
École Doctorale des Sciences de l'Environnement d’Île-de-France
Année 2008-2009

 Modélisation Numérique
de l’Écoulement Atmosphérique
et Assimilation d'Observations

Olivier Talagrand
Cours 4

8 Juin 2009



z1 = x + ζ1 density function p1(ζ) ∝ exp[ - (ζ2)/2s1]
z2 = x + ζ2  density function p2(ζ) ∝ exp[ - (ζ2)/2s2]

x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ

� P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)
        ∝  exp[ - (ξ -xa)2/2pa]

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1
 + z2/s2)

Conditional probability distribution of x, given z1 and z2 :! [xa, pa]
pa < (s1, s2) independent of z1 and z2



z1 = x + ζ1
z2 = x + ζ2

Same as before, but ζ1 and ζ2 are now distributed according to exponential law with
parameter a, i. e.

p (ζ) ∝ exp[-|ζ |/a]   ;    Var(ζ) = 2a2

Conditional probability density function is now uniform over interval [z1, z2],
exponential with parameter a/2 outside that interval

E(x | z1, z2)  = (z1+z2)/2

Var(x | z1, z2) = a2 (2δ3/3 + δ2 + δ +1/2) / (1 + 2δ), with δ =  z1-z2/(2a)
Increases from a2/2 to ∞ as δ increases from 0 to ∞. Can be larger than variance 2a2

of original errors (probability 0.08)

(Entropy -∫plnp always decreases in bayesian estimation)



Bayesian estimation

State vector x, belonging to state space S (dimS = n), to be estimated.

Data vector z, belonging to data space D (dimD = m), available.

 z = F(x, ζ)  (1)

where ζ is a random element representing the uncertainty on the
data (or, more precisely, on the link between the data and the
unknown state vector).

For example

z = Γx + ζ



Bayesian estimation (continued)

Probability that x = ξ for given ξ ?

x = ξ    ⇒   z = F(ξ, ζ)

P(x = ξ | z) = P[z = F(ξ, ζ)] / ∫ξ’ P[z = F(ξ’, ζ)]

Unambiguously defined iff, for any ζ, there is at most one x such that (1) is
verified.

⇔   data contain information, either directly or indirectly, on any component of x.
Determinacy condition.



Bayesian estimation is however impossible in its general
theoretical form in meteorological or oceanographical
practice because

• It is impossible to explicitly describe a probability
distribution in a space with dimension even as low as n ≈ 103,
not to speak of the dimension  n ≈ 106-8 of present Numerical
Weather Prediction models.

• Probability distribution of errors on data very poorly known
(model errors in particular).



One has to restrict oneself to a much more modest goal. Two
approaches exist at present

 Obtain some ‘central’ estimate of the conditional probability
distribution (expectation, mode, …), plus some estimate of the
corresponding spread (standard deviations and a number of
correlations).

 Produce an ensemble of estimates which are meant to sample the
conditional probability distribution (dimension N ≈ O(10-100)).



Random vector x = (x1, x2, …, xn)T = (xi) (e. g. pressure, temperature, abundance of given chemical
compound at n grid-points of a numerical model)

 Expectation E(x) ≡ [E(xi)] ;    centred vector    x’  ≡ x - E(x)

 Covariance  matrix

E(x’x’T) = [E(xi’xj’)]

dimension nxn, symmetric non-negative (strictly definite positive except if linear relationship holds between the
xi’‘s with probability 1).

 Two random vectors
x = (x1, x2, …, xn)T

y = (y1, y2, …, yp)T

E(x’y’T) = E(xi’yj’)

        dimension nxp



Random function ϕ(ξ) (field of pressure, temperature, abundance of given chemical compound, … ; ξ is now spatial
and/or temporal coordinate)

 Expectation E[ϕ(ξ)]  ; ϕ’(ξ) ≡ ϕ(ξ) - E[ϕ(ξ)]
 Variance      Var[ϕ(ξ)] = E{[ϕ’(ξ)]2}

 Covariance function

(ξ1, ξ2) →  Cϕ(ξ1, ξ2)  ≡  E[ϕ’(ξ1) ϕ’(ξ2)]

 Correlation function

Corϕ(ξ1, ξ2)  ≡  E[ϕ’(ξ1) ϕ’(ξ2)] / {Var[ϕ(ξ1)] Var[ϕ(ξ2)]}1/2

�    
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