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Variational approach can easily be extended to time dimension.

Suppose for instance available data consist of

- Background estimate at time 0
   x0

b  =  x0
  + ζ0

b  E(ζ0
bζ0

bT) = P0
b

- Observations at times k = 0, …, K
   yk = Hkxk + εk E(εkεk

T) = Rk

 - Model (supposed for the time being to be exact)
   xk+1 = Mkxk k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear

Then objective function

ξ0 ∈  S  → 

J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]

subject to ξk+1 = Mkξk , k = 0, …, K-1



Temporal evolution of the 500-hPa geopotential autocorrelation with respect to point
located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414

Same as before, but at the end of a 24-hr 4D-Var



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



ECMWF, Results on one FASTEX case (1997)



Strong Constraint 4D-Var is now used operationally at
several meteorological centres (Météo-France, UK
Meteorological Office, Canadian Meteorological Centre,
Japan Meteorological Agency, …) and, until recently, at
ECMWF. The latter now has a ‘weak constraint’
component in its operational system.



Buehner et al. (Mon. Wea. Rev., 2010)

For the same numerical cost, and in meteorologically realistic
situations, Ensemble Kalman Filter and Variational Assimilation
produce results of similar quality.



Weak constraint variational assimilation allows for errors in the assimilating
model

	
 Data
- Background estimate at time 0

  x0
b  =  x0

  + ζ0
b  E(ζ0

bζ0
bT) = P0

b

- Observations at times k = 0, …, K

   yk = Hkxk + εk E(εkεk
T) = Rk

 - Evolution equation

  xk+1 = Mkxk + ηk  E(ηkηk
T) = Qk k = 0, …, K-1

Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear



Then objective function

(ξ0, ξ1, ..., ξK) → 
   

J(ξ0, ξ1, ..., ξK)

= (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)

    + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]

    + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]

 Can include nonlinear Mk and/or Hk.

  



Time-correlated Errors

Example of time-correlated observation errors

z1 = x + ζ1

z2 = x + ζ2

E(ζ1) = E(ζ2) = 0   ;  E(ζ1
2) = E(ζ2

2) = s    ;     E(ζ1ζ2) = 0

BLUE of x from z1 and z2 gives equal weights to z1 and z2.

Additional observation then becomes available

z3 = x + ζ3
E(ζ3) = 0    ;    E(ζ3

2) = s    ;    E(ζ1ζ3) = cs    ;    E(ζ2ζ3) = 0

 BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)



Time-correlated Errors (continuation 1)

Example of time-correlated model errors

Evolution equation
` xk+1 = xk + ηk  E(ηk

2) = q

Observations
yk = xk + εk ,  k = 0, 1, 2 E(εk

2) = r, errors uncorrelated in time

Sequential assimilation. Weights given to y0 and y1 in analysis at time 1 are in the
ratio r/(r+q). That ratio will be conserved in sequential assimilation. All right if model
errors are uncorrelated in time.

Assume  E(η0η1) = cq
 Weights given to y0 and y1 in estimation of x2 are in the ratio

! 

! 

" =
r # qc

r + q + qc



Variational assimilation has been extended to non Gaussian probability distributions
(lognormal distributions), the unknown being the mode of the conditional distribution
(M. Zupanski, Fletcher).

Bayesian character of variational assimilation ?

- If everything is linear and gaussian, ready recipe for obtaining bayesian sample

Perturb data (background, observations and model) according to their error
probability distributions, do variational assimilation, and repeat process

 Sample of system orbits thus obtained is bayesian

- If not, very little can be said at present



Conclusion on Sequential Assimilation

Pros
     ‘Natural’, and well adapted to many practical situations

             Provides, at least relatively easily, explicit estimate of estimation
error

Cons
Carries information only forward in time (of no importance if one

is interested only in doing forecast)
            In present form, optimality is possible only if errors are

independent in time



Conclusion on Variational Assimilation

Pros
 Carries information both forward and backward in time (important for
reassimilation of past data).

Can easily take into account temporal statistical dependence (Järvinen et al.)
Does not require explicit computation of temporal evolution of estimation error
Very well adapted to some specific problems (e. g., identification of tracer

sources)

Cons
 Does not readily provide estimate of estimation error

Requires development and maintenance of adjoint codes. But the latter can have
other uses (sensitivity studies).

• Dual approach seems most promising. But still needs further development for application
in non exactly linear cases.

• Is ensemble variational assimilation possible ? Probably yes. But also needs development.



Exact bayesian estimation ?

Particle filters

Predicted ensemble at time t : {xb
n, n = 1, …, N },  each element with its own weight

(probability) P(xb
n)

Observation vector at same time : y = Hx + ε

Bayes’ formula

P(xb
n|y) ∼ P(y|xb

n) P(xb
n)

Defines updating of weights



Bayes’ formula

P(xb
n|y) ∼ P(y|xb

n) P(xb
n)

Defines updating of weights; particles are not modified. Asymptotically converges to bayesian
pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.



C. Snyder,
http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/Snyder.pdf



Problem originates in the ‘curse of dimensionality’ Large dimension
pdf’s are very diffuse, so that very few particles (if any) are present
in areas where conditional probability  (‘likelihood’) P(y|x) is large.

Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability
of filter requires the size of ensembles to increase exponentially with
space dimension.



Alternative possibilities (review in van Leeuwen, 2009, Mon. Wea. Rev., 4089-4114)

Resampling. Define new ensemble.

Simplest way. Draw new ensemble according to probability distribution defined by the updated
weights. Give same weight to all particles. Particles are not modified, but particles with
low weights are likely to be eliminated, while particles with large weights are likely to be
drawn repeatedly. For multiple particles, add noise, either from the start, or in the form of
‘model noise’ in ensuing temporal integration.

Random character of the sampling introduces noise. Alternatives exist, such as residual
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights wn are multiplied by
ensemble dimension N. Then p copies of each particle n are taken, where p is the integer
part of Nwn. Remaining particles, if needed, are taken randomly from the resulting
distribution.



Importance Sampling.

Use a proposal density that is closer to the new observations than the
density defined by the predicted particles (for instance the density
defined by EnKF, after the latter has used the new observations).
Independence between observations is then lost in the computation of
likelihood P(y|x) (or is it not ?)

In particular, Guided Sequential Importance Sampling (van Leeuwen,
2002). Idea : use observations performed at time k to resample ensemble
at some timestep anterior to k, or ‘nudge’ integration between times k-1
and k towards observation at time k.



van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084



Conclusions

• The main two classes of algorithms that presently exist for operational assimilation of
observations in geophysical applications are Ensemble Kalman Filter (EnKF) and
Variational Assimilation (4D-Var). They both are more or less empirical extensions to
mildly nonlinear and nongaussian situations of algorithms which achieve Bayesian
estimation in linear and gaussian situations.

• These two classes of algorithms produce useful results (and of comparable quality).

• They are far fom optimality. There is no obvious way for improving on them, but
ensemble methods, meant to produce a sample of the sought-for conditional probability
distribution, seem most promising. Fully bayesian particle filters are the subject of
active research.



Conclusions (continued)

Assimilation, which originated from the need of defining initial conditions for numerical weather
forecasts, has progressively extended to many diverse applications

• Oceanography
• Atmospheric chemistry (both troposphere and stratosphere)
• Oceanic biogeochemistry
• Ground hydrology
• Terrestrial biosphere and vegetation cover
• Glaciology
• Magnetism (both planetary and stellar)
• Plate tectonics
• Planetary atmospheres (Mars, …)
• Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)
• Identification of source of tracers
• Parameter identification
• A priori evaluation of anticipated new instruments
• Definition of observing systems (Observing Systems Simulation Experiments)
• Validation of models
• Sensitivity studies (adjoints)
• …



Assimilation is related to

• Estimation theory
• Probability theory
• Atmospheric and oceanic dynamics
• Atmospheric and oceanic predictability
• Instrumental physics
• Optimisation theory
• Control theory
• Algorithmics and computer science
• …



A few of the (many) remaining problems :

 Observability (data are noisy, system is chaotic !)

 More accurate identification and quantification of errors
affecting data particularly the assimilating model (will always
require independent hypotheses)

 Assimilation of images

 …





© Midi-Libre

8-9 September 2002 :

More than 20 deaths

Economic loss : 1,6 billion € 

The  accumulated
rainfall  totals have
locally reached 600-
700 mm
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Initial
conditions :
mesoscale
analysis
(surface obs,
radar,
satellite) for
12UTC, 8th
Sept. 2002 + +Nîmes

+Nîmes

Observations

Nîmes radar

Raingauges

Initial
conditions :
large scale
ARPEGE
analysis for
12UTC, 8th
Sept. 2002

+

MESO-NH (2.5km) 

12-h accumulated rainfall from 12 UTC, 8 Sept to 0 UTC, 9 Sept 2002

Ducrocq et al, 2003



Initial
conditions :
mesoscale
analysis
(surface obs,
radar,
satellite) for

12UTC, 8th
Sept. 2002

Reflectivities at 21 UTC, 8 Sept.

ObservationsMESO-NH (2.5km) 

Initial
conditions :
large scale
ARPEGE
analysis for

12UTC, 8th
Sept. 2002

dBz

20

32

40

48

56

Nîmes radar


