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Exact bayesian estimation ?

Particle filters

Predicted ensemble at time t : {xb
n, n = 1, …, N },  each element with its own weight

(probability) P(xb
n)

Observation vector at same time : y = Hx + ε

Bayes’ formula

P(xb
n|y) ∼ P(y|xb

n) P(xb
n)

Defines updating of weights



Bayes’ formula

P(xb
n|y) ∼ P(y|xb

n) P(xb
n)

Defines updating of weights; particles are not modified. Asymptotically converges to bayesian
pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.



C. Snyder,
http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/Snyder.pdf



Problem originates in the ‘curse of dimensionality’ Large dimension
pdf’s are very diffuse, so that very few particles (if any) are present
in areas where conditional probability  (‘likelihood’) P(y|x) is large.

Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability
of filter requires the size of ensembles to increase exponentially with
space dimension.



Alternative possibilities (review in van Leeuwen, 2009, Mon. Wea. Rev., 4089-4114)

Resampling. Define new ensemble.

Simplest way. Draw new ensemble according to probability distribution defined by the updated
weights. Give same weight to all particles. Particles are not modified, but particles with
low weights are likely to be eliminated, while particles with large weights are likely to be
drawn repeatedly. For multiple particles, add noise, either from the start, or in the form of
‘model noise’ in ensuing temporal integration.

Random character of the sampling introduces noise. Alternatives exist, such as residual
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights wn are multiplied by
ensemble dimension N. Then p copies of each particle n are taken, where p is the integer
part of Nwn. Remaining particles, if needed, are taken randomly from the resulting
distribution.



Importance Sampling.

Use a proposal density that is closer to the new observations than the
density defined by the predicted particles (for instance the density
defined by EnKF, after the latter has used the new observations).
Independence between observations is then lost in the computation of
likelihood P(y|x) (or is it not ?)

In particular, Guided Sequential Importance Sampling (van Leeuwen,
2002). Idea : use observations performed at time k to resample ensemble
at some timestep anterior to k, or ‘nudge’ integration between times k-1
and k towards observation at time k.



van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084



If there is uncertainty on the state of the system, and dynamics of the system is perfectly known,
uncertainty on the state along stable modes decreases over time, while uncertainty along
unstable modes increases.

Stable (unstable) modes : perturbations to the basic state that decrease (increase) over time.







Consequence : 4D-Var assimilation, which carries information both forward and backward in time,
performed over time interval [t0, t1] over uniformly distributed noisy data. If assimilating model is perfect,
estimation error is concentrated in stable modes at time t0, and in unstable modes at time t1. Error is
smallest somewhere within interval [t0, t1].

Similar result holds true for Kalman filter (or more generally any form of sequential asimilation), in which
estimation error is concentrated in unstable modes at any time.



Trevisan et al., 2010, Q. J. R. Meteorol. Soc.



Lorenz (1963)

dx/dt = σ(y-x)
dy/dt = ρx - y - xz
dz/dt = -βz + xy

with parameter values σ = 10, ρ = 28, β = 8/3  ⇒  chaos







Pires et al., Tellus, 1996 ; Lorenz system (1963)



Minima in the variations of objective function correspond to solutions that have bifurcated
from the observed solution, and to different folds in state space.



Quasi-Static Variational Assimilation (QSVA). Increase progressively length of the assimilation window,
starting each new assimilation from the result of the previous one. This should ensure, at least if
observations are in a sense sufficiently dense in time, that current estimation of the system always lies in
the attractive basin of the absolute minimum of objective function (Pires et al., Swanson et al., Luong,
Järvinen et al.)

.



Pires et al., Tellus, 1996 ; Lorenz system (1963)







Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390



Since, after an assimilation has been performed over a period of time, uncertainty is likely to be
concentrated in modes that have been unstable, it might be useful for the next assimilation,
and at least in terms of cost efficiency, to concentrate corrections on the background in those
modes.

Actually, presence of residual noise in stable modes can be damageable for analysis and
subsequent forecast.

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for the case of 3D-Var)



Four-dimensional variational assimilation in the unstable subspace
(4DVar-AUS)

Trevisan et al., 2010, Four-dimensional variational assimilation in the unstable
subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136,
487-496.



4D-Var-AUS

Algorithmic implementation

Define N perturbations to the current state, and evolve them according to the tangent linear
model, with periodic reorthonormalization in order to avoid collapse onto the dominant
Lyapunov vector (same algorithm as for computation of Lyapunov exponents).

Cycle successive 4D-Var‘s, restricting at each cycle the modification to be made on the current
state to the space spanned by the N perturbations emanating from the previous cycle (if N is
the dimension of state space, that is identical with standard 4D-Var).



Experiments performed on the Lorenz (1996) model

with value F = 8, which gives rise to chaos.

Three values of I have been used, namely I = 40, 60, 80, which correspond to
respectively N+ = 13, 19 and 26 positive Lyapunov exponents.

In all three cases, the largest Lyapunov exponent corresponds to a doubling time
of about 2 days (with 1 ‘day’ = 1/5 model time unit).

Identical twin experiments (perfect model)



‘Observing system’ defined as in Fertig et al. (Tellus, 2007):

At each observation time, one observation every four grid points
(observation points shifted by one grid point at each observation time).

Observation frequency : 1.5 hour

Random gaussian observation errors with expectation 0 and standard
deviation σ0 = 0.2 (‘climatological’ standard deviation 5.1).

Sequences of variational assimilations have been cycled over windows
with length τ  = 1, … , 5 days. Results are averaged over 5000 successive
windows.



No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Best performance for N slightly above number  N+ of positive Lyapunov exponents.



Different curves are almost identical on all three panels. Relative improvement obtained by decreasing
subspace dimension N to its optimal value is largest for smaller window length τ.





Experiments have been performed in which an explicit background term was present, the
associated error covariance matrix having been obtained as the average of a sequence of full
4D-Var’s.

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-AUS. But
they remain qualitatively similar, with best performance for 4D-Var-AUS with N slightly
above N+. 



Minimum of objective function cannot be made smaller by reducing control space. Numerical
tests show that minimum of objective function is smaller (by a few percent) for full 4D-Var
than for 4D-Var-AUS. Full 4D-Var is closer to the noisy observations, but farther away from
the truth. And tests also show that full 4D-Var performs best when observations are perfect
(no noise).

Results show that, if all degrees of freedom that are available to the model are used, the
minimization process introduces components along the stable modes of the system, in which
no error is present, in order to ensure a closer fit to the observations. This degrades the
closeness of the fit to reality. The optimal choice is to restrict the assimilation to the unstable
modes.



Can have major practical algorithmic implications.

Questions.

- Degree of generality of results ?

- Impact of model errors ?



Conclusions

• The main two classes of algorithms that presently exist for operational assimilation of
observations in geophysical applications are Ensemble Kalman Filter (EnKF) and
Variational Assimilation (4D-Var). They both are more or less empirical extensions to
mildly nonlinear and nongaussian situations of algorithms which achieve Bayesian
estimation in linear and gaussian situations.

• These two classes of algorithms produce useful results (and of comparable quality).

• They are far fom optimality. There is no obvious way for improving on them, but
ensemble methods, meant to produce a sample of the sought-for conditional probability
distribution, seem most promising. Fully bayesian particle filters are the subject of
active research.



Conclusions (continued)

Assimilation, which originated from the need of defining initial conditions for numerical weather
forecasts, has progressively extended to many diverse applications

• Oceanography
• Atmospheric chemistry (both troposphere and stratosphere)
• Oceanic biogeochemistry
• Ground hydrology
• Terrestrial biosphere and vegetation cover
• Glaciology
• Magnetism (both planetary and stellar)
• Plate tectonics
• Planetary atmospheres (Mars, …)
• Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)
• Identification of source of tracers
• Parameter identification
• A priori evaluation of anticipated new instruments
• Definition of observing systems (Observing Systems Simulation Experiments)
• Validation of models
• Sensitivity studies (adjoints)
• …



Assimilation is related to

• Estimation theory
• Probability theory
• Atmospheric and oceanic dynamics
• Atmospheric and oceanic predictability
• Instrumental physics
• Optimisation theory
• Control theory
• Algorithmics and computer science
• …



A few of the (many) remaining problems (in addition to problems
raised by practical numerical implementation):

 Observability (data are noisy, system is chaotic !)

 More accurate identification and quantification of errors
affecting data particularly the assimilating model (will always
require independent hypotheses)

 Assimilation of images

 …





© Midi-Libre

8-9 September 2002 :

More than 20 deaths

Economic loss : 1,6 billion € 

The  accumulated
rainfall  totals have
locally reached 600-
700 mm
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Initial
conditions :
mesoscale
analysis
(surface obs,
radar,
satellite) for
12UTC, 8th
Sept. 2002 + +Nîmes

+Nîmes

Observations

Nîmes radar

Raingauges

Initial
conditions :
large scale
ARPEGE
analysis for
12UTC, 8th
Sept. 2002

+

MESO-NH (2.5km) 

12-h accumulated rainfall from 12 UTC, 8 Sept to 0 UTC, 9 Sept 2002

Ducrocq et al, 2003



Initial
conditions :
mesoscale
analysis
(surface obs,
radar,
satellite) for

12UTC, 8th
Sept. 2002

Reflectivities at 21 UTC, 8 Sept.

ObservationsMESO-NH (2.5km) 

Initial
conditions :
large scale
ARPEGE
analysis for

12UTC, 8th
Sept. 2002

dBz

20

32

40

48

56

Nîmes radar


