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Best Linear Unbiased Estimate
State vector x, belonging to state space S (dimS = n), to be estimated.
Available data in the form of

 A ‘background’ estimate (e. g. forecast from the past), belonging to state
space, with dimension n
xb  =  x  + ζb

 An additional set of data (e. g. observations), belonging to observation space,
with dimension p
y  =  Hx + ε

H is known linear observation operator.

Assume probability distribution is known for  the couple (ζb, ε).
Assume E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 (not restrictive)
Set E(ζbζbT) = Pb (also often denoted B), E(εεT) = R



Best Linear Unbiased Estimate (continuation 1)

xb  =  x  + ζb  (1)

y  =  Hx + ε  (2)

A probability distribution being known for the couple (ζb, ε), eqs (1-2) define
probability distribution for the couple (x, y), with

E(x) = xb ,  x’ = x - E(x) = - ζb

E(y) = Hxb ,  y’ = y - E(y) = y - Hxb = ε - Hζb

d ≡ y - Hxb is called the innovation vector.



Best Linear Unbiased Estimate (continuation 2)

Apply formulæ for Optimal Interpolation

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)
Pa = Pb

 - Pb
 HT

 [HPbHT 
 + R]-1 HPb

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.

Equivalent set of formulæ

xa = xb + Pa
 HT

 R-1 (y - Hxb)
[Pa]-1 = [Pb]-1

 + HT
 R-1H

 Matrix K = Pb
 HT

 [HPbHT + R]-1 = Pa
 HT

 R-1 is gain matrix.

If probability distributions are globally gaussian, BLUE achieves bayesian estimation, in
the sense that P(x | xb, y) = ! [xa, Pa].



After A. Lorenc



Best Linear Unbiased Estimate (continuation 3)

H can be any linear operator

Example : (scalar) satellite observation

x = (x1, …, xn)T  temperature profile

Observation y = Σi hixi + ε = Hx + ε  ,      H = (h1, …, hn)     ,      E(ε2) = r
Background xb = (x1

b, …, xn
b)T ,     error covariance matrix Pb = (pij

b)

xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)

 [HPbHT + R]-1 (y - Hxb) = (y - Σι hιxιb) / (Σijhihj pij
b

 + r)-1 ≡ µ scalar !

� −  Pb = pb In  xi
a  = xi

b 
 + pb hi µ

� −  Pb = diag(pi
b) xi

a  = xi
b 

 + pi
b hi µ

       −  General case xi
a  = xi

b 
 + Σj pij

b hj µ 

Each level i is corrected, not only because of its own contribution to the observation, but because of the contribution of
the other levels to which its background error is correlated.



Best Linear Unbiased Estimate (continuation 4)

Variational form of the BLUE

 BLUE xa minimizes following scalar objective function, defined on state space

ξ ∈  S  → 

�     J(ξ)  =  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)

  =         Jb      +      Jo

‘3D-Var’ 

Can easily, and heuristically, be extended to the case of a nonlinear observation operator
H.

Used operationally in USA, Australia, China, …



Question. How to introduce temporal dimension in
estimation process ?

 Logic of Optimal Interpolation can be extended to time dimension.

 But we know much more than just temporal correlations. We know
explicit dynamics.

Real (unknown) state vector at time k (in format of assimilating model) xk. Belongs to
state space S (dimS = n)

Evolution equation

xk+1 = Mk(xk) + ηk

 Mk is (known) model, ηk is (unknown) model error



Sequential Assimilation

• Assimilating model is integrated over period of time over which observations
are available. Whenever model time reaches an instant at which observations
are available, state predicted by the model is updated with new observations.

Variational Assimilation

• Assimilating model is globally adjusted to observations distributed over
observation period. Achieved by minimization of an appropriate scalar
objective function measuring misfit between data and sequence of model
states to be estimated.



 Observation vector at time k

yk = Hkxk + εk k = 0, …, K
E(εk) = 0   ;  E(εkεj

T) = Rk δkj

Hk linear

 Evolution equation

xk+1 = Mkxk + ηk k = 0, …, K-1
E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj

Mk linear

 E(ηkεj
T) = 0  (errors uncorrelated in time)



At time k, background xb
k and associated error covariance matrix Pb

k known

 Analysis step

 xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)

 Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k

 Forecast step

 xb
k+1 =  Mk xa

k

 Pb
k+1 = E[(xb

k+1 - xk+1)(xb
k+1 - xk+1)T] = E[(Mk xa

k - Mkxk - ηk)(Mk xa
k - Mkxk - ηk)T]

= Mk E[(xa
k - xk)(xa

k - xk)T]Mk
T - E[ηk (xa

k - xk)T] - E[(xa
k - xk)ηk

T]  + E[ηkηk
T]

= Mk Pa
k Mk

T + Qk



At time k, background xb
k and associated error covariance matrix Pb

k known

 Analysis step

 xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)

 Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k

 Forecast step

 xb
k+1 =  Mk xa

k

 Pb
k+1 = Mk Pa

k Mk
T + Qk

Kalman filter (KF, Kalman, 1960)

Must be started from some initial estimate (xb
0, Pb

0)



If all operators are linear, and if errors are uncorrelated in time,
Kalman filter produces at time k the BLUE xb

k (resp. xa
k) of the real

state xk from all data prior to (resp. up to) time k, plus the associated
estimation error covariance matrix Pb

k (resp. Pa
k).

If in addition errors are gaussian, the corresponding conditional
probability distributions are the respective gaussian distributions

! [xb
k, Pb

k] and ! [xa
k, Pa

k].



Nonlinearities ?

Model is usually nonlinear, and observation operators (satellite observations) tend more and more to
be nonlinear.

 Analysis step

 xa
k = xb

k + Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 [yk - Hk(xb
k)]

 Pa
k = Pb

k - Pb
k Hk’T

 [Hk’Pb
kHk’T + Rk]-1 Hk’ Pb

k

 Forecast step

 xb
k+1 =  Mk(xa

k)
 Pb

k+1 = Mk’ Pa
k Mk’T + Qk

Extended Kalman Filter (EKF, heuristic !)



Costliest part of computation

Pb
k+1 = Mk Pa

k Mk
T + Qk

Multiplication by Mk = one integration of the model between times k and k+1.
Computation of Mk Pa

k Mk
T  ≈ 2n integrations of the model

Need for determining the temporal evolution of the uncertainty on the
state of the system is the major difficulty in assimilation of
meteorological and oceanographical observations



Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral
truncation T21, unit m. After F. Bouttier)



Temporal evolution of the 500-hPa geopotential autocorrelation with respect to point
located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.



Two solutions :

• Low-rank filters (Heemink, Pham, …)
  Reduced Rank Square Root Filters, Singular Evolutive Extended

Kalman Filter, ….

• Ensemble filters (Evensen, Anderson, …)
 Uncertainty is represented, not by a covariance matrix, but by an

ensemble of point estimates in state space which are meant to sample
the conditional probability distribution for the state of the system
(dimension N ≈ O(10-100)).
Ensemble is evolved in time through the full model, which eliminates
any need for linear hypothesis as to the temporal evolution.


