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- What is assimilation ?
- Numerical weather prediction. Principles and
performances

- Definition of initial conditions

- Bayesian Estimation

- One first step towards assimilation : ‘Optimal Interpolation’

- The temporal dimension : Kalman Filter and Variational
Assimilation
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ECMWF, Technical Report 499, 2006



Pourquoi les météorologistes ont-ils tant de peine à prédire le temps
avec quelque certitude ? Pourquoi les chutes de pluie, les tempêtes
elles-mêmes nous semblent-elles arriver au hasard, de sorte que bien
des gens trouvent tout naturel de prier pour avoir la pluie ou le beau
temps, alors qu’ils jugeraient ridicule de demander une éclipse par
une prière ? Nous voyons que les grandes perturbations se produisent
généralement dans les régions où l’atmosphère est en équilibre
instable. Les météorologistes voient bien que cet équilibre est instable,
qu’un cyclone va naître quelque part ; mais où, ils sont hors d’état de
le dire ; un dixième de degré en plus ou en moins en un point
quelconque, le cyclone éclate ici et non pas là, et il étend ses ravages
sur des contrées qu’il aurait épargnées. Si on avait connu ce dixième
de degré, on aurait pu le savoir d’avance, mais les observations
n’étaient ni assez serrées, ni assez précises, et c’est pour cela que tout
semble dû à l’intervention du hasard.

H. Poincaré, Science et Méthode, Paris, 1908
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Why have meteorologists such difficulty in predicting the weather with any
certainty? Why is it that showers and even storms seem to come by chance,
so that many people think it quite natural to pray for rain or fine weather,
though they would consider it ridiculous to ask for an eclipse by prayer?
We see that great disturbances are generally produced in regions where
the atmosphere is in unstable equilibrium. The meteorologists see very
well that the equilibrium is unstable, that a cyclone will be formed
somewhere, but exactly where they are not in a position to say; a tenth of a
degree more or less at any given point, and the cyclone will burst here and
not there, and extend its ravages over districts it would otherwise have
spared. If they had been aware of this tenth of a degree they could have
known it beforehand, but the observations were neither sufficiently
comprehensive nor sufficiently precise, and that is the reason why it all
seems due to the intervention of chance.

H. Poincaré, Science et Méthode, Paris, 1908
(English transl. by F. Maitland, Science and Method, 

T. Nelson and Sons, London, 1914)
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As of 2023
We receive 800 million observations daily,
and 60 million quality-controlled observations
are available daily for use in the Integrated
Forecasting System (IFS); the vast majority of
these are satellite measurements, but ECMWF
also benefits from all available observations
from non-satellite sources, including surface-
based and aircraft reports.



§ Synoptic observations (ground observations, radiosonde observations),

performed simultaneously, by international agreement, in all meteorological

stations around the world (00:00, 06:00, 12:00, 18:00 UTC), and are in practice

concentrated over continents.

§ Asynoptic observations (satellites, aircraft), performed more or less

continuously in time.

§ Direct observations (temperature, pressure, horizontal components of the

wind, moisture), which are local and bear on the variables used for describing

the flow in numerical models.

§ Indirect observations (radiometric observations, …), which bear on some more

or less complex combination (most often, a one-dimensional spatial integral)

of variables used for for describing the flow

y = H(x)

H : observation operator (for instance, radiative transfer equation)
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E. Rémy, Doctoral Dissertation, 1999
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Physical laws governing the flow

§ Conservation of mass
Dr/Dt + r divU = 0

§ Conservation of energy
De/Dt - (p/r2) Dr/Dt = Q

§ Conservation of momentum
DU/Dt + (1/r) gradp - g + 2 W ÙU =  F

§ Equation of state
f(p, r, e) = 0 (for a perfect gas p/r = rT, e = CvT)

§ Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, …)
Dq/Dt + q divU = S

These physical laws must be expressed in practice in discretized (and necessarily
imperfect) form, both in space and time Þ numerical model



Parlance of the trade :

§ Adiabatic and inviscid, and therefore thermodynamically
reversible, processes (everything except Q, F and S) make
up ‘dynamics’

§ Processes described by terms Q, F and S make up ‘physics’
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All presently existing numerical models are built on
simplified forms of the general physical laws. Global
numerical models, used either for large-scale
meteorological prediction or for climate simulation, are at
present built on the so-called primitive equations. Those
equations rely on several approximations, the most
important of which being the hydrostatic approximation,
which expresses balance, in the vertical direction, of the
gravity and pressure gradient forces. This forbids explicit
description of thermal convection, which must be
parameterized in some appropriate way.

More and more limited-area models have been developed
over time. They require appropriate definition of lateral
boundary conditions (not a simple problem). Most of them
are non-hydrostatic, and therefore allow description of
convection.
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There exist at present two forms of horizontal spatial
discretization

- Gridpoint discretization

- (Semi-)spectral discretization (mostly for global models,
and most often only in the horizontal direction)

Finite element discretization, which is very common in many forms of
numerical modelling, is rarely used for modelling of the atmosphere. It
is more frequently used for oceanic modelling, where it allows to take
account of the complicated geometry of coast-lines.
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Schematic of a gridpoint atmospheric model
(L. Fairhead /LMD-CNRS)
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In gridpoint models, meteorological fields are defined by
values at the nodes of the grid. Spatial and temporal
derivatives are expressed by finite differences.

In spectral models, fields are defined by the coefficients of
their expansion along a prescribed set of basic functions. In
the case of global meteorological models, those basic
functions are the spherical harmonics (eigenfunctions of
the laplacian at the surface of the sphere).



Modèles (semi-)spectraux
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Linear operations, and in particular differentiation with
respect to spatial variables, are performed in spectral
space, while nonlinear operations and ‘physical’
computations (advection by the motion, diabatic heating
and cooling, …) are performed in gridpoint physical space.
This requires constant transformations from one space to
the other, which are made possible at an acceptable cost
through the systematic use of Fast Fourier Transforms.

For that reason, those models are called semi-spectral.
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Numerical schemes have been gradually developed and
validated for the ‘dynamics’ component of models, which
are by and large considered now to work satisfactorily
(although regular improvements are still being made).

The situation is different as concerns ‘physics’, where many
problems remain (as concerns for instance subgrid scales
parameterization, the water cycle and the associated
exchanges of energy, or the exchanges between the
atmosphere and the underlying medium). ‘Physics’ as a
whole remains the weaker point of models, and is still the
object of active research.





European Centre for Medium-range Weather Forecasts
(ECMWF, Reading, GB, Bologna, Italy, Bonn, Germany)

(Centre Européen pour les Prévisions Météorologiques à Moyen Terme, 
CEPMMT)

June 2023 High-resolution (HRES) model 

Triangular semi-spectral truncation TCO1279 / O1280 
(horizontal resolution ≈ 9 kilometres)

Hydrostatic primitive equations. 137 vertical levels (0 - 80 km)

Finite-element vertical discretisation (hybrid coordinate)

Dimension of corresponding state vector > 109

Integration timestep (semi-Lagrangian semi-implicit scheme):
450 seconds

Integrated four times a day (from 00, 06, 12 and 18 UTC) to 10-
day range 36
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Results on site of ECMWF www.ecmwf.int

In particular

T. Haiden et al., Evaluation of ECMWF forecasts,
including the 2023 upgrade, Technical Memorandum 911,
September 2023, ECMWF, Reading, UK.

Available at the address :

https://www.ecmwf.int/en/elibrary/81389-evaluation-
ecmwf-forecasts-including-2023-upgrade
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Spatial correlation between anomalies from 
climatology of forecast and verifying analysis

Score of climatology is 0. Score of persistence decreases from 1 to 0 over 4-5 days
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2020



September 2022 –
August 2023





Magnusson and Källén, 2013, Mon. Wea. Rev., 141, 3142–3153

ECMWF

47

500 hPa 
geopotential



Remaining Problems

Mostly in the ‘physics’ of models (Q and F terms in basic
equations)

- Water cycle (evaporation, condensation, influence on radiation
absorbed or emitted by the atmosphere)

- Exchanges with ocean or continental surface (heat, water,
momentum, …)

- …
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Alternative Approach to Numerical Weather Prediction

Machine Learning (aka Artificial Intelligence)

Set of empirical data   

(xi , yi) , i = 1, N

with no a prori explicitly known relationship between the inputs
xi‘s and the outputs yi‘s.

Look for an explicit relationship of the form

y ≈ f(x)

at least over a practically useful domain of variation of x.



Machine Learning (2)

Inputs xi‘s Black Outputs yi‘s
box

Replace black box with (possibly approximate) function y ≈ f(x)

Neural networks define the function f as a composition of basic
‘simple’ functions. Sigmoid functions, e.g. the hyperbolic
tangent function tanh(x), are very commonly used.



Machine Learning (3)
Neural networks

tanh(x) = (e2x -1) / (e2x+ 1)

Affine change of coordinates. Four degrees of freedom : two for
the coordinates of the central point, and one for the range of
variation in either direction.



Machine Learning (4)
Neural networks

The initial empirical dataset (xi , yi) is typically divided into two
sets

- A training set over which the composition of basic functions
is defined. This usually involves several layers of ‘neurons’,
the neurons in each layer being compositions of neurons in
previous layers. The optimal combination is obtained by
minimizing the misfit between the original and computed
outputs, often on the basis of a least-squares criterion.

- A validating set used to estimate the quality of the adjustment
obtained from the training set.



Machine Learning (5)
Neural networks

This approach, with many variants, has proved to be extremely
efficient, and is now used for innumerable applications in many
different domains.

It has been applied to numerical weather prediction. A number
of recently developed softwares are

GraphCast

Pangu-Weather

FourCastNet

FuXi



Machine Learning (5). Neural networks

These software pieces have been trained on the ECMWF

Reanalysis v5 (ERA5).

ERA5, which covers the period from January 1940 to present,

provides hourly estimates of a large number of atmospheric,

land and oceanic climate variables. The data cover the Earth on

a 30km grid and resolve the atmosphere using 137 levels from

the surface up to a height of 80km. ERA5 includes information

about uncertainties for all variables. It is produced using 4D-Var

data assimilation over 12-hour assimilation windows.

These neural networks trained on ERA5 produce forecasts of

quality similar to, or better than, the ECMWF operational

forecasts at a much lower numerical cost. Their results are

accessible online on the Website of ECMWF.



Machine Learning (6). Neural networks

FuXi (伏羲) has been trained on 39 years of ERA5. It has a
spatial resolution of 0.25°(28 km, against 9 km for ECMWF
HRES) and produces forecasts for a number of meteorological
variables



RMS error of forecasts by experimental machine learning models

2023



Machine Learning (7). 

- Machine Learning forecasts are more accurate in terms of
RMS error and correlation coefficients, but are also spatially
much smoother.

- Machine learning can be implemented for estimating errors in
deterministic forecasts

- But, at this stage, machine learning still depends totally on the
availability of a training set produced by well-established and
thoroughly validated means. How will these be updated ?



Machine Learning (8). 

- Machine Learning can be expected to have a significant impact 
on the way weather prediction is going to be performed, as well 
as on the quality of the corresponding forecasts.

- But what will precisely be that impact ? It is simply too soon
to tell.



- What is assimilation ?
- Numerical weather prediction. Principles and
performances

- Definition of initial conditions

- Bayesian Estimation

- One first step towards assimilation : ‘Optimal Interpolation’

- The temporal dimension : Kalman Filter and Variational
Assimilation



Purpose of assimilation : reconstruct as accurately as possible the state of the
atmospheric or oceanic flow, using all available appropriate information. The latter
essentially consists of

§ The observations proper, which vary in nature, resolution and accuracy, and
are distributed more or less regularly in space and time.

§ The physical laws governing the evolution of the flow, available in practice in
the form of a discretized, and necessarily approximate, numerical model.

§ ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although
they basically are necessary consequences of the physical laws which govern the flow, these
properties can usefully be explicitly introduced in the assimilation process.
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Both observations and ‘model’ are affected with some uncertainty Þ
uncertainty on the estimate.

For some reason, uncertainty is conveniently described by probability
distributions (don’t know too well why, but it works; see, e.g. Jaynes,
2007, Probability Theory: The Logic of Science, Cambridge University
Press).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the
system, knowing everything we know (see Tarantola, A., 2005, Inverse
Problem Theory and Methods for Model Parameter Estimation, SIAM).



Assimilation is one of many ‘inverse problems’ encountered
in many fields of science and technology

• solid Earth geophysics

• plasma physics

• ‘nondestructive’ probing

• navigation (spacecraft, aircraft, ….)

• …

Solution most often (if not always) based on Bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.



Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n ≈ 106-109 parameters to be
estimated, p ≈ 107-108 observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast to
be ready in time.

- Non-trivial, actually chaotic, underlying dynamics



Proportion of computing resources devoted to assimilation of observations
in the whole process of Numerical Weather Prediction has gradually
increased over time.

Definition of initial conditions originally required a simple interpolation
from observation stations to model gridpoints, with negligible cost. As of
now, assimilation over 24 hours of observations requires about the same
amount of resources as a 10-day forecast, including probabilistic forecast.



z1 = x + z1 density function p1(z) µ exp[ - (z2)/2s1]

z2 = x + z2 density function p2(z) µ exp[ - (z2)/2s2]

z1 and z2 mutually independent

P(x = x | z1, z2) ?



x = x Û z1 = z1-x and z2 = z2 -x

P(x = x | z1, z2) µ p1(z1-x) p2(z2 -x)
µ exp[ - (z1-x)2/2s1] exp[ - (z2-x)2/2s2]
= exp[ - A/2 ]

with A = (z1-x)2/s1 + (z2-x)2/s2
= (x - xa)2/pa + terms independent of x

where 1/pa = 1/s1 + 1/s2 , xa= pa (z1/s1 + z2/s2)

P(x = x | z1, z2) µ exp[ - (x - xa)2/2pa ] =N [xa, pa]

Conditional probability distribution of x, given z1 and z2 :N [xa, pa]



Conditional probability distribution of x, given z1 and z2 :N [xa, pa]

1/pa = 1/s1 + 1/s2

pa < (s1, s2) independent of z1 and z2

xa = pa (z1/s1 + z2/s2) is weighted average of z1 and z2, with respective
weights 1/s1 and 1/s2. Larger weight is given to more accurate piece of
data.





Estimate

xa= pa (z1/s1 + z2/s2)

with error pa such that

1/pa = 1/s1 + 1/s2

can also be obtained, independently of any Gaussian hypothesis, as simply
corresponding to the linear combination of z1 and z2 that minimizes the
error E [(xa-x) 2]

Best Linear Unbiased Estimator (BLUE)



International Symposium on Data Assimilation - Online (ISDA-Online)

"Machine Learning in Data Assimilation"

Alan Geer I ECMWF, UK
Stephan Rasp | Google Research, US
Ronan Fablet I IMT Atlantique, France

Friday, January 12, 2024 | 15:00 - 17:00 UTC
(04 - 06 pm CET Berlin / 10 - 12 am EST New York)
Visit our website: https://isda-online.univie.ac.at/

Please use the following link to connect to the Webex Webinar 
on January 12:
https://awi.webex.com/awi-
en/j.php?MTID=m6ff41a0d091766f4c01561e971bb7a22
Webinar password: qxJYgUHJ383 
(79594845 from phones and video systems)



International Symposium on Data Assimilation - Online (ISDA-Online)

“Advancements in Variational Data Assimilation”

Friday, February 2, 2024 from 08-10 UTC

Visit our website: https://isda-online.univie.ac.at/


