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   Why  have  meteorologists  such  difficulties  in  predicting  the 
weather with any certainty ? Why is it that showers and even 
storms seem to come by chance, so that many people think it 
is quite natural to pray for them, though they would consider 
it ridiculous to ask for an eclipse by prayer ? […] a tenth of a 
degree more or less at any given point, and the cyclone will 
burst here and not there, and extend its ravages over districts 
that it would otherwise have spared. If they had been aware of 
this tenth of a degree, they could have known it beforehand, 
but the observations were neither sufficiently comprehensive 
nor sufficiently precise, and that is the reason why it all seems 
due to the intervention of chance.	



	

 	

 	

 H. Poincaré, Science et Méthode, Paris, 1908	


	

 	

 	

 	

 (translated Dover Publ., 1952) 
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December 2007: Satellite data volumes used: 
around 18 millions per day 
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  Synoptic  observations  (ground  observations,  radiosonde  observations), 
performed simultaneously,  by international  agreement,  in all  meteorological 
stations around the world (00:00, 06:00, 12:00, 18:00 TU), and are in practice 
concentrated over continents.	



  Asynoptic  observations  (satellites,  aircraft),  performed  more  or  less 
continuously in time.	



  Direct observations (temperature, pressure, horizontal components of the wind, 
moisture), which are local and bear on the variables used for for describing the 
flow in numerical models.	



  Indirect observations (radiometric observations, …), which bear on some more 
or less complex combination (most often, a one-dimensional spatial integral) 
of variables used for for describing the flow 	



y = H(x)   	



	

  H : observation operator (for instance, radiative transfer equation)	





S. Louvel, Doctoral Dissertation, 1999	
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E. Rémy, Doctoral Dissertation, 1999 
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Physical laws governing the flow	



  Conservation of mass	


	

 Dρ/Dt + ρ divU  =  0	

 	



  Conservation of energy	


	

 De/Dt - (p/ρ2) Dρ/Dt =  Q	



  Conservation of momentum	


	

 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	



  Equation of state	


	

  f(p, ρ, e) =  0	

 	

 	

 (for a perfect gas p/ρ = rT, e = CvT)	



  Conservation of mass of secondary components (water in  the atmosphere, salt 
in the ocean, chemical species, …)	



	

 Dq/Dt + q divU  = S	



These physical laws must be expressed in practice in discretized (and necessarily	


imperfect) form, both in space and time ⇒ numerical model 	





Parlance of the trade :	



  Adiabatic  and inviscid,  and therefore thermodynamically 
reversible, processes (everything except Q, F and S) make 
up ‘dynamics’	



  Processes described by terms Q, F and S make up ‘physics’ 	
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All  presently  existing  numerical  models  are  built  on 
simplified  forms  of  the  general  physical  laws.  Global 
numerical  models,  used  either  for  large-scale 
meteorological prediction or for climate simulation, are at 
present  built  on the so-called primitive equations.  Those 
equations  rely  on  several  approximations,  the  most 
important  of  which being the hydrostatic approximation, 
which expresses balance, in the vertical direction, of the 
gravity and pressure gradient forces. This forbids explicit 
description  of  thermal  convection,  which  must  be 
parameterized in some appropriate way.	



More and more limited-area models have been progressively 
developed.  They  require  appropriate  definition  of  lateral 
boundary conditions (not a simple problem). Most of them 
are  non-hydrostatic,  and  therefore  allow  description  of 
convection.  	
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There exist at present two forms of discretization	



-  Gridpoint discretization	



-  (Semi-)spectral  discretization  (mostly  for  global  models, 
and most often only in the horizontal direction)	



Finite  element  discretization,  which is  very  common in  many forms of 
numerical modelling, is rarely used for modelling of the atmosphere. It 
is more frequently used for oceanic modelling, where it allows to take 
into account the complicated geometry of coast-lines.	
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Schematic of a gridpoint atmospheric model 
(L. Fairhead /LMD-CNRS) 



The grids of two of the models of Météo-France (La Météorologie) 
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In  gridpoint  models,  meteorological  fields  are  defined  by 
values  at  the  nodes  of  a  the  grid.  Spatial  and  temporal 
derivatives are expressed by finite differences.	



In spectral  models,  fields are defined by the coefficients of 
their expansion along a prescribed set of basic functions. In 
the  case  of  global  meteorological  models,  those  basic 
functions  are  the  spherical  harmonics  (eigenfunctions  of 
the laplacian at the surface of the sphere).   	
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Linear  operations,  and  in  particular  differentiation,  are 
performed  in  spectral  space,  while  nonlinear  operations 
and  ‘physical’ computations  (advection,  diabatic  heating 
and cooling, …) are performed in gridpoint physical space. 
This requires constant transformations from one space to 
the other, which are made possible at an acceptable cost 
through the systematic use of Fast Fourier Transforms. 	



For that reason, those models are called semi-spectral.	
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In the parlance of the trade, one distinguishes two different 
parts in models. The ‘dynamics’ deals with the physically 
reversible  processes  (pressure  forces,  Coriolis  force, 
advection,  …),  while the ‘physics’ deals  with physically 
irreversible  processes,  in  particular  the  diabatic  heating 
term  Q  in  the  energy  equation,  and  also  the 
parameterization of subgrid scales effects.	



Numerical  schemes have been progressively developed and 
validated for the ‘dynamics’ component of models, which 
are  by  and  large  considered  now  to  work  satisfactorily 
(although regular improvements are still being made). 	
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The situation is different as concerns ‘physics’, where many 
problems remain (as concerns for instance subgrid scales 
parameterization,  the  water  cycle  and  the  associated 
exchanges  of  energy,  or  the  exchanges  between  the 
atmosphere  and  the  underlying  medium).  ‘Physics’ as  a 
whole remains the weaker point of models, and is still the 
object of active research.  	
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European Centre for Medium-range Weather Forecasts 
(ECMWF, Reading, UK) 
Since 26 January 2010 

Horizontal spherical harmonics triangular truncation T1279 
(horizontal resolution ≈ 16 kilometres, but still hydrostatic) 

91 levels on the vertical (0 - 80 km) 

Dimension of state vector n ≈ 1.5 109  

Timestep  =  10 minutes 







Persistence = 0 ; climatology = 50 at long range	


http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/
601-700/tm688.pdf 



http://www.ecmwf.int/ 
publications/library/ 
ecpublications/_pdf/ 
tm/601-700/tm688.pdf 



http://
www.ecmwf.int/ 
publications/
library/ 
ecpublications/
_pdf/ 
tm/601-700/
tm688.pdf 





http://www.ecmwf.int/ 
publications/library/ 
ecpublications/_pdf/ 
tm/601-700/tm688.pdf 



http://www.ecmwf.int/publications/library/ecpublications/_pdf/tm/601-700/tm688.pdf 
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http://www.ecmwf.int/ 
publications/library/ 
ecpublications/_pdf/ 
tm/601-700/tm688.pdf 
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http://www.ecmwf.int/ 
publications/library/ 
ecpublications/_pdf/ 
tm/601-700/tm688.pdf 



Magnusson and Källén, Mon. Wea. Rev., in press 

ECMWF 



Remaining Problems 

 Mostly in the ‘physics’ of models (Q and F terms in basic 
equations) 

-  Water cycle (evaporation, condensation, influence on radiation 
absorbed or emitted  by the atmosphere) 

-  Exchanges with ocean or continental surface (heat, water, 
momentum, …) 

-  … 



 Purpose of assimilation : reconstruct as accurately as possible the state of the 
atmospheric or oceanic flow, using all available appropriate information. The latter 
essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, and 
are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in practice in 
the form of a discretized, and necessarily approximate, numerical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although 
they basically are necessary consequences of the physical laws which govern the flow, these 
properties can usefully be explicitly introduced in the assimilation process. 



Both observations and ‘model’ are affected with some uncertainty ⇒ uncertainty on the estimate. 

 For some reason, uncertainty is conveniently described by probability distributions (don’t 
know too well why, but it works). 

 Assimilation is a problem in bayesian estimation. 

 Determine the conditional probability distribution for the state of the system, knowing 
everything we know 



 Assimilation  is  one  of  many  ‘inverse  problems’ encountered 
in many fields of science and technology	



•  solid Earth geophysics	



•  plasma physics	



•  ‘nondestructive’ probing	



•  navigation (spacecraft, aircraft, ….)	



•  …	



	

 Solution  most  often  (if  not  always)  based  on  Bayesian,  or 
probabilistic,  estimation.  ‘Equations’ are  fundamentally  the 
same. 



Difficulties specific to assimilation of meteorological observations :	



	

 -  Very  large  numerical  dimensions  (n  ≈  106-109  parameters  to  be 
estimated,  p  ≈  1-3.107  observations  per  24-hour  period).  Difficulty 
aggravated in Numerical Weather Prediction by the need for the forecast to 
be ready in time.	



	

 - Non-trivial, actually chaotic, underlying dynamics	





© Crown copyright   Met Office  	



ratio of supercomputer costs:   
1 day's  assimilation / 1 day forecast
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Computer power increased by 1M in 30 years. 
Only 0.04% of the Moore’s Law increase over 
this time went into improved DA algorithms, 
rather than improved resolution! 

Courtesy A. Lorenc 



	

 Relative  cost  of  the  various  components  of  the  operational  prediction 
suite at ECMWF (september 2011, J.-N. Thépaut) :	



	

 4DVAR: 17%	


	

 Ensemble Data Assimilation (EDA) : 15%	


	

 Deterministic model : 13%	


	

 Ensemble Prediction System (EPS) : 53%	


	

 others : 2%	



	

 EDA  produces  both  the  background  error  covariances  for  4D-Var  and 
the initial perturbations (in addition to Singular Vectors) for EPS.	





  z1 = x + ζ1	

 density function 	

 p1(ζ) ∝ exp[ - (ζ2)/2s1]	


  z2 = x + ζ2	

  density function 	

p2(ζ) ∝ exp[ - (ζ2)/2s2]	


	

 	

 	

 	

 ζ1 and ζ2 mutually independent 	


	

 	

 P(x = ξ | z1, z2)  ?	



x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ	



•  P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)	



	

 	

 	

         ∝  exp[ - (ξ -xa)2/2pa]  

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1
 + z2/s2)	



Conditional probability distribution of x, given z1 and z2 :N [xa, pa]	


pa < (s1, s2) independent of z1 and z2 	







  z1 = x + ζ1	

 	


  z2 = x + ζ2	

 	



	

 	

 Same as before, but ζ1 and ζ2 are now distributed according to exponential law 
with 	

 parameter a, i. e.  	



	

 	

 	

 p (ζ) ∝ exp[-|ζ |/a]   ;    Var(ζ) = 2a2	



Conditional probability density function is now uniform over interval [z1, z2], 	


exponential with parameter a/2 outside that interval	



	

 E(x | z1, z2)  = (z1+z2)/2	



	

 Var(x | z1, z2) = a2 (2δ3/3 + δ2 + δ +1/2) / (1 + 2δ), with δ =  ⏐z1-z2⏐/(2a)	


	

 Increases from a2/2 to ∞ as δ increases from 0 to ∞. Can be larger than variance 2a2	



	

 of original errors (probability 0.08)	



	

 (Entropy -∫plnp always decreases in bayesian estimation)	





Bayesian estimation   

State vector x, belonging to state space S (dimS = n), to be estimated.	



Data vector z, belonging to data space D (dimD = m), available.	



	

  z = F(x, ζ)     (1) 

where  ζ  is  a  random  element  representing  the  uncertainty  on  the  data  (or,  more 
precisely, on the link between the data and the unknown state vector).	



For example	



	

 z = Γx + ζ	





 Bayesian estimation (continued)	



	

 Probability that x = ξ for given ξ ?	



  x = ξ    ⇒   z = F(ξ, ζ) 

	

 	

 P(x = ξ | z) = P[z = F(ξ, ζ)] / ∫ξ’ P[z = F(ξ’, ζ)] 

	

 Unambiguously defined iff, for any ζ, there is at most one x such that (1) is verified.	



	

 ⇔    data  contain  information,  either  directly  or  indirectly,  on  any  component  of 
x. Determinacy condition.	





 Bayesian  estimation  is  however  impossible  in  its  general  theoretical 
form in meteorological or oceanographical practice because	



•  It is impossible to explicitly describe a probability distribution in a space 
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈ 
106-9 of present Numerical Weather Prediction models.	



•  Probability distribution of errors on data very poorly known (model errors 
in particular).	





One has to restrict oneself to a much more modest goal. Two	


approaches exist at present	



  Obtain  some  ‘central’  estimate  of  the  conditional  probability 
distribution  (expectation,  mode,  …),  plus  some  estimate  of  the  
corresponding  spread  (standard  deviations  and  a  number  of 
correlations). 

  Produce an ensemble of estimates which are meant to sample the 
conditional probability distribution (dimension N ≈ O(10-100)).	





Courtier and Talagrand, QJRMS, 1987	





Courtier and Talagrand, QJRMS, 1987	





500-hPa  geopotential  field  as  determined  by  :  (left)  operational  assimilation  system  of 
French Weather Service (3D, primitive equation) and (right) experimental variational system 
(2D, vorticity equation)	



Courtier and Talagrand, QJRMS, 1987	





	

 Random  vector  x  =  (x1,  x2,  …,  xn)T  =  (xi)  (e.  g.  pressure,  temperature,  abundance  of 
given chemical compound at n grid-points of a numerical model)	



  Expectation E(x) ≡ [E(xi)] 	

 ;    centred vector    x’  ≡ x - E(x) 	



  Covariance  matrix 	



	

 	

 	

 	

 E(x’x’T) = [E(xi’xj’)]	

  	


	

 	


	

 dimension  nxn,  symmetric  non-negative  (strictly  definite  positive  except  if  linear 

relationship holds between the xi’‘s with probability 1).	



  Two random vectors	


	

 x = (x1, x2, …, xn)T	


	

 y = (y1, y2, …, yp)T	


	

 	

 	

 	



	

 	

 	

 	

 E(x’y’T) = E(xi’yj’)	

  	



	

         dimension nxp	



	

 	





	

 Random  function  Φ(ξ)  (field  of  pressure,  temperature,  abundance  of  given 
chemical compound, … ; ξ is now spatial and/or temporal coordinate)	



  Expectation E[Φ(ξ)]  ; 	

 Φ’(ξ) ≡ Φ(ξ) - E[Φ(ξ)]	


  Variance      Var[ϕ(ξ)] = E{[ϕ’(ξ)]2}	



  Covariance function	



	

 	

 	

 (ξ1, ξ2) →  CΦ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)]	



  Correlation function	



	

 	

 	

 Corϕ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)] / {Var[Φ(ξ1)] Var[Φ(ξ2)]}1/2	


•     	

 	



	

 	





After N. Gustafsson 



After N. Gustafsson 



After N. Gustafsson 



Optimal Interpolation 
Random field Φ(ξ) 	


Observation network ξ1, ξ2, …, ξp	



For one particular realization of the field, observations	



	

 	

 	

 yj = Φ(ξj) + εj   ,  j = 1, …, p ,	

          making up vector y = (yj)	



Estimate x = Φ(ξ) at given point ξ, in the form	



	

 	

 	

  xa = α + Σj βj yj  = α + βTy	

 , 	

 where β = (βj)	



α and the βj’s being determined so as to minimize the expected quadratic 
estimation error E[(x-xa)2]	





Optimal Interpolation (continued 1) 
Solution	


	

 	

 	

  xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)] 	



	

 	

 i. e.,	

 β = [E(y’y’T)]-1 E(x’y’) 	


	

 	

        	

 α = E(x) - βTE(y)	



Estimate is unbiased 	

  E(x-xa) = 0	



Minimized quadratic estimation error	



	

 	

 	

 E[(x-xa)2] = E(x’2) - E(x’y’T) [E(y’y’T)]-1 E(y’x’) 	



Estimation made in terms of deviations from expectations x’ and y’.	





Optimal Interpolation (continued 2) 
	

 	

 	

 	


	

 	

 	

  xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]	



	

 	

 	

  yj = Φ(ξj) + εj 	



E(yj’yk’) = E[Φ’(ξj) + εj’][Φ’(ξk) + εk’]	



	

 If  observation  errors  εj  are  mutually  uncorrelated,  have  common  variance  s,  and  are 
uncorrelated with field Φ, then	



	

 	

 	

  E(yj’yk’) = CΦ(ξj, ξk) + sδjk	


	

 and	


 	

 	

 	

  E(x’yj’) = CΦ(ξ, ξj) 	













Optimal Interpolation (continued 3) 
	

 	

 	

 	



	

 	

 	

  xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]	



	

 Vector	


	

 	

 	

 µ = (µj) ≡ [E(y’y’T)]-1 [y - E(y)]	



	

 is independent of variable to be estimated	



	

 	

 	

 xa = E(x) + Σj µj  E(x’yj’) 	



	

 	

 	

 Φa(ξ) = E[Φ(ξ)] + Σj µj  E[Φ’(ξ) yj’] 	


	

 	

 	

           = E[Φ(ξ)] + Σj µj  CΦ(ξ, ξj) 	



	

 Correction made on background expectation is a linear combination of the p functions  	



	

 	

 	

 E[Φ’(ξ) yj’]. E[Φ’(ξ) yj’] [ = CΦ(ξ, ξj) ]	



 	

 considered  as  a  function  of  estimation  position  ξ,  is  the  representer  associated  with 
observation yj.	



	

 	





Optimal Interpolation (continued 4) 
	

 Univariate  interpolation.  Each  physical  field  (e.  g.  temperature)  determined 

from observations of that field only.	



	

 Multivariate  interpolation.  Observations  of  different  physical  fields  are  used 
simultaneously.  Requires specification of cross-covariances between various 
fields.	



	

 Cross-covariances  between  mass  and  velocity  fields  can  simply  be 
modelled on the basis of geostrophic balance.	



	

 Cross-covariances  between  humidity  and  temperature  (and  other)  fields  still 
a problem.	
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Schlatter’s (1975) multivariate covariances 

Specified as 
multivariate 2-point 
functions. 

Not easy to ensure 
that specified 
functions are 
actually valid 
covariances. 

Used in OI and 
related observation-
space methods. 

Courtesy A. Lorenc 



Best Linear Unbiased Estimate	


State vector x, belonging to state space S (dimS = n), to be estimated.	


Available data in the form of	



  A ‘background’ estimate  (e.  g.  forecast  from the  past),  belonging  to  state 
space, with dimension n 	



	

 xb  =  x  + ζb	

 	



  An additional set of data (e. g. observations), belonging to observation space, 
with dimension p	



	

 y  =  Hx + ε	



	

 H is known linear observation operator.	



Assume probability distribution is known for  the couple (ζb, ε).	


Assume E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 (not restrictive)	


Set E(ζbζbT) = Pb (also often denoted B), E(εεT) = R 	





Best Linear Unbiased Estimate (continuation 1)	



	

 xb  =  x  + ζb	

 	

 	

  (1)	


	

 y  =  Hx + ε	

 	

 	

  (2)	



	

 A  probability  distribution  being  known  for  the  couple  (ζb,  ε),  eqs  (1-2) 
define probability distribution for the couple (x, y), with 	



	

 E(x) = xb ,  x’ = x - E(x) = - ζb	



	

 E(y) = Hxb ,  y’ = y - E(y) = y - Hxb = ε - Hζb	



	

 d ≡ y - Hxb is called the innovation vector.	





Best Linear Unbiased Estimate (continuation 2)	



	

 Apply formulæ for Optimal Interpolation	



	

 	

 	

 xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	


	

 	

 	

 Pa = Pb

 - Pb
 HT

 [HPbHT 
 + R]-1 HPb	



 	

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.	


	

 	


	

 Equivalent set of formulæ 	


	

 	


	

 	

 	

 xa = xb + Pa

 HT
 R-1 (y - Hxb)	



	

 	

 	

 [Pa]-1 = [Pb]-1
 + HT

 R-1H	



 	

 Matrix K = Pb
 HT

 [HPbHT + R]-1 = Pa
 HT

 R-1 is gain matrix.	



	

 If probability distributions are globally gaussian, BLUE achieves bayesian 
estimation, in the sense that P(x | xb, y) = N [xa, Pa].	





After A. Lorenc 



Best Linear Unbiased Estimate (continuation 4)	



	

 Variational form of the BLUE	



	

  BLUE xa minimizes following scalar objective function, defined on state space	



	

 ξ ∈  S  → 	



•      J(ξ)  =  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ) 
    = 	

         Jb	

 	

      + 	

      Jo	



	

 	

 	

 	

 ‘3D-Var’ 	

	



	

 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	


	

 	


	

 Used operationally in USA, Australia, China, …	





	

 Question.  How  to  introduce  temporal  dimension  in 
estimation process ?	



  Logic of Optimal Interpolation can be extended to time dimension.	



  But we know much more than just temporal correlations. We know 
explicit dynamics.	



	

 Real  (unknown)  state  vector  at  time  k  (in  format  of  assimilating  model)  xk.  Belongs 
to state space S (dimS = n)	



	

 Evolution equation	



 xk+1 = Mk(xk) + ηk  

  Mk is (known) model, ηk is (unknown) model error	





Sequential Assimilation	



•  Assimilating model is integrated over period of time over which observations 
are available. Whenever model time reaches an instant at which observations 
are available, state predicted by the model is updated with new observations.	



Variational Assimilation	



•  Assimilating  model  is  globally  adjusted  to  observations  distributed  over 
observation  period.  Achieved  by  minimization  of  an  appropriate  scalar 
objective function measuring misfit between data and sequence of model states 
to be estimated.	





  
  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	


	

 	

 	

 	


  Evolution equation	



 xk+1 = Mkxk + ηk    k = 0, …, K-1	


 E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj 	



	

 Mk linear	



	

  	

 	

  

  E(ηkεj
T) = 0  (errors uncorrelated in time) 



	

 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k	



  Forecast step 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = E[(xb

k+1 - xk+1)(xb
k+1 - xk+1)T] = E[(Mk xa

k - Mkxk - ηk)(Mk xa
k - Mkxk - ηk)T] 	



	

 	

 = Mk E[(xa
k - xk)(xa

k - xk)T]Mk
T - E[ηk (xa

k - xk)T] - E[(xa
k - xk)ηk

T]  + E[ηkηk
T] 	



	

 	

 = Mk Pa
k Mk

T + Qk  



	

 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k	



  Forecast step 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = Mk Pa

k Mk
T + Qk  

	

 Kalman filter (KF, Kalman, 1960)	



	

 Must be started from some initial estimate (xb
0, Pb

0)	





 If  all  operators  are  linear,  and  if  errors  are  uncorrelated  in  time, 
Kalman filter produces at time k the BLUE xb

k (resp. xa
k) of the real 

state xk from all data prior to (resp. up to) time k, plus the associated 
estimation error covariance matrix Pb

k (resp. Pa
k).	



	

 If  in  addition  errors  are  gaussian,  the  corresponding  conditional 
probability distributions are the respective gaussian distributions 	



	

 N [xb
k, Pb

k] and N [xa
k, Pa

k].	







M. Ghil et al. 



M. Ghil et al. 



	

 Nonlinearities ?	



	

 Model is usually nonlinear, and observation operators (satellite 
observations) tend more and more to be nonlinear.	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 [yk - Hk(xb
k)]	



	

  Pa
k = Pb

k - Pb
k Hk’T

 [Hk’Pb
kHk’T + Rk]-1 Hk’ Pb

k	



  Forecast step 

  xb
k+1 =  Mk(xa

k)	


	

  Pb

k+1 = Mk’ Pa
k Mk’T + Qk  

	

 Extended Kalman Filter (EKF, heuristic !)	





 	


	

 Costliest part of computation	


	

 	

 	

 	


	

 	

 Pb

k+1 = Mk Pa
k Mk

T + Qk  

	

 Multiplication by Mk = one integration of the model between times k and k+1.	


	

 Computation of Mk Pa

k Mk
T  ≈ 2n integrations of the model 	



	

 Need  for  determining  the  temporal  evolution  of  the  uncertainty  on 
the  state  of  the  system  is  the  major  difficulty  in  assimilation  of 
meteorological and oceanographical observations	





Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC 
(ECMWF, spectral truncation T21, unit m. After F. Bouttier)	





Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 



Two solutions :	



•  Low-rank filters (Heemink, Pham, …) 	


  	

 Reduced  Rank  Square  Root  Filters,  Singular  Evolutive  Extended 

Kalman Filter, ….	



•  Ensemble filters (Evensen, Anderson, Kalnay, …)	


  Uncertainty  is  represented,  not  by  a  covariance  matrix,  but  by  an 

ensemble of point estimates in state space which are meant to sample the 
conditional  probability  distribution  for  the  state  of  the  system 
(dimension N ≈ O(10-100)).	



	

 Ensemble  is  evolved in  time through the  full  model,  which eliminates 
any need for linear hypothesis as to the temporal evolution.	





How to update predicted ensemble with new observations ?	



Predicted ensemble at time t : {xb
i},	

 i = 1, …, N	



Observation vector at same time : y = Hx + ε	



•  Gaussian approach	


 	

 	


	

 Produce sample of probability distribution for real observed quantity Hx 	


	

 yi = y - εi 

	

 where εi is  distributed according to  probability  distribution for  observation error 
ε.   	

 	



	

 Then use Kalman formula to produce sample of ‘analysed’ states	



	

 xa
i = xb

i + Pb
 HT

 [HPbHT 
 + R]-1 (yi - Hxb

i) ,	

 i  = 1, …, N	

 (2)	



	

 where Pb
 is covariance matrix of predicted ensemble {xb

i}.	



	

 Remark.  If  Pb  was  exact  covariance  matrix  of  background  error,  (2)  would 
achieve  Bayesian  estimation,  in  the  sense  that  {xa

i}  would  be  a  sample  of 
conditional probability distribution for x, given all data up to time t.	





Called  Ensemble  Kalman Filter.  Has  now become one  of  the  two major 
powerful  algorithms  for  assimilation  of  meteorological  and 
oceanographical observations.	



	

 Local Ensemble Transform Kalman Filter (LETKF, Kalnay and colleagues) 	





⎯  EnKF   ⎯ 3DVar (prior, solid; posterior, dotted) 

Prior  

posterior 

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 
analysis in terms of root-mean square difference averaged over the entire month  

Month-long Performance of EnKF vs. 3Dvar with WRF 

(Meng and Zhang 2007c, MWR, in review ) 



 Variational Assimilation	



  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) ≡ Rk δkj	



 	

 	

 	

 	

 	


  Evolution equation	



 xk+1 = Mkxk + ηk     k = 0, …, K-1	


 E(ηk) = 0   ;  E(ηkηj

T) ≡ Qk δkj 	



	

 E(ηkεj
T) = 0 	

 	

 	



  Background estimate at time 0 

 xb
0 = x0 + ζb

0  

 E(ζb
0) = 0   ;  E(ζb

0 ζb
0
T) ≡ Pb

0 	



	

  E(ζb
0εk

T) = 0    ;  E(ζb
0ηk

T) = 0   

•  Errors uncorrelated in time  



 Variational assimilation leads to the following weak constraint objective function	



 (ξ0, ξ1, ..., ξK) → 	



•       	


	

 J(ξ0, ξ1, ..., ξK)   
  =  (1/2) (xb

0 - ξ0)T [Pb
0]-1 (xb

0 - ξ0) 
  +  (1/2) Σk=0, …, K (yk - Hkξk)T Rk

-1 (yk - Hkξk) 
  +  (1/2) Σk=0, …, K-1 (ξk+1- Mkξk)T Qk

-1 (ξk+1- Mkξk) 
     



 If model error is ignored (Qk=0), problem reduces to minimizing 

•  ξ0  →  J(ξ0)  =  (1/2) (xb
0 - ξ0)T [Pb

0]-1 (xb
0 - ξ0) 

             +  (1/2) Σk=0, …, K (yk - Hkξk)T Rk
-1 (yk - Hkξk) 

	

 subject to	



	

 ξk+1 = Mkξk	

 ,	

 k = 0, …, K-1	



 Strong  constraint  four-dimensional  variational  assimilation,  or  strong 
constraint 4D-Var	



	

 	


	

 Used  operationally  in  several  meteorological  centres  (Météo-France,  UK 

Meteorological  Office,  Canadian  Meteorological  Centre  (maybe  not  any 
more ?),  Japan Meteorological Agency, …) and, until  recently, at ECMWF. 
The latter now has a ‘weak constraint’ component in its operational system. 	





	

 	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
  Background  is  not  necessary,  if  observations are  in  sufficient  number  to 

overdetermine the problem. Nor is strict linearity. 

 Minimization  achieved  by  iterative  algorithm,  each  step  of  which  requires 
the explicit knowledge of the local gradient ∇u J ≡  (∂J/∂ui) of J with respect to 
u.	



	

 Gradient  computed  by  adjoint  method,  which  proceeds,  in  the  space  of 
partial derivatives, in reverse order of direct computations.	





	

 How to numerically compute the gradient ∇u J ?	



	

 Direct  perturbation,  in  order  to  obtain  partial  derivatives  ∂J/∂ui  by  finite 
differences  ?  That  would  require  as  many  explicit  computations  of  the 
objective function J as there are components in u. Practically impossible.	





Adjoint Method	



	

 Input vector u = (ui), dimu = n	


	

 Numerical  process,  implemented  on  computer  (e.  g.  integration  of 

numerical model)	



u → v = G(u)	


•  v = (vj) is output vector , dimv = m	



•  Perturbation δu = (δui) of input. Resulting first-order perturbation on v	



•  δvj = Σi (∂vj/∂ui) δui 	



•  or, in matrix form	


•  δv  =  G’δu	



•  where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix, of 
G. 	





Adjoint Method (continued 1)	



	

 	

 	

 	

        δv  =  G’δu	

 	

 	

 (D)	



•  Scalar function of output 	


J(v)  =  J[G(u)]	



	

 Gradient ∇u J of J with respect to input u?	



	

 ‘Chain rule’	

 	

  	



∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)	



 	

  or 	


•              ∇u J  =  G’T ∇v J 	

	

  	

 (A)	





Adjoint Method (continued 2)	



•  G is the composition of a number of successive steps	



G = GN ° … ° G2 ° G1	


	

 	


	

 ‘Chain rule’	

 	

  	



G’ = GN’ … G2’ G1’	



 	

 Transpose	


•              	



G’T = G1’T G2’T … GN’T	



	

 Transpose, or adjoint, computations are performed in reversed order of direct computations.	



	

 If  G  is  nonlinear,  local  jacobian  G’ depends  on  local  value  of  input  u.  Any  quantity  which  is  an 
argument  of  a  nonlinear  operation  in  the  direct  computation  will  be  used  again  in  the  adjoint 
computation. It must be kept in memory from the direct computation (or else be recomputed again in 
the course of the adjoint computation).	



	

 If  everything  is  kept  in  memory,  total  operation  count  of  adjoint  computation  is  at  most  4  times 
operation count of direct computation (in practice about 2).	





Adjoint Approach	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
 subject to ξk+1 = Mkξk ,	

 k = 0, …, K-1	



Control variable 	

  ξ0 = u	



Adjoint equation	



 λK = 	

        HK
T RK

-1 [HK ξK - yK]	



 λk = Mk
Tλk+1 + Hk

T Rk
-1 [Hk ξk - yk]	

 	

  	

 k = K-1, …, 1	



λ0 = M0
Tλ1      + H0

T R0
-1 [H0 ξ0 - y0]   +  [P0

b]-1 (ξ0 - x0
b) 	



	

 	

 	

 	

 ∇u J  = λ0 	

 	



Result of direct integration (ξk), which appears in quadratic terms in expression of	


objective function, must be kept in memory from direct integration.	





Adjoint Approach (continued 2)	



Nonlinearities ?	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]  
 subject to ξk+1 = Mk(ξk) ,	

 k = 0, …, K-1	



Control variable 	

  ξ0 = u	



Adjoint equation	



 λK = 	

        HK’T RK
-1 [HK(ξK) - yK]	



 λk = Mk’Tλk+1 + Hk’T Rk
-1 [Hk(ξk) - yk]	

 	

  	

 k = K-1, …, 1	



λ0 = M0’Tλ1      + H0’T R0
-1 [H0(ξ0) - y0]   +  [P0

b]-1 (ξ0 - x0
b) 	



	

 	

 	

 	

 ∇u J  = λ0 	

 	



Not heuristic (it gives the exact gradient ∇uJ), and really used as described here.	





ECMWF, Results on one FASTEX case (1997) 



	

 Buehner (2008)	


	

 	


	

 For  the  same  numerical  cost,  and  in  meteorologically  realistic 

situations,  Ensemble  Kalman  Filter  and  Variational  Assimilation 
produce results of similar quality.	





Conclusions 
Assimilation,  which  originated  from  the  need  of  defining  initial  conditions  for  numerical  weather 

forecasts, has progressively extended to many diverse applications	



•  Oceanography	


•  Atmospheric chemistry (both troposphere and stratosphere)	


•  Oceanic biogeochemistry	


•  Ground hydrology	


•  Terrestrial biosphere and vegetation cover	


•  Glaciology	


•  Magnetism (both planetary and stellar)	


•  Plate tectonics	


•  Planetary atmospheres (Mars, …)	


•  Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)	


•  Identification of source of tracers	


•  Parameter identification	


•  A priori evaluation of anticipated new instruments	


•  Definition of observing systems (Observing Systems Simulation Experiments)	


•  Validation of models	


•  Sensitivity studies (adjoints)	


•  …	



It has now become a major tool of numerical environmental science 



Assimilation is related to	



•  Estimation theory	


•  Probability theory	


•  Atmospheric and oceanic dynamics	


•  Atmospheric and oceanic predictability 	


•  Instrumental physics	


•  Optimisation theory	


•  Control theory	


•  Algorithmics and computer science	


•  …	






