
École Doctorale des Sciences de l'Environnement d’Île-de-France
Année 2009-2010

 Modélisation Numérique
de l’Écoulement Atmosphérique
et Assimilation d'Observations

Olivier Talagrand
Cours 7

4 Juin 2010

Two solutions :

• Low-rank filters (Heemink, Pham, …)
 Reduced Rank Square Root Filters, Singular Evolutive Extended

Kalman Filter, ….

• Ensemble filters (Evensen, Anderson, …)
 Uncertainty is represented, not by a covariance matrix, but by an

ensemble of point estimates in state space which are meant to sample
the conditional probability distribution for the state of the system
(dimension N ≈ O(10-100)).
Ensemble is evolved in time through the full model, which eliminates
any need for linear hypothesis as to the temporal evolution.

I. Hoteit, Doctoral Dissertation, Université Joseph Fourier, Grenoble, 2001

How to update predicted ensemble with new observations ?

Predicted ensemble at time t : {xb
n}, n = 1, …, N

Observation vector at same time : y = Hx + ε

• Gaussian approach

Produce sample of probability distribution for real observed quantity Hx
yn = y - εn
where εn is distributed according to probability distribution for observation error ε
.

Then use Kalman formula to produce sample of ‘analysed’ states

xa
n = xb

n + Pb
 HT

 [HPbHT
 + R]-1 (yn - Hxb

n) , n = 1, …, N (2)

where Pb
 is covariance matrix of predicted ensemble {xb

n}.

Remark. If Pb was exact covariance matrix of background error, (2) would
achieve Bayesian estimation, in the sense that {xa

n} would be a sample of
conditional probability distribution for x, given all data up to time t.

Called Ensemble Kalman Filter (EnKF)

But problems

- Collapse of ensemble for small ensemble size (less than a few hundred). Empirical
‘covariance inflation’

- Spurious correlations appear at large geographical distances. Empirical ‘localization’.

In formula

xa
n = xb

n + Pb
 HT

 [HPbHT
 + R]-1 (yn - Hxb

n) , n = 1, …, N

Pb, which is covariance matrix of an N-size ensemble, has rank N-1 at most. This means that
corrections made on ensemble elements are contained in a subspace with dimension N-1.
Obviously very restrictive if N « p , N « n.

⎯ EnKF ⎯ 3DVar (prior, solid; posterior, dotted)

Prior

posterior

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior
analysis in terms of root-mean square difference averaged over the entire month

Month-long Performance of EnKF vs. 3Dvar with WRF

(Meng and Zhang 2007c, MWR, in review)

Situation still not entirely clear.

Houtekamer and Mitchell (1998) use two ensembles, the elements of each
of which are updated with covariance matrix of other ensemble.

Local Ensemble Transform Kalman Filter (LETKF) defined by Kalnay and
colleagues. Correction is performed locally in space on the basis of
neighbouring observations.

In any case, optimality always requires errors to be independent in time.
That constraint can be relaxed to some extent by augmenting the state
vector in the temporal dimension.

Variational approach can easily be extended to time dimension.

Suppose for instance available data consist of

- Background estimate at time 0
 x0

b = x0
 + ζ0

b E(ζ0
bζ0

bT) = P0
b

- Observations at times k = 0, …, K
 yk = Hkxk + εk E(εkεj

T) = Rk

 - Model (supposed for the time being to be exact)
 xk+1 = Mkxk k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear

Then objective function

ξ0 ∈ S →

J(ξ0) = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]

subject to ξk+1 = Mkξk , k = 0, …, K-1

J(ξ0) = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]

 Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

How to minimize objective function with respect to initial state u = ξ0 (u is
called the control variable of the problem) ?

Use iterative minimization algorithm, each step of which requires the explicit
knowledge of the local gradient ∇u J ≡ (∂J/∂ui) of J with respect to u.

Gradient computed by adjoint method.

How to numerically compute the gradient ∇u J ?

Direct perturbation, in order to obtain partial derivatives ∂J/∂ui by finite
differences ? That would require as many explicit computations of the
objective function J as there are components in u. Practically impossible.

Adjoint Method

Input vector u = (ui), dimu = n
Numerical process, implemented on computer (e. g. integration of numerical
model)

u → v = G(u)
	
 v = (vj) is output vector , dimv = m

	
 Perturbation δu = (δui) of input. Resulting first-order perturbation on v

	
 δvj = Σi (∂vj/∂ui) δui

	
 or, in matrix form
	
 δv = G’δu

	
 where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix,
of G.

Adjoint Method (continued 1)

 δv = G’δu (D)

	
 Scalar function of output
J(v) = J[G(u)]

Gradient ∇u J of J with respect to input u?

‘Chain rule’

∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)

 or

	
 ∇u J = G’T ∇v J (A)

Adjoint Method (continued 2)

	
 G is the composition of a number of successive steps

G = GN ° … ° G2 ° G1

‘Chain rule’

G’ = GN’ … G2’ G1’

 Transpose
	

G’T = G1’T G2’T … GN’T

Transpose, or adjoint, computations are performed in reversed order of direct computations.

If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an
argument of a nonlinear operation in the direct computation will be used again in the adjoint
computation. It must be kept in memory from the direct computation (or else be recomputed again in
the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).

Adjoint Approach

J(ξ0) = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]
subject to ξk+1 = Mkξk , k = 0, …, K-1

Control variable ξ0 = u

Adjoint equation

 λK = HK
T RK

-1 [HK ξK - yK]

 λk = Mk
Tλk+1 + Hk

T Rk
-1 [Hk ξk - yk] k = K-1, …, 1

λ0 = M0
Tλ1 + H0

T R0
-1 [H0 ξ0 - y0] + [P0

b]-1 (ξ0 - x0
b)

∇u J = λ0

Result of direct integration (ξk), which appears in quadratic terms in expression of
objective function, must be kept in memory from direct integration.

Adjoint Approach (continued 2)

Nonlinearities ?

J(ξ0) = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]

subject to ξk+1 = Mk(ξk) , k = 0, …, K-1

Control variable ξ0 = u

Adjoint equation

 λK = HK’T RK
-1 [HK(ξK) - yK]

 λk = Mk’Tλk+1 + Hk’T Rk
-1 [Hk(ξk) - yk] k = K-1, …, 1

λ0 = M0’Tλ1 + H0’T R0
-1 [H0(ξ0) - y0] + [P0

b]-1 (ξ0 - x0
b)

∇u J = λ0

Not heuristic (it gives the exact gradient ∇uJ), and really used as described here.

How to write the adjoint of a code ?

Operation a = b x c

Input b, c Output a but also b, c

 For clarity, we write

 a = b x c
 b’ = b
 c’ = c

∂J/∂a, ∂J/∂b’, ∂J/∂c’ available. We want to determine ∂J/∂b, ∂J/∂c

 Chain rule

 ∂J/∂b = (∂J/∂a)(∂a/∂b) + (∂J/∂b’)(∂b’/∂b) + (∂J/∂c’)(∂c’/∂b)
 c 1 0

 ∂J/∂b = (∂J/∂a) c + ∂J/∂b’

 Similarly

∂J/∂c = (∂J/∂a) b + ∂J/∂c’

