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Fig. 1: Members of day 7 forecast of 500 hPa geopotential height for the ensemble originated from
25 January 1993.
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Figure 6 Hurricane Katrina mean-sea-level-pressure (MSLP) analysis for 12 UTC of 29 August 2005 and
t+84h high-resolution and EPS forecasts started at 00 UTC of 26 August:

Istrow: I* panel: MSLP analysis for 12 UTC of 29 Aug

2™ panel: MSLP t+84h T 511L60 forecast started at 00 UTC of 26 Aug

3" panel: MSLP t+84h EPS-control T;255L40 forecast started at 00 UTC of 26 Aug
Other rows: 50 EPS-perturbed T;255140 forecast started at 00 UTC of 26 Aug.

The contour interval is 5 hPa, with shading patters for MSLP values lower than 990 hPa.

ECMWEF, Technical Report 499, 2006



Why have meteorologists such difficulties in predicting the
weather with any certainty ? Why is it that showers and even
storms seem to come by chance, so that many people think it
is quite natural to pray for them, though they would consider
it ridiculous to ask for an eclipse by prayer ? [...] a tenth of a
degree more or less at any given point, and the cyclone will
burst here and not there, and extend its ravages over districts
that it would otherwise have spared. If they had been aware of
this tenth of a degree, they could have known it beforehand,
but the observations were neither sufficiently comprehensive
nor sufficiently precise, and that is the reason why it all seems
due to the intervention of chance.

H. Poincaré, Science et Méthode, Paris, 1908
(translated Dover Publ., 1952)



ECMWF Data Coverage (All obs DA) - Synop-Ship-Metar
13/Nov/2011; 00 UTC
Total number of obs = 31583
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ECMWF Data Coverage (All obs DA) - Temp
13/Nov/2011; 00 UTC
Total number of obs = 649
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ECMWF Data Coverage (All obs DA) - Pilot-Profiler
13/Nov/2011; 00 UTC
Total number of obs = 1592
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ECMWF Data Coverage (All obs DA) - Aircraft
13/Nov/2011; 00 UTC
Total number of obs = 50106
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ECMWF Data Coverage (All obs DA) - AMSU-A
13/Nov/2011; 00 UTC
Total number of obs = 607377
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ECMWF Data Coverage (All obs DA) - AMV WV
13/Nov/2011; 00 UTC
Total number of obs = 175647
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289170

ECMWEF Data Coverage (All obs DA) - SCAT
13/Nov/2011; 00 UTC
Total number of obs
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ECMWF Data Coverage (All obs DA) - GPSRO
13/Nov/2011; 00 UTC
Total number of obs = 48559
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ECMWF Data Coverage (All obs DA) - Buoy
13/Nov/2011; 00 UTC
Total number of obs = 8540
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ECMWF Data Coverage (All obs DA) - OZONE
13/Nov/2011; 00 UTC
Total number of obs = 81811
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December 2007: Satellite data volumes used:
around 18 millions per day

quantity of satellite data used per day at ECMWF

18 —

16

% 12 = CONV+SAT
< WNDS
S 10

g

-]

[}

g 84

8

©

o

5 6. m TOTAL
g

£

=

f =4

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Year

Value as of early 2013 : around 25 millions per day 15



Synoptic observations (ground observations, radiosonde observations),

performed simultaneously, by international agreement, in all meteorological
stations around the world (00:00, 06:00, 12:00, 18:00 TU), and are in practice
concentrated over continents.

Asynoptic observations (satellites, aircraft), performed more or less
continuously in time.

Direct observations (temperature, pressure, horizontal components of the wind,

moisture), which are local and bear on the variables used for for describing the
flow in numerical models.

Indirect observations (radiometric observations, ...), which bear on some more
or less complex combination (most often, a one-dimensional spatial integral)
of variables used for for describing the flow

y = H(x)

H : observation operator (for instance, radiative transfer equation)



Echamillonnage de la circulation océanique par les missions altimétriques sur 10 jours :
combinaison Topex-Poséidon/ERS-1

S. Louvel, Doctoral Dissertation, 1999
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d’assimilation. 18

E. Rémy, Doctoral Dissertation, 1999



Physical laws governing the flow

=  (Conservation of mass

Dp/Dt + pdivU = 0

= Conservation of energy
De/Dt - (p/p?) Dp/Dt = Q

= Conservation of momentum
DU/Dt + (1/p) gradp - g + 2 QAU= F

= Equation of state
fp,p,e)=0 (for a perfect gas p/p=rT,e=C,T)

= Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, ...)

Dq/Dt + g divU =8

These physical laws must be expressed in practice in discretized (and necessarily
imperfect) form, both in space and time = numerical model 19



Parlance of the trade :

" Adiabatic and inviscid, and therefore thermodynamically
reversible, processes (everything except Q, F and §) make
up ‘dynamics’

" Processes described by terms Q, F' and S make up ‘physics’



All presently existing numerical models are built on
simplified forms of the general physical laws. Global
numerical models, wused either for large-scale
meteorological prediction or for climate simulation, are at
present built on the so-called primitive equations. Those
equations rely on several approximations, the most
important of which being the hydrostatic approximation,
which expresses balance, in the vertical direction, of the
gravity and pressure gradient forces. This forbids explicit
description of thermal convection, which must be
parameterized 1n some appropriate way.

More and more limited-area models have been progressively
developed. They require appropriate definition of lateral
boundary conditions (not a simple problem). Most of them
are non-hydrostatic, and therefore allow description of
convection.

21



There exist at present two forms of discretization

- Gridpoint discretization

- (Semi-)spectral discretization (mostly for global models,
and most often only in the horizontal direction)

Finite element discretization, which is very common in many forms of
numerical modelling, is rarely used for modelling of the atmosphere. It
is more frequently used for oceanic modelling, where it allows to take
into account the complicated geometry of coast-lines.

22
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The grids of two of the models of Météo-France (La Météorologie)



In gridpoint models, meteorological fields are defined by
values at the nodes of a the grid. Spatial and temporal

derivatives are expressed by finite differences.

In spectral models, fields are defined by the coefficients of
their expansion along a prescribed set of basic functions. In
the case of global meteorological models, those basic
functions are the spherical harmonics (eigenfunctions of

the laplacian at the surface of the sphere).

25
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Linear operations, and in particular differentiation, are
performed in spectral space, while nonlinear operations
and ‘physical’ computations (advection, diabatic heating
and cooling, ...) are performed in gridpoint physical space.
This requires constant transformations from one space to
the other, which are made possible at an acceptable cost
through the systematic use of Fast Fourier Transforms.

For that reason, those models are called semi-spectral.

27



In the parlance of the trade, one distinguishes two different
parts in models. The ‘dynamics’ deals with the physically
reversible processes (pressure forces, Coriolis force,
advection, ...), while the ‘physics’ deals with physwally
irreversible processes, in particular the diabatic heating
te)m @ 1n the energy equation, and also the
parameterization of subgrid scales effects.

Numerical schemes have been progressively developed and
validated for the ‘dynamics’ component of models, which
are by and large considered now to work satlsfactorlly
(although regular improvements are still being made).

28



The situation 1s different as concerns ‘physics’, where many
problems remain (as concerns for instance subgrid scales
parameterization, the water cycle and the associated
exchanges of energy, or the exchanges between the
atmosphere and the underlying medium). ‘Physics’ as a
whole remains the weaker point of models, and 1s still the
object of active research.

29



5. SCHEMA DES INTERACTIONS PHYSIQUES DANS LE MODELE
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European Centre for Medium-range Weather Forecasts
(ECMWEF, Reading, UK)

Since 26 January 2010

Horizontal spherical harmonics triangular truncation T1279
(horizontal resolution = 16 kilometres, but still hydrostatic)

91 levels on the vertical (0 - 80 km)
Dimension of state vectorn = 1.5 10°

Timestep = 10 minutes

31
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500hPa geopotential
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Figure 2: 500 hPa geopotential height skill score for Europe (top) and the northern hemisphere
extratropics (bottom), showing 12-month moving averages for forecast ranges from 24 to 192
hours. The last point on each curve is for the 12-month period August 2011-July 2012.

Persistence =0 ; ChmatOlogy =50 at long range publications/library/ecpublications/_pdf/tm/
601-700/tmé88.pdf
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Figure 11: WMO-exchanged scores from global forecast centres. RMS error over northem
extratropics for 500 hPa geopotential height (top) and mean sea level pressure (bortom). In each
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Figure 12: As Figure 11 for the southern hemisphere.



Anomaly correlation of ECMWF 500hPa height forecasts
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Figure 10: Forecast performance in the tropics. Curves show the monthly average RMS vector
wind errors at 200 hPa (top) and 850 hPa (bottom) for one-day (blue) and five-day (red)
Jorecasts. 12-month moving average scores are also shown (in bold).



Forecast error of 2 m Temperature [ deg C] Europe 30.0-22.0 72.0 42.0
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Figure 19: Verification of 2 m temperature forecasts against European SYNOP data on the GTS
for 60-hour (night-time) and 72-hour (davtime) forecasts. Lower pair of curves shows bias, upper
curves are standard deviation of error.
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Figure 8: Ensembie spread (standard deviation, dashed lines) and RMS error of ensembie-mean
(solid lines) for winter 2011-2012 (upper figure in each panel), and differences of ensembie
spread and RMS error of ensemble mean for last three winter seasons (lower figure in each panel,
negative values mdicate spread is too smail); plots are for 500 hPa geopotential (top) and 850
hPa temperature (bottom) over the extratropical northern hemisphere for forecast days 1 to 15.
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Figure 9: CPRSS for 500 hPa height (top) and 850 hPa temperature (bottom) ensemble forecasts
Jor winter (December-February) over the extratropical northern hemisphere. Skll from the
ensemble day 1-15 forecasts is shown for winters 2011-12 (red), 2010-11 (blue), 2009-10
(green), 2005-09 (magenta) and 2007-08 (cyan). The ensemble only ran to ten days in 200506

(orange).
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Remaining Problems

Mostly 1n the ‘physics’ of models (Q and F terms in basic
equations)

- Water cycle (evaporation, condensation, influence on radiation
absorbed or emitted by the atmosphere)

- Exchanges with ocean or continental surface (heat, water,
momentum, ...)



Purpose of assimilation : reconstruct as accurately as possible the state of the
atmospheric or oceanic flow, using all available appropriate information. The latter

essentially consists of

= The observations proper, which vary in nature, resolution and accuracy, and

are distributed more or less regularly in space and time.

= The physical laws governing the evolution of the flow, available in practice in

the form of a discretized, and necessarily approximate, numerical model.

= ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although
they basically are necessary consequences of the physical laws which govern the flow, these

properties can usefully be explicitly introduced in the assimilation process.



Both observations and ‘model’ are affected with some uncertainty = uncertainty on the estimate.

For some reason, uncertainty is conveniently described by probability distributions (don’t

know too well why, but it works).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system, knowing

everything we know



Assimilation is one of many ‘inverse problems’ encountered
in many fields of science and technology

e solid Earth geophysics

e plasma physics
* ‘nondestructive’ probing

* navigation (spacecraft, aircraft, ....)

Solution most often (if not always) based on Bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.



Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n = 10°10° parameters to be
estimated, p = 1-3.107 observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast to

be ready in time.

- Non-trivial, actually chaotic, underlying dynamics



ratio of supercomputer costs:
1 day's assimilation / 1 day forecast

100

Computer power increased by 1M in 30 years.

Only 0.04% of the Moore’s Law increase over

this time went into improved DA algorithms,
rather than improved resolution!

10
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Relative cost of the various components of the operational prediction
suite at ECMWF (september 2011, J.-N. Thépaut) :

4DVAR: 17%

Ensemble Data Assimilation (EDA) : 15%
Deterministic model : 13%

Ensemble Prediction System (EPS) : 53%
others : 2%

EDA produces both the background error covariances for 4D-Var and
the initial perturbations (in addition to Singular Vectors) for EPS.



z1=x+ density function p,(&) « exp| - (&2)/2s,]
,=x+ &, density function p,(&) « expl - (&%)/2s,]
&, and &, mutually independent

Pix=5E&1z,2y) ?

x=§ & {=z-§and §,=2,-§

* P(x=2E&1z,2)) * pi(2-8) py(z,-8)
o expl - (§-x9)*/2p“]

where 1/p® = 1/s; + 1/s, , x4=p*(z,/s,+ 2,/5,)

Conditional probability distribution of x, given z, and z, N [x, p?
p¢ < (s, s,) independent of z, and z,



prorx - NiD3)
Ikathcod piyoix) ~ N3 1)
postencrx ~ N2 25 075)

peioex - N(0,.3)
Kathood piyodd ~ NS 1)
posiriorx ~ N(ATS,075)

prorx -~ N(D,3)
Ikathocodpiyolx) ~ N7 1)
pogtenorx ~ NS 25 075)

pricex ~ N(0,3)
athood pdyodd ~ N9.1)
posktirx ~ NE75,075)

Fig. 1.1: Prior pdf p(z) (dashed line), posterior pdf p(z|y®) (solid line), and Gaussian
likelihood of observation p(y°|z) (dotted line), plotted against 2 for various values of
y°. (Adapted from Lorenc and Hammon 1988.)



Z1=x+ ¢
L,=x+G

Same as before, but £, and &, are now distributed according to exponential law
with parameter a, i. e.

p (&) xexpl-I€l/a] ; Var(f)=2a

Conditional probability density function is now uniform over interval [z, z,],
exponential with parameter a/2 outside that interval

E(x 1z, 25) =(z442,)/2
Var(x | z;, 2,) = a®> Q&3 + &+ 6 +1/2) / (1 + 26), with 6 = |z1—z2 | /2a)

Increases from a?/2 to o as ¢ increases from 0 to o. Can be larger than variance 2a°
of original errors (probability 0.08)

(Entropy -[plnp always decreases in bayesian estimation)



Bayesian estimation

State vector x, belonging to state space S'(dim.S'= n), to be estimated.
Data vector z, belonging to data space 7)(dimZ) = m), available.

z=F(x, § (1)

where ¢ is a random element representing the uncertainty on the data (or, more
precisely, on the link between the data and the unknown state vector).

For example

z=Ix+C



Bayesian estimation (continued)
Probability that x = & for given & ?
x=§ = z=FE 9
P(x=Elz)=Plz=F(& 0]/ [- Plz=F(&, 0]
Unambiguously defined iff, for any C, there is at most one x such that (1) is verified.

< data contain information, either directly or indirectly, on any component of
x. Determinacy condition.



Bayesian estimation 1s however impossible in its general theoretical
form in meteorological or oceanographical practice because

It 1s impossible to explicitly describe a probability distribution in a space
with dimension even as low as 7 = 10°, not to speak of the dimension n =
10%? of present Numerical Weather Prediction models.

Probability distribution of errors on data very poorly known (model errors
in particular).



One has to restrict oneself to a much more modest goal. Two
approaches exist at present

= Obtain some ‘central’ estimate of the conditional probability
distribution (expectation, mode, ...), plus some estimate of the
corresponding spread (standard deviations and a number of
correlations).

* Produce an ensemble of estimates which are meant to sample the
conditional probability distribution (dimension N = O(10-100)).
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Figure 1. Geographical dstribution of the observations used for the assimslation cxperiments. (a) geopo-

tential observations, (b): wind observations. At most of the pomts plotted. several observations were made at

mmm.memdummmzmummumm(m
Figure 2)

Courtier and Talagrand, QJRMS, 1987
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Random vector x = (x, x,, ..., x,)1 = (x;) (e. g. pressure, temperature, abundance of
given chemical compound at n grid-points of a numerical model)

= Expectation E(x) = [E(x;)] ; centred vector x’ =x- E(x)
= (Covariance matrix
E@x™) = [E(;'x)]

dimension nxn, symmetric non-negative (strictly definite positive except if linear
relationship holds between the x,”‘s with probability 1).

= Two random vectors
X = (X, %, .00y X,)T
y = (yl’yza "'ayp)T

E(x’y ’T) — E(xiayja)

dimension nxp



Random function @(&) (field of pressure, temperature, abundance of given
chemical compound, ... ; &is now spatial and/or temporal coordinate)

= Expectation E[D(§)] ; D’(8) = (&) - E[D(5)]
= Variance  Var[g(§)] = E{[¢’(5)]*}

= (Covariance function

(51, 5)— C¢(§1, &) = E[D(&E) D(&)]

=  (Correlation function

Cor (& &) = EL9'(5) P (E)]/ {Varl E)] Varl )]} "



.: Isolines for the auto-correlations of the 500 mb
geopotential between the station in Hannover and

surrounding stations.
From Bertoni and Lund (1963)

After N. Gustafsson

“

. Isolines of the cross-correlation between the 500 mb

geopotential in station 01 384 (R) and the surface
pressure in surrounding stations.



After N. Gustafsson

o~

Figure 4.2.4.3: Iloiincn for the auto-cori:elatic.m of the 500 mb

u-wind component (dashed line) and the auto-
correlation of the 500 mb v-wind component (full
line). The "star" indicates the position of the re-
ference station. (Prom Buel (1972).



Figure 5.1.1.4.1 Auto-correlation of errors in 12h numerical fore-
casts of surface pressure in a reference station
(Stockholm) and other stations. -

After N. Gustafsson



Optimal Interpolation

Random field &(&)
Observation network &, &, ..., §,
For one particular realization of the field, observations

yi=®E)+e ,j=1,...,p, making up vector y = (y,)
Estimate x = &(&) at given point &, in the form

xX=a+Z By, =a+ply where B= ()

a and the f5;’s being determined so as to minimize the expected quadratic
estimation error E[(x-x%)?]



Optimal Interpolation (continued 1)

Solution
x*=Ex)+EXy D) [EQY’y D] [y-EQy)]
i.e.,  B=[EQyD]'EXY)
a = E(x) - B'E(y)
Estimate 1s unbiased E(x-x*) =0

Minimized quadratic estimation error
E[(x-x?)’] = E(x™) - E(x’y™") [E(y’y D] E(y'x")

Estimation made in terms of deviations from expectations x’and y’.



Optimal Interpolation (continued 2)

x*=E@x) + E@y™) [EQy DI [y - EQ)]
Yi= ¢(§J) * &
E(y;'y,’) = E[D(§) + &’ 1[P(5) + &1

If observation errors ¢ are mutually uncorrelated, have common variance s, and are
uncorrelated with field @, then

EQy;'y) = C@(&j, )+ S(Sjk
and

E(x'y;) = Cof& )















Optimal Interpolation (continued 3)

X =Ex)+EX’y ") [EQ’y D! [y-EQy)]

Vector

u= () =[EQyDI" [y- Ep)]
is independent of variable to be estimated
xt=E(X) +2; w E(x’y;’)

B(E) = E[AE)] + 5, u; E[D'(9),]
= E[E)] + 2, 1y ColE &)

Correction made on background expectation is a linear combination of the p functions
E[D’(§) y;i'l. E[®’(&) yi'1l= Ca(& {;:J)]

considered as a function of estimation position &, is the representer associated with
observation y;.



Optimal Interpolation (continued 4)

Univariate interpolation. Each physical field (e. g. temperature) determined
from observations of that field only.

Multivariate interpolation. Observations of different physical fields are used

simultaneously. Requires specification of cross-covariances between various
fields.

Cross-covariances between mass and velocity fields can simply be
modelled on the basis of geostrophic balance.

Cross-covariances between humidity and temperature (and other) fields still
a problem.



Schlatter’s (1975) multivariate covariances

Specified as
multivariate 2-point
functions.

Not easy to ensure
that specified
functions are
actually valid
covariances.

Used in Ol and
related observation-
space methods.

Courtesy A. Lorenc

© Crown copyright Met Office Andre

L h-h

L h-u J'.h-v I | ]

F1c. 3. Correlations among the variables %, %, and v based upon the expression u=0.95 exp(— 1.24s?)
for height-height correlation and the geostrophic relations. Diagrams centered at 110°W, 35°N, Tick
marks 500 km apart.



Best Linear Unbiased Estimate
State vector x, belonging to state space S'(dim.S'= n), to be estimated.
Available data in the form of

" A ‘background’ estimate (e. g. forecast from the past), belonging to srate
space, with dimension n

xX = x+&

= An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y=Hx+¢
H is known linear observation operator.
Assume probability distribution is known for the couple (&, ¢).

Assume E(&) =0, E(¢) =0, E(& &) =0 (not restrictive)
Set E(&PEPT) = PP (also often denoted B), E(&€™) = R



Best Linear Unbiased Estimate (continuation 1)

xt = x+& (1)
y = Hx +¢ 2)

A probability distribution being known for the couple (&, €), eqs (1-2)
define probability distribution for the couple (x, y), with

Ex)=xt, x’=x-E(x)=-&
E(y)=Hx", y'=y-E(y)=y-Hx"=¢-HE

d =y - Hx? is called the innovation vector.



Best Linear Unbiased Estimate (continuation 2)

Apply formula for Optimal Interpolation

x*=xP+ PPHT[HPPHT + R]! (y - Hx?)
Pe=pb- PPHT[HPPHT + R]! HP?

x? is the Best Linear Unbiased Estimate (BLUE) of x from x” and y.
Equivalent set of formule

x¢=x"+ P*H'R! (y - Hx?)
(Pe]! = [PP]! + HT RVH

Matrix K = PP H' [HP’H" + R]'' = P* HT R'! is gain matrix.

If probability distributions are globally gaussian, BLUE achieves bayesian
estimation, in the sense that P(x | x?, y) = Mx“, P4].
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Best Linear Unbiased Estimate (continuation 4)
Variational form of the BLUE

BLUE x“ minimizes following scalar objective function, defined on state space
se §—
. J&) = (112) P - HT[PPTT(x - &) + (1/2) (y - HOTR' (v - HE)
= jb + jo

‘3D-Var’

Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.

Used operationally in USA, Australia, China, ...



Question. How to introduce temporal dimension in
estimation process ?

Logic of Optimal Interpolation can be extended to time dimension.

But we know much more than just temporal correlations. We know
explicit dynamics.

Real (unknown) state vector at time k (in format of assimilating model) x,. Belongs
to state space S’ (dim.S'= n)

Evolution equation

X1 = Mi(x) + 1,

M, 1s (known) model, 7, is (unknown) model error



Sequential Assimilation

* Assimilating model is integrated over period of time over which observations
are available. Whenever model time reaches an instant at which observations
are available, state predicted by the model is updated with new observations.

Variational Assimilation

* Assimilating model is globally adjusted to observations distributed over
observation period. Achieved by minimization of an appropriate scalar
objective function measuring misfit between data and sequence of model states
to be estimated.



= (Observation vector at time k

Vi = Hpx + &
E(g) =0 ; E(ge") =R, Gy
H, linear

= Evolution equation

X1 = Mpxi + 1
E(n) =0 ; E(lean) =0y 5@'
M, linear

= F( nkejT) =0 (errors uncorrelated in time)



At time k, background x?, and associated error covariance matrix P?, known

Analysis step

x4 = xb + PP HY[H P HT + R ]! (v, - Hx"))
Pa, = Pb - Pb H,T[H P HT + R H, P,

Forecast step

xbk+l = M, x4,

Pbk+1 = E[(xbk+1 - xk+1)(xbk+1 - xk+1)T] = E[(M; x% - Mix; - 0 )M x4 - My x, - ']
= M, E[(x* - x)(x% - x)" IM" - E[1, (x% - x)'] - E[(x% - x)n '] + E[ngn,']
=M Py M+ Q,



At time k, background x?, and associated error covariance matrix P, known

Analysis step

X =x+ PP HPYHE + R (- Hx))
pe =P - PP H'[H P H' + R ] H P

Forecast step

b — a
X = M x4,

P =M Py M+ O,
Kalman filter (KF, Kalman, 1960)

Must be started from some initial estimate (x%, P%,)



If all operators are linear, and if errors are uncorrelated in time,
Kalman filter produces at time k the BLUE x?, (resp. x%) of the real
state x, from all data prior to (resp. up to) time k, plus the associated
estimation error covariance matrix P?, (resp. P%,).

If in addition errors are gaussian, the corresponding conditional
probability distributions are the respective gaussian distributions

Nxb,, P’,] and N[xe,, P%].
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Fig. 2

The components of the total expected rms error (Erms), (trace: P ,1/3'
in the estimation of solutions to the stochastic-dynamic system (Y, ,H),
with ¥ given by (3.6) and H = (I 0), System noise is absent, Q » 0. The
filter used is the standard K-B #ilter (2.11) for the model.

¢) Erms over the entire L-domain

In each one of the figures, each curve represents one component of the
total Erms error. The curves labelled U, V, and P represent the u component,
v component and § component, respcotively. They are found by summing the
dingonal elements of Py which corrvspond to u, v, and $, respectively,
dividing by the number of terms in the sum, and then taking the square root.
In a) the sunmntinn extends over laad points only, in b) over ocean points
only, and in c) over the entire L-domain, The vertical axis is scaled in
such a way that 1.0 corresponds to an Erms error of Vaax for the U and V
curves, and of $g for the P curve. The observationsl error level is 0,089
for the U and V curves, and 0.080 for the P curve. The curves labelled

T represent the total Frma error over esch region. Each T curve is a
weighted nverage of the corresponding U, ¥, and P curves, with the weights
chosen in such a way that the T curve measures the error in the total
energy u? + vZ + 02/-}. conserved by the system (3.1). The observational
noise level for the T curve im then 0,088, Notice the ipmediate error
decrease over land and the gradual decrease over the ocean. The total
estimation error tends to zero.

A) Erms over land; ©b) Erns over the ocean;
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Nonlinearities ?

Model is usually nonlinear, and observation operators (satellite
observations) tend more and more to be nonlinear.

Analysis step

X = X0+ PP H UV HPPH + R [y - H(xP)]
Pe = PP~ PO HTH PO + R H P
Forecast step

xbk+1 = M, (x%)
Pb =M. Py M, + QO

Extended Kalman Filter (EKF, heuristic !)



Costliest part of computation
PPy = M Py M+ Oy

Multiplication by M, = one integration of the model between times k and k+1.
Computation of M, P4, M," =2n integrations of the model

Need for determining the temporal evolution of the uncertainty on
the state of the system is the major difficulty in assimilation of
meteorological and oceanographical observations



hPa geopotential for 1 December 1989, 00:00 UTC

(ECMWEF, spectral truncation T21, unit m. After F. Bouttier)

Analysis of 500
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Temporal evolution of the 500-hPa geopotential autocorrelation with respect to
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.

Contour interval 0.1. After F. Bouttier.



Two solutions :

e Low-rank filters (Heemink, Pham, ...)

Reduced Rank Square Root Filters, Singular Evolutive Extended
Kalman Filter, ....

e Ensemble filters (Evensen, Anderson, Kalnay, ...)

Uncertainty is represented, not by a covariance matrix, but by an
ensemble of point estimates in state space which are meant to sample the
conditional probability distribution for the state of the system
(dimension N = O(10-100)).

Ensemble is evolved in time through the full model, which eliminates
any need for linear hypothesis as to the temporal evolution.



How to update predicted ensemble with new observations ?

Predicted ensemble at time 7 : {x”}, i=1,....N
Observation vector at same time : y = Hx + ¢

e Gaussian approach

Produce sample of probability distribution for real observed quantity Hx

Yi=Y-§
where ¢;1s distributed according to probability distribution for observation error
€.

Then use Kalman formula to produce sample of ‘analysed’ states
x¢ =xb. + PPHY [HPPH" + R]"! (y, - Hx")) , i=1,...,N 2)
where P?is covariance matrix of predicted ensemble {x”.}.

Remark. If PP was exact covariance matrix of background error, (2) would
achieve Bayesian estimation, in the sense that {x?} would be a sample of
conditional probability distribution for x, given all data up to time ¢.



Called Ensemble Kalman Filter. Has now become one of the two major
powerful algorithms for assimilation of meteorological and
oceanographical observations.

Local Ensemble Transform Kalman Filter (LETKF, Kalnay and colleagues)



Month-long Performance of EnKF vs. 3Dvar with WRF

— EnKF —3DVar (prior, solid; posterior, dotted)

200t ¥ 200+
400} 400+
600 600 -
800 800+
%% 2 3 4 5 & 1mms) %
zoo-T 200
400} 400+
600 600 -
8001 800}
1000 0.5 1 15 2 (K) 10000 0.5 1 1.5 2 (g/kg)

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior
analysis in terms of root-mean square difference averaged over the entire month

(Meng and Zhang 2007c, MWR, 1n review )



Variational Assimilation

Observation vector at time k

Vi = Hixg + &
E(g) =0 ; E(gg") =R,

Evolution equation

X1 = Mixi + 1,
E(ny =0 ; Emn") =0, 4,
E(’Ikng) =0

Background estimate at time O

xby = xp + &
E(Cbo):o ;E(CboéboT)EPbo
E(ébong)=O QE(Zb()TIkT):O

Errors uncorrelated in time



Variational assimilation leads to the following weak constraint objective function

(507 519 ) §K) g

(&> &5 > Ex)
= (1/2) (% - E)T PP (X% - &)
+ (12) 2, kO - HE)' R Oy - HiE
+ (112) Zi k1 (G- M5 O (§ai- M)

ceey



If model error is ignored (Q,=0), problem reduces to minimizing

& — J(&) = (172) (xbo - go)T [Pbo]_l (xbo - &)
+ (1/72) Zk:o, kO - HE)'R,! (v, - H.E)

ceey

subject to

Sir1 = M5, , k=0,...,K-1

Strong  constraint four-dimensional variational assimilation, or strong
constraint 4D-Var

Used operationally in several meteorological centres (Météo-France, UK
Meteorological Office, Canadian Meteorological Centre (maybe not any
more ?7), Japan Meteorological Agency, ...) and, until recently, at ECMWF.
The latter now has a ‘weak constraint” component in its operational system.



j(go) = (172) (xob - &o)T [P()b]_1 (xob - &o) + (172) Z. [y, - Hkgk]TRk_l [k - HkEk]

Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

Minimization achieved by iterative algorithm, each step of which requires
the explicit knowledge of the local gradient V,,/] = (9]/du;) of /] with respect to
u.

Gradient computed by adjoint method, which proceeds, in the space of
partial derivatives, in reverse order of direct computations.



How to numerically compute the gradient V] ?

Direct perturbation, in order to obtain partial derivatives 0//du; by finite
differences ? That would require as many explicit computations of the
objective function /] as there are components in u. Practically impossible.



Adjoint Method

Input vector u = (u;), dimu =n

Numerical process, implemented on computer (e. g. integration of
numerical model)

u—v==GwW)
* v=(v)is output vector ,dimy = m

* Perturbation ou = (du,) of input. Resulting first-order perturbation on v
* Ov;=Z,(dv/ou) oy

* or, in matrix form

e Ov = G’ du

* where G’= (dv/du,) is local matrix of partial derivatives, or jacobian matrix, of
G.



Adjoint Method (continued 1)

ov = G’ du

* Scalar function of output
Jw) = JiG(w)]
Gradient V, /] of /] with respect to input u?
‘Chain rule’
0J/du;=%;9]/dv;(dv/du,)

or

. v, =GTV,]

(D)

(A)



Adjoint Method (continued 2)

* G is the composition of a number of successive steps

G=Gy.....G,.G,
‘Chain rule’

G =Gy ...G,’G/
Transpose

GT=G/'TG,"...G"

Transpose, or adjoint, computations are performed in reversed order of direct computations.
If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an
argument of a nonlinear operation in the direct computation will be used again in the adjoint
computation. It must be kept in memory from the direct computation (or else be recomputed again in

the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).



Adjoint Approach

j(go) = (1/2) (xob - go)T [Pob]_l (xob - fQ-()) +(1/2) Zk[yk - Hk‘gk]T Rk_l [y - Hkgk]
subjectto &§.,, = M,§&,, k=0,...,K-1

Control variable E=u
Adjoint equation
Ay = H"Ry' [Hy 8 - vkl

M=M"+ HIR [H G - y] k=K-1,...,1

A= MOT;LI + HOTRO_I [Hy & - Yol + [Pob]'1 (& - xob)

Vg =%

Result of direct integration (&), which appears in quadratic terms in expression of
objective function, must be kept in memory from direct integration.



Adjoint Approach (continued 2)

Nonlinearities ?

J(&) = (1/2) (xy” - E)TIPT" (" - &) + (1/2) 2Ly, - Hi(EQIT R [y - H(E))]
subjectto &, = M (&), k=0,...,K-1

Control variable E=u
Adjoint equation
Ag= Hi "Rt [H(Eg) - ygl

M= M Xy + HUT R TH(E - v k=K-1,...,1

A= M, TA, +H, ’TRo'l [Hy(&) -yl + [Pob]'1 (& - xob)

Vg =%

Not heuristic (it gives the exact gradient V), and really used as described here.



r verifying analysis

A =

4D-Var verifying analysis

% ;; s '

)

ECMWEF, Results on one FASTEX case (1997)




Buehner (2008)

For the same numerical cost, and in meteorologically realistic
situations, Ensemble Kalman Filter and Variational Assimilation
produce results of similar quality.



Conclusions

Assimilation, which originated from the need of defining initial conditions for numerical weather
forecasts, has progressively extended to many diverse applications

e  Oceanography

e Atmospheric chemistry (both troposphere and stratosphere)

e Oceanic biogeochemistry

e  Ground hydrology

e  Terrestrial biosphere and vegetation cover

e Glaciology

e  Magnetism (both planetary and stellar)

e  Plate tectonics

e  Planetary atmospheres (Mars, ...)

e Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)
e Identification of source of tracers

e  Parameter identification

* A priori evaluation of anticipated new instruments

e  Definition of observing systems (Observing Systems Simulation Experiments)
e  Validation of models

e  Sensitivity studies (adjoints)

It has now become a major tool of numerical environmental science



Assimilation is related to

e Estimation theory

e Probability theory

e Atmospheric and oceanic dynamics

* Atmospheric and oceanic predictability
e Instrumental physics

* Optimisation theory

e Control theory

e Algorithmics and computer science
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