
École Doctorale des Sciences de l'Environnement d’Île-de-France
Année 2007-2008

 Modélisation Numérique
de l’Écoulement Atmosphérique
et Assimilation d'Observations

Olivier Talagrand
Cours 7

10 Juin 2008

Best Linear Unbiased Estimate

Available data consist of

Background xb = x + ζb

‘Observations’ y = Hx + ε

Errors assumed to be unbiased, E(ζbζbT) = Pb, E(εεT) = R, E(ζbεT) = 0

BLUE

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)
Pa = Pb

 - Pb
 HT

 [HPbHT
 + R]-1 HPb

Minimization of scalar objective function, defined on state space

ξ ∈ S →

� J(ξ) = (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) + (1/2) (y - Hξ)T R-1 (y - Hξ)

 = Jb + Jo

leads to

xa = xb + Pa
 HT

 R-1 (y - Hxb)
[Pa]-1 = [Pb]-1

 + HT
 R-1H

which has been said to be another, equivalent, set of equations for the BLUE.

Approach can easily be extended to time dimension.

Suppose for instance available data consist of

- Background estimate at time 0
 x0

b = x0
 + ζ0

b E(ζ0
bζ0

bT) = P0
b

- Observations at times k = 0, …, K
 yk = Hkxk + εk E(εkεj

T) = Rk

 - Model (supposed for the time being to be exact)
 xk+1 = Mkxk k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear

Then objective function

ξ0 ∈ S →

J(ξ0) = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]

subject to ξk+1 = Mkξk , k = 0, …, K-1

J(ξ0) = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]

 Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

How to minimize objective function with respect to initial state u = ξ0 (u is
called the control variable of the problem) ?

Use iterative minimization algorithm, each step of which requires the explicit
knowledge of the local gradient ∇u J ≡ (∂J/∂ui) of J with respect to u.

Gradient computed by adjoint method.

How to numerically compute the gradient ∇u J ?

Direct perturbation, in order to obtain partial derivatives ∂J/∂ui by finite
differences ? That would require as many explicit computations of the
objective function J as there are components in u. Practically impossible.

Adjoint Method

Input vector u = (ui), dimu = n
Numerical process, implemented on computer (e. g. integration of numerical
model)

u → v = G(u)
� v = (vj) is output vector , dimv = m

� Perturbation δu = (δui) of input. Resulting first-order perturbation on v

� δvj = Σi (∂vj/∂ui) δui

� or, in matrix form
� δv = G’δu

� where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix,
of G.

Adjoint Method (continued 1)

 δv = G’δu (D)

� Scalar function of output
J(v) = J[G(u)]

Gradient ∇u J of J with respect to input u?

‘Chain rule’

∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)

 or

� ∇u J = G’T ∇v J (A)

Adjoint Method (continued 2)

� G is the composition of a number of successive steps

G = GN ° … ° G2 ° G1

‘Chain rule’

G’ = GN’ … G2’ G1’

 Transpose
�

G’T = G1’T G2’T … GN’T

Transpose, or adjoint, computations are performed in reversed order of direct computations.

If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an
argument of a nonlinear operation in the direct computation will be used gain in the adjoint
computation. It must be kept in memory from the direct computation (or else be recomputed again in
the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).

