = 3.10-8

.
24



c2-probability distribution of order p

c2(p) ~ Sp [N (0, 1)]2

Expectation m = p, variance s2 = 2p
s/m = √(2/p)

for large p, distribution is extremely peaked

Recall that, in gaussian variational assimilation, 2E(Jmin), where
Jmin is minimum of objective function, follows a c2-
probability distribution of order p

.



Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of
filter requires the size of ensembles to increase exponentially with
space dimension.
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Alternative possibilities (review in van Leeuwen, 2017, Annales de la faculté des sciences de
Toulouse Mathématiques, 26 (4), 1051-1085)

Resampling. Define new ensemble.

Simplest way. Draw new ensemble according to probability distribution defined by the updated
weights. Give same weight to all particles. Particles are not modified, but particles with
low weights are likely to be eliminated, while particles with large weights are likely to be
drawn repeatedly. For multiple particles, add noise, either from the start, or in the form of
‘model noise’ in ensuing temporal integration.

Random character of the sampling introduces noise. Alternatives exist, such as residual
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights wl are multiplied by
ensemble dimension L. Then p copies of each particle l are taken, where p is the integer
part of Lwl. Remaining particles, if needed, are taken randomly from the resulting
distribution.

However, resampling is not sufficient to avoid degeneracy of filters.
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Markov chain Monte Carlo (MCMC) Methods

Sequence of random vectors {xn, n = 0, …}

Assume P(xn | xn-1, …, x0) = P(xn | xn-1)

Markovianity. Verified in particular if xn = F(xn-1, h), where F is
deterministic, and h is random with a priori known probability
distribution.

Sequence of observations {yn, n = 0, …}

Assume P(yn | xn, xn-1, …, x0) = P(yn | xn)

Verified in particular if yn = G(xn, e), where G is deterministic, and e is 
random with a priori known probability distribution. 28



We want to estimate P(xn | yn, …, y0) º P(xn | y0 : n)

P(xn | y0 : n) = P(xn | yn , y0 : n-1) = P(yn | xn , y0 : n-1) P(xn | y0 : n-1) / P(yn | y0 : n-1)
= P(yn | xn) P(xn | y0 : n-1) / P(yn)

P(xn | y0 : n-1) = ò P(xn | xn-1) P(xn-1 | y0 : n-1) dxn-1

Chapman-Kolmogorov equation

Particular case
xn = Mn xn-1 + hn Mn linear, hn Gaussian with a priori known pdf
yn = Hn xn + en Hn linear, en Gaussian with a priori known pdf

Þ Kalman filter
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Idea :

Use a proposal density that is closer to the new
observations than the density defined by the
predicted particles (for instance the density defined
by EnKF, after the latter has used the new
observations).
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van Leeuwen, 2017, Annales de la faculté des sciences de Toulouse 
Mathématiques, 26 (4), 1051-1085
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van Leeuwen, 2017, ibid. 32



33van Leeuwen, 2017, ibid.



Several variants of proposal densities have been
defined and studied : perform an EnKF up to
observation time, and then use the obtained
ensemble as proposal density, nudge the model
integration between times n-1 and n towards the
observations at time n, perform a 4D-Var on each
particle, optimal proposal density, …
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van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084
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The Equivalent-Weights Particle Filter (Ades and van
Leeuwen, QJRMS, 2013).

Make the proposal density depend on the whole
ensemble at time n-1, and not only on xln-1, use
density of the form q(xn | xn-11,L, yn), where 1,L
denotes all ensemble indices, rather than of the
more restrictive form q(xn | xln-1, yn). This gives
many degrees of freedom which can be exploited
for obtaining at time n an ensemble with almost
equal weights.
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Example Vorticity equation model with
random error h.

State-vector dimension ≈ 65,000
Decorrelation time: 25 timesteps
One complete noisy model field
observed every 50 timesteps
24 particles
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(12 observations)
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Bayesianity : experts say all these filters are bayesian
(in the limit of infinite ensemble size)

Possible difficulties : numerical implementation,
numerical cost

Particle filters are actively studied (van Leeuwen,
Morzfeld, …)
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- Ensemble Variational Assimilation (EnsVAR).
(work with M. Jardak, 2018)
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Ensemble Variational Assimilation

Data of the form

z = Gx + z, z ~ N [0, S]

Conditional probability distribution is

P(x | z) = N [xa, Pa]
with

xa = (G T S-1G)-1 G T S-1 z
Pa = (G T S-1G)-1
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Variational form

P(x | z) µ exp[ -(z - Gx)T S-1 (z - Gx)/2 ] µ exp[ -(x -xa)T (Pa)-1 (x -xa)/2 ]

Conditional expectation xa minimizes following scalar objective function, defined
on state space X

x Î X ® J(x)  º (1/2) [Gx - z)]T S-1 [Gx - z]

Pa = [∂2J /∂x2]-1
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Ready recipe for determining Monte-Carlo sample of 
conditional pdf P(x | z) : 

- Perturb data vector z according to its own error probability 
distribution  

z ® z’ = z + d, d ~ N [0, S]

and compute  

x’a = (G T S-1G)-1 G T S-1 z’

x’a is distributed according to N [xa, Pa]
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Ensemble Variational Assimilation (EnsVAR) implements that
algorithm, the expectations x’a being computed by standard
variational assimilation.

Used at ECMWF and Météo-France (under the name Ensemble
of Data Assimilations, EDA) for defining initial conditions
of ensemble prediction, and also for defining background
error covariance matrix in 4D-Var, but not for assimilation
per se.
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Present purpose

Evaluate EnsVar as a probabilistic estimator when implemented in nonlinear
and/or non-Gaussian cases, i. e., through minimization of

x Î X ® J(x)  º (1/2) [G(x) – z’]T S-1 [G(x) - z’]

where G may be nonlinear, and errors affecting data z may be non-Gaussian.
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- Objectively compare with other existing ensemble assimilation algorithms :
Ensemble Kalman Filter (EnKF), Particle Filters (PF)

- Simulations performed on two small-dimensional chaotic systems, the
Lorenz’96 model and the Kuramoto-Sivashinsky equation
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System produces wavelike chaotic motions, with properties similar to those of 
midlatitude atmospheric waves
- generally westward phase velocity
- typical predictability time : 5 ‘days’
- in addition, quadratic terms conserve ‘energy’ 
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Experimental procedure (1)

0. Define a reference solution xtr by integration of the numerical model

1. Produce ‘observations’ at successive times tk of the form

yk= Hkxkr+ ek

where Hk is (usually, but not necessarily) the unit operator, and ek is a random (usually, but not
necessarily, Gaussian) ‘observation error’.
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Experimental procedure (2)

2. For given observations yk, repeat Nens times the following process

- ‘Perturb’ the observations yk as follows

yk® zk= yk+ dk

where dk is an independent realization of the probability distribution which has produced ek.

- Assimilate the ‘perturbed’ observations zk by variational assimilation

This produces Nens (=30) model solutions over the assimilation window, considered as making up a
tentative sample of the conditional probability distribution for the state of the observed system
over the assimilation window.

The process 1-2 is then repeated over Nreal successive assimilation windows. Validation is
performed on the set of Nreal (=9000) ensemble assimilations thus obtained.
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Linearized Lorenz’96. 5 days



53

How to objectively evaluate the performance of an ensemble (or more generally
probabilistic) estimation system ?

- There is no general objective criterion for Bayesianity

- We use instead the weaker property of reliability, i. e. statistical consistency between
predicted probabilities and observed frequencies of occurrence (it rains with frequency
40% in the circonstances where I have predicted 40% probability for rain).

Denote Y the predicted probability distribution, and X the verifying reality. Consider the
probability distribution for the couples (X, Y) (that probability distribution can be
obtained empirically). Reliability is the property that

P(X ½Y) = Y  for any Y

Reliability can be objectively validated, provided a large enough sample of realizations
of the estimation system is available.

Bayesianity implies reliability, the converse not being true.
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In addition, we evaluate resolution (also called sharpness), which bears no
direct relation to bayesianity, and is the capability of the estimation system to a
priori distinguish between different situations. It is best defined as the degree
of statistical dependence between X and Y (J. Bröcker). Total absence of
resolution is independence between X and Y, viz.

P(X ½Y) = P(X) for any Y

Resolution, beyond reliability, measures the degree of usefulness of the
ensembles.



aaaaa

55Linearized Lorenz’96. 5 days
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Objective function

J(x)  º (1/2) [Gx - z]T S-1 [Gx - z]

Jmin º J(xa)  = (1/2) [Gxa - z]T S-1 [Gxa - z]

= (1/2) dT [E(ddT)]-1 d

where d is innovation
Þ E(Jmin)  =  p/2 (p = dimy = dimd)

If p is large, a few realizations are sufficient for determining E(Jmin)

Remark. If in addition errors are gaussian, the quantity 2E(Jmin) follows a c2-probability
distribution of order p. For that reason the criterion E(Jmin) = p/2 is often called the
c2 criterion. Also Var(Jmin) = p/2 in the gaussian case.



57

Linearized Lorenz’96. 5 days. Histogram of Jmin
E(Jmin) = p/2 (=200) ; s(Jmin) = √(p/2) (≈14.14)  

Observed values 199.39 and 14.27 



58Nonlinear Lorenz’96. 5 days

(initial time of assimilation window)



59Nonlinear Lorenz’96. 5 days



60Nonlinear Lorenz’96. 5 days. Histogram of Jmin
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Nonlinear Lorenz’96. 10 days. Histogram of Jmin
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- Results are independent of the Gaussian character of the
observation errors (trials have been made with various
probability distributions)

- Ensembles produced by EnsVar are very close to Gaussian,
even in strongly nonlinear cases.
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- Comparison Ensemble Kalman Filter (EnKF) and Particle
Filters (PF)

Both of these algorithms being sequential, comparison is fair only at end

of assimilation window
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Nonlinear Lorenz’96. EnsVAR. Diagnostics after 5 days of assimilation
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Nonlinear Lorenz’96. EnKF. Diagnostics after 5 days of assimilation
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Nonlinear Lorenz’96. PF. Diagnostics after 5 days of assimilation
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EnsVAR. Diagnostics for 5-day forecasts



72EnKF. Diagnostics for 5-day forecasts
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PF. Diagnostics for 5-day forecasts
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RMS errors at the end of 5-day assimilations and 5-day forecasts



From course 6

Weak constraint variational assimilation
Allows for errors in the assimilating model

Data
- Background estimate at time 0

x0
b =  x0 + z0

b E(z0
bz0

bT) = P0
b

- Observations at times k = 0, …, K

yk = Hkxk + ek E(ekek’
T) = Rkdkk’

- Model

xk+1 = Mkxk + hk E(hkhk’
T) = Qkdkk’ k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear
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In the present case, objective function of the form

(x0, h1, ..., hK-1)®

J(x0, h1, ..., hK-1)  

= (1/2) Sk=0,…,K[yk - Hkxk]T Rk
-1 [yk - Hkxk]

+ (1/2) Sk=0,…,K-1hk
TQk

-1hk

subject to 

xk+1 = Mk(xk) + hk   ,    k = 0, …, K-1

‘Observations’ consist of 

- sequence {yk} ,    k = 0, …, K (with unit observation operator Hk)

- observations 0 for hk   ,    k = 0, …, K-1
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It turns out that QSVA is no more necessary. The model
error term in the objective function has a regularizing
effect which makes the function much smoother.
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Weak-constraint 
ensemble 
variational 
assimilation
18 days, Q = 0.1
1200 realizations
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Kuramoto-Sivashinsky equation

with periodicity in x, L = 32p
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Ensembles obtained are Gaussian, even if errors in data are not

Produces Monte-Carlo sample of (probably not) bayesian pdf
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Cours à venir

Mardi 21 mars 
Mardi 28 mars 
Mardi 4 avril 
Mardi 11 avril 
Mardi 2 mai 
Mardi 9 mai 
Mardi 23 mai
Mardi 30 mai


