École Doctorale des Sciences de l'Environnement d'Île-de-France Année 2007-2008

Modélisation Numérique de l'Écoulement Atmosphérique et Assimilation d'Observations

Olivier Talagrand Cours 4 13 Mai 2008

$$z_1 = x + \zeta_1$$
 density function $p_1(\zeta) \propto \exp[-(\zeta^2)/2s_1]$
 $z_2 = x + \zeta_2$ density function $p_2(\zeta) \propto \exp[-(\zeta^2)/2s_2]$

$$x = \xi \Leftrightarrow \zeta_1 = z_1 - \xi \text{ and } \zeta_2 = z_2 - \xi$$

$$P(x = \xi \mid z_1, z_2) \propto p_1(z_1 - \xi) p_2(z_2 - \xi)$$

 $\propto \exp[-(\xi - x^a)^2/2s]$

where
$$1/s = 1/s_1 + 1/s_2$$
, $x^a = s(z_1/s_1 + z_2/s_2)$

Conditional probability distribution of x, given z_1 and $z_2 : \mathcal{N}[x^a, s]$ $s < (s_1, s_2)$ independent of z_1 and z_2

$$z_1 = x + \zeta_1$$
$$z_2 = x + \zeta_2$$

Same as before, but ζ_1 and ζ_2 are now distributed according to exponential law with parameter a, i. e.

$$p(\zeta) \propto \exp[-|\zeta|/a]$$
; $Var(\zeta) = 2a^2$

Conditional probability density function is now uniform over interval $[z_1, z_2]$, exponential with parameter a/2 outside that interval

$$E(x \mid z_1, z_2) = (z_1 + z_2)/2$$

Var($x \mid z_1, z_2$) = $a^2 (2\delta^3/3 + \delta^2 + \delta + 1/2) / (1 + 2\delta)$, with $\delta = |z_1 - z_2| / (2a)$ Increases from $a^2/2$ to ∞ as δ increases from 0 to ∞ . Can be larger than variance $2a^2$ of original errors (probability 0.08)

(Entropy $-\int p \ln p$ always decreases in bayesian estimation)

Bayesian estimation

State vector x, belonging to state space $S(\dim S = n)$, to be estimated.

Data vector z, belonging to data space $\mathcal{D}(\dim \mathcal{D} = m)$, available.

$$z = F(x, \zeta) \tag{1}$$

where ζ is a random element representing the uncertainty on the data (or, more precisely, on the link between the data and the unknown state vector).

For example

$$z = \Gamma x + \zeta$$

Bayesian estimation (continued)

Probability that $x = \xi$ for given ξ ?

$$x = \xi \Leftrightarrow z = F(\xi, \zeta)$$

$$P(x = \xi \mid z) = P[z = F(\xi, \zeta)] / \int_{\xi'} P[z = F(\xi', \zeta)]$$

Unambiguously defined iff, for any ζ , there is at most one x such that (1) is verified.

 \Leftrightarrow data contain information, either directly or indirectly, on any component of x. *Determinacy* condition.

Bayesian estimation is however impossible in its general theoretical form in meteorological or oceanographical practice because

- It is impossible to explicitly describe a probability distribution in a space with dimension even as low as $n \approx 10^3$, not to speak of the dimension $n \approx 10^{6-8}$ of present Numerical Weather Prediction models.
- Probability distribution of errors on data very poorly known (model errors in particular).

One has to restrict oneself to a much more modest goal. Two approaches exist at present

- Obtain some 'central' estimate of the conditional probability distribution (expectation, mode, ...), plus some estimate of the corresponding spread (standard deviations and a number of correlations).
- Produce an ensemble of estimates which are meant to sample the conditional probability distribution (dimension $N \approx O(10\text{-}100)$).

Random vector $\mathbf{x} = (x_1, x_2, ..., x_n)^T = (x_i)$ (e. g. pressure, temperature, abundance of given chemical compound at n grid-points of a numerical model)

- Expectation $E(x) = [E(x_i)]$; centred vector x' = x E(x)
- Covariance matrix

$$E(\mathbf{x}'\mathbf{x}'^{\mathrm{T}}) = [E(x_i'x_j')]$$

dimension $n \times n$, symmetric non-negative (strictly definite positive except if linear relationship holds between the x_i , 's with probability 1).

Two random vectors

$$\mathbf{x} = (x_1, x_2, ..., x_n)^{\mathrm{T}}$$

 $\mathbf{y} = (y_1, y_2, ..., y_p)^{\mathrm{T}}$

$$E(\mathbf{x}'\mathbf{y}'^{\mathrm{T}}) = E(x_i'y_i')$$

dimension *nxp*

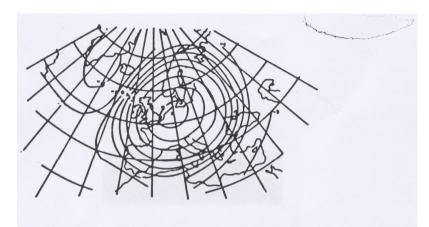
Random function $\varphi(\xi)$ (field of pressure, temperature, abundance of given chemical compound, ...; ξ is now spatial and/or temporal coordinate)

- Expectation $E[\varphi(\xi)]$; $\varphi'(\xi) = \varphi(\xi) E[\varphi(\xi)]$
- Variance $Var[\varphi(\xi)] = E\{[\varphi'(\xi)]^2\}$
- Covariance function

$$(\xi_1, \xi_2) \rightarrow C_{\varphi}(\xi_1, \xi_2) = E[\varphi'(\xi_1) \varphi'(\xi_2)]$$

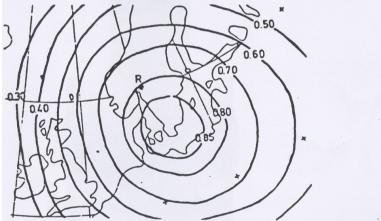
Correlation function

$$Cor_{\varphi}(\xi_{1}, \xi_{2}) = E[\varphi'(\xi_{1}) \varphi'(\xi_{2})] / \{Var[\varphi(\xi_{1})] Var[\varphi(\xi_{2})]\}^{1/2}$$



.: Isolines for the auto-correlations of the 500 mb geopotential between the station in Hannover and surrounding stations.

From Bertoni and Lund (1963)



Isolines of the cross-correlation between the 500 mb geopotential in station 01 384 (R) and the surface pressure in surrounding stations.

After N. Gustafsson

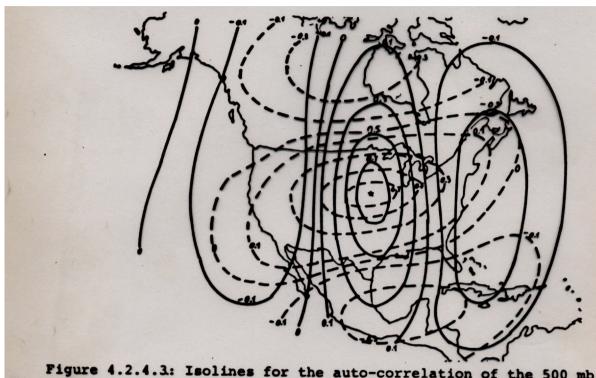


Figure 4.2.4.3: Isolines for the auto-correlation of the 500 mb
u-wind component (dashed line) and the autocorrelation of the 500 mb v-wind component (full
line). The "star" indicates the position of the reference station. (From Buel (1972).

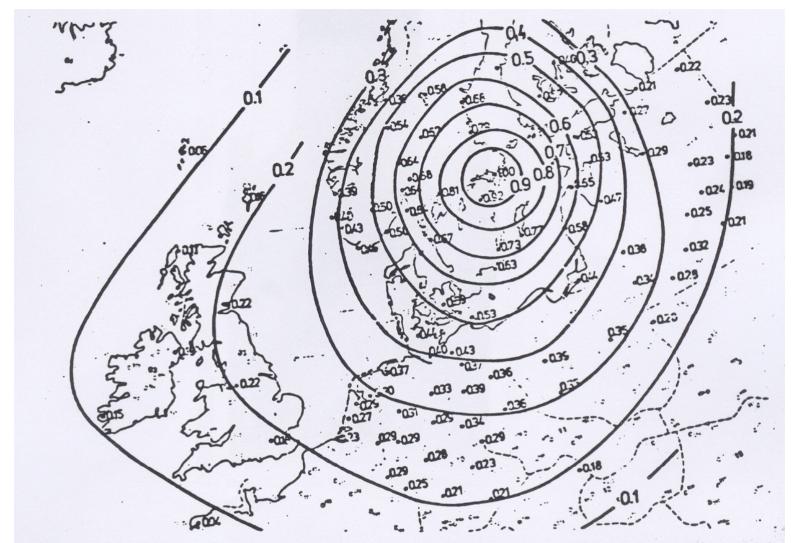


Figure 5.1.1.4.1 Auto-correlation of errors in 12h numerical fore-casts of surface pressure in a reference station (Stockholm) and other stations.