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Purpose of assimilation : reconstruct as accurately as possible the state of the
atmospheric or oceanic flow, using all available appropriate information. The
latter essentially consists of

 The observations proper, which vary in nature, resolution and accuracy, and
are distributed more or less regularly in space and time.

 The physical laws governing the evolution of the flow, available in practice in
the form of a discretized, and necessarily approximate, numerical model.

 ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although
they basically are necessary consequences of the physical laws which govern the flow, these
properties can usefully be explicitly introduced in the assimilation process.



Assimilation is one of many ‘inverse problems’ encountered
in many fields of science and technology

• solid Earth geophysics

• plasma physics

• ‘nondestructive’ probing

• navigation (spacecraft, aircraft, ….)

• …

Solution most often (if not always) based on Bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.



Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n ≈ 106-109 parameters to be
estimated, p ≈ 1-3.107 observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast
to be ready in time.

- Non-trivial, actually chaotic, underlying dynamics



Coût des différentes composantes de la chaîne de prévision opérationnelle du CEPMMT (mars 2010, J.-N.
Thépaut) :

Analysis   Daily   Weekly
DA         44394   311325
DCDA       78306   536834
Total     122700   848159

Forcast    Daily   Weekly
DA         49673   347546
DCDA        4517    30788
Total      54190   378334

EPS        Daily   Weekly
   193028  1351576

Monthly    Daily   Weekly
                        N/A    46129

Hindcast   Daily   Weekly
                        N/A   256724



z1 = x + ζ1 density function p1(ζ) ∝ exp[ - (ζ2)/2s1]
z2 = x + ζ2  density function p2(ζ) ∝ exp[ - (ζ2)/2s2]

x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ

	
 P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)
        ∝  exp[ - (ξ -xa)2/2pa]

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1
 + z2/s2)

Conditional probability distribution of x, given z1 and z2 :N [xa, pa]
pa < (s1, s2) independent of z1 and z2



z1 = x + ζ1
z2 = x + ζ2

Same as before, but ζ1 and ζ2 are now distributed according to exponential law with
parameter a, i. e.

p (ζ) ∝ exp[-|ζ |/a]   ;    Var(ζ) = 2a2

Conditional probability density function is now uniform over interval [z1, z2],
exponential with parameter a/2 outside that interval

E(x | z1, z2)  = (z1+z2)/2

Var(x | z1, z2) = a2 (2δ3/3 + δ2 + δ +1/2) / (1 + 2δ), with δ =  ⏐z1-z2⏐/(2a)
Increases from a2/2 to ∞ as δ increases from 0 to ∞. Can be larger than variance 2a2

of original errors (probability 0.08)

(Entropy -∫plnp always decreases in bayesian estimation)



Bayesian estimation

State vector x, belonging to state space S (dimS = n), to be estimated.

Data vector z, belonging to data space D (dimD = m), available.

 z = F(x, ζ)  (1)

where ζ is a random element representing the uncertainty on the data (or, more
precisely, on the link between the data and the unknown state vector).

For example

z = Γx + ζ



Bayesian estimation (continued)

Probability that x = ξ for given ξ ?

x = ξ    ⇒   z = F(ξ, ζ)

P(x = ξ | z) = P[z = F(ξ, ζ)] / ∫ξ’ P[z = F(ξ’, ζ)]

Unambiguously defined iff, for any ζ, there is at most one x such that (1) is
verified.

⇔   data contain information, either directly or indirectly, on any component of x.
Determinacy condition.



Bayesian estimation is however impossible in its general theoretical form
in meteorological or oceanographical practice because

• It is impossible to explicitly describe a probability distribution in a space
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈
106-9 of present Numerical Weather Prediction models.

• Probability distribution of errors on data very poorly known (model errors
in particular).



One has to restrict oneself to a much more modest goal. Two
approaches exist at present

 Obtain some ‘central’ estimate of the conditional probability
distribution (expectation, mode, …), plus some estimate of the
corresponding spread (standard deviations and a number of
correlations).

 Produce an ensemble of estimates which are meant to sample the
conditional probability distribution (dimension N ≈ O(10-100)).



Random vector x = (x1, x2, …, xn)T = (xi) (e. g. pressure, temperature, abundance of given chemical
compound at n grid-points of a numerical model)

 Expectation E(x) ≡ [E(xi)] ;    centred vector    x’  ≡ x - E(x)

 Covariance  matrix

E(x’x’T) = [E(xi’xj’)]

dimension nxn, symmetric non-negative (strictly definite positive except if linear relationship holds between the
xi’‘ s with probability 1).

 Two random vectors
x = (x1, x2, …, xn)T

y = (y1, y2, …, yp)T

E(x’y’T) = E(xi’yj’)

        dimension nxp



Random function Φ(ξ) (field of pressure, temperature, abundance of given chemical compound, … ; ξ is now spatial
and/or temporal coordinate)

 Expectation E[Φ(ξ)]  ; Φ’(ξ) ≡ Φ(ξ) - E[Φ(ξ)]
 Variance      Var[ϕ(ξ)] = E{[ϕ’(ξ)]2}

 Covariance function

(ξ1, ξ2) →  CΦ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)]

 Correlation function

Corϕ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)] / {Var[Φ(ξ1)] Var[Φ(ξ2)]}1/2

	
    



After N. Gustafsson



After N. Gustafsson



After N. Gustafsson


