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Weak constraint variational assimilation allows for errors in the assimilating
model

Data
- Background estimate at time 0

Xt = x,+ &b E(LPElT) = P
- Observations at times k=0, ..., K
v, =Hx + ¢ E(ge") =R,

- Evolution equation

X =Mx +n, E(nn") =0, k=0, ...,K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear



Then objective function
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Can include nonlinear M ,and/or H,.
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FiG. 9.11 = Ecarts normalisés prévision/observations sur l'ensemble de la période €tudiée

Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999
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FIG. 9.15 - Description des écarts flotteurs/modéle en terme de vitesse (a 150 m de
profondeur) pour les différents algorithmes d assimilation

Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999



Sequential assimilation. Difficulty: carry in time uncertainty on the state
of the flow.

Two solutions :

e Low-rank filters (Heemink, Pham, ...)

Reduced Rank Square Root Filters, Singular Evolutive Extended
Kalman Filter, ....

e Ensemble filters (Evensen, Anderson, ...)

Uncertainty is represented, not by a covariance matrix, but by an
ensemble of point estimates in state space which are meant to sample
the conditional probability distribution for the state of the system
(dimension N = O(10-100)).

Ensemble is evolved in time through the full model, which eliminates
any need for linear hypothesis as to the temporal evolution.



How to update predicted ensemble with new observations ?

Predicted ensemble at time 7 : {x” }, n=1,....N
Observation vector at same time : y = Hx + &

Gaussian approach
Produce sample of probability distribution for real observed quantity Hx

y n-— Y- 811
where ¢, is distributed according to probability distribution for observation error &.

Then use Kalman formula to produce sample of ‘analysed’ states
x¢ =xb + PPH'[HP'H' + R]' (y - Hx? ), n=1,....,N (2)
where P” is covariance matrix of predicted ensemble {x” }.

In the linear case, if errors are gaussian, and if P’ real (not sample) background error
covariance matrix, (2) achieves Bayesian estimation, in the sense that {x“ } is a sample of
conditional probability distribution for x, given all data up to time .



Assimilation ensemble tend to collapse (for reasons which are not fully understood).

Empirical remedies :

- Covariance inflation

- ‘Localization’ in physical space. Multiply covariances by function which becomes 0 at
finite range (multiplying function must itself be of positive type).
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Fi1G. 5.2 — Evolution dans le temps de la RRAMS des filtres SEIN et SEEN

I. Hoteit, Doctoral Dissertation, Université Joseph Fourier, Grenoble, 2001



Other approach

Ensemble Transform Kalman Filter (ETKF, Bishop et al.)
Does not require ‘perturbation’ of observations

Further evolution to Local Ensemble Transform Kalman Filter (LETKF, Kalnay et al.)
Analysis is performed locally in physical space

In any case, optimality always requires errors to be independent in time.

If errors are not gaussian, does not in general achieves bayesianity.



Exact bayesian estimation

Particle filters

Predicted ensemble at time 7: {x” ,n =1, ..., N }, each element with its own weight
(probability) P(x" )
Observation vector at same time : y = Hx + €

Bayes’ formula

PG, [y) ~ P(y | x°) P(x”)
Defines updating of weights

Remarks
e  Many variants exist, including possible ‘regeneration’ of ensemble elements

« If errors are correlated in time, explicit computation of P(y | x* ) will require using past data that are
correlated with y (same remark for evolution of ensemble between two observation times)
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FiG. 12. Comparison of rms error (m? 5 ') between ensemble mean
and independent observations (dotted line) and the std dev in the
ensemble (solid line). The excellent agreement shows that the SIRF
is working correctly.

van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084
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Exact bayesian estimation

Acceptation-rejection

Bayes’ formula

flx) =P(x|y)= P(y|x) P(x)/ P(y)
defines probability density function for x.

Construct sample of that pdf as follows.

Draw randomly couple (&, ) € § x [0,supf].
Keep & if 1 < f(5). & is then distributed according to f(x).
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Fig. 4. Comparison of the EKF, the ensemble method and nonlinear filtering by Bayes' theorem for the double-
well problem.

Miller, Carter and Blue, 1999, Tellus, 51A, 167-194



Acceptation-rejection
Seems costly.

Requires capability of permanently interpolating probability distribution defined by
finite sample to whole state space.



Conclusion on Sequential Assimilation

Pros

‘Natural’, and well adapted to many practical situations
Provides, at least relatively easily, explicit estimate of estimation error

Cons

Carries information only forward in time (of no importance if one is interested only in doing forecast)
Optimality is possible only if errors are independent in time

* Ensemble sequential assimilation is most promising.

 Is it worth the trouble (and the cost) of implementing non-Gaussian updating
methods ? Not clear. Will presumably depend of particular problem at hand.

* Seems desirable to evaluate predicted ensembles as ensembles (as is done for
ensemble prediction), and not only through the accuracy of their mean.



Variational Assimilation

Pros

Carries information both forward and backward in time (important for
reassimilation of past data).

Can take into account temporal statistical dependence (Jarvinen et al.)
Does not require explicit computation of temporal evolution of estimation error

Very well adapted to some specific problems (e. g., identification of tracer
sources)

Cons

Does not readily provide estimate of estimation error
Requires development and maintenance of adjoint codes.



Assimilation, which originated from the need of defining initial conditions for numerical
weather forecasts, has progressively extended to many diverse applications

*  Oceanography

e Atmospheric chemistry (both troposphere and stratosphere)
e Oceanic biogeochemistry

e  Ground hydrology

e Terrestrial biosphere and vegetation cover

e Glaciolology

e Planetary atmospheres (Mars, ...)

e Reassimilation of past observations (mostly for climatological purposes, ECMWEF,
NCEP/NCAR)

e Identification of source of tracers

e Parameter identification

e A priori evaluation of anticipated new instruments

e Definition of observing systems (Observing Systems Simulation Experiments)
e Validation of models

e Sensitivity studies (adjoints)



Assimilation is related to

e Estimation theory

e Probability theory

e Atmospheric and oceanic dynamics

e Atmospheric and oceanic predictability
e Instrumental physics

e  Optimisation theory

e Control theory

e Algorithmics and computer science



A few of the (many) remaining problems :
= Observability (data are noisy, system is chaotic !)

= More accurate identification and quantification of errors affecting data particularly
the assimilating model (will always require independent hypotheses)

= Assimilation of images
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8-9 September 2002 :

More than 20 deaths

Economic loss : 1,6 billion €

METEO Précipitations a Cardet (alt: 115 m, Gard)

FRANCE du 8/09/2002 a 6h (UTC) au 10/08/2002 2 6h (UTC) .
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Initial
conditions :
mesoscale
analysis
(surface obs,
radar,
satellite) for
12UTC, 8th
Sept. 2002

Initial
conditions :
large scale
ARPEGE
analysis for
12UTC, 8th
Sept. 2002

(Min: 0.000E+00, Max: 0.366E+03)
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Ducrocq et al, 2003

Nfimes radar
. 10 &= RR < 20 150 <= RR < 200
0.0 &=RR<0.5 20 &= RR < 30 200 <= RR < 300
05 GERCL 30 <= RR < 50 >= 300
---------------------- 1<=RR<2 50 <= RR < 75 Pas de donnees
2¢&=mRCS 75 <= RR < 100 Lame d’eau exprimee en mm.
. 5<=RR <10 100 <= RR < 150 100 km
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