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z1 = x + ζ1 density function p1(ζ) ∝ exp[ - (ζ2)/2s1]
z2 = x + ζ2  density function p2(ζ) ∝ exp[ - (ζ2)/2s2]

x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ

� P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)
        ∝  exp[ - (ξ -xa)2/2pa]

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1
 + z2/s2)

Conditional probability distribution of x, given z1 and z2 :! [xa, pa]
pa < (s1, s2) independent of z1 and z2



z1 = x + ζ1
z2 = x + ζ2

Same as before, but ζ1 and ζ2 are now distributed according to exponential law with
parameter a, i. e.

p (ζ) ∝ exp[-|ζ |/a]   ;    Var(ζ) = 2a2

Conditional probability density function is now uniform over interval [z1, z2],
exponential with parameter a/2 outside that interval

E(x | z1, z2)  = (z1+z2)/2

Var(x | z1, z2) = a2 (2δ3/3 + δ2 + δ +1/2) / (1 + 2δ), with δ =  z1-z2/(2a)
Increases from a2/2 to ∞ as δ increases from 0 to ∞. Can be larger than variance 2a2

of original errors (probability 0.08)

(Entropy -∫plnp always decreases in bayesian estimation)



Bayesian estimation

State vector x, belonging to state space S (dimS = n), to be estimated.

Data vector z, belonging to data space D (dimD = m), available.

 z = F(x, ζ)  (1)

where ζ is a random element representing the uncertainty on the
data (or, more precisely, on the link between the data and the
unknown state vector).

For example

z = Γx + ζ



Bayesian estimation (continued)

Probability that x = ξ for given ξ ?

x = ξ    ⇒   z = F(ξ, ζ)

P(x = ξ | z) = P[z = F(ξ, ζ)] / ∫ξ’ P[z = F(ξ’, ζ)]

Unambiguously defined iff, for any ζ, there is at most one x such that (1) is
verified.

⇔   data contain information, either directly or indirectly, on any component of x.
Determinacy condition.



Bayesian estimation is however impossible in its general
theoretical form in meteorological or oceanographical
practice because

• It is impossible to explicitly describe a probability
distribution in a space with dimension even as low as n ≈ 103,
not to speak of the dimension  n ≈ 106-8 of present Numerical
Weather Prediction models.

• Probability distribution of errors on data very poorly known
(model errors in particular).



One has to restrict oneself to a much more modest goal. Two
approaches exist at present

 Obtain some ‘central’ estimate of the conditional probability
distribution (expectation, mode, …), plus some estimate of the
corresponding spread (standard deviations and a number of
correlations).

 Produce an ensemble of estimates which are meant to sample the
conditional probability distribution (dimension N ≈ O(10-100)).



Random vector x = (x1, x2, …, xn)T = (xi) (e. g. pressure, temperature, abundance of given chemical
compound at n grid-points of a numerical model)

 Expectation E(x) ≡ [E(xi)] ;    centred vector    x’  ≡ x - E(x)

 Covariance  matrix

E(x’x’T) = [E(xi’xj’)]

dimension nxn, symmetric non-negative (strictly definite positive except if linear relationship holds between the
xi’‘s with probability 1).

 Two random vectors
x = (x1, x2, …, xn)T

y = (y1, y2, …, yp)T

E(x’y’T) = E(xi’yj’)

        dimension nxp



Random function ϕ(ξ) (field of pressure, temperature, abundance of given chemical compound, … ; ξ is now spatial
and/or temporal coordinate)

 Expectation E[ϕ(ξ)]  ; ϕ’(ξ) ≡ ϕ(ξ) - E[ϕ(ξ)]
 Variance      Var[ϕ(ξ)] = E{[ϕ’(ξ)]2}

 Covariance function

(ξ1, ξ2) →  Cϕ(ξ1, ξ2)  ≡  E[ϕ’(ξ1) ϕ’(ξ2)]

 Correlation function

Corϕ(ξ1, ξ2)  ≡  E[ϕ’(ξ1) ϕ’(ξ2)] / {Var[ϕ(ξ1)] Var[ϕ(ξ2)]}1/2

�    



After N. Gustafsson



After N. Gustafsson



After N. Gustafsson


