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z1=x+§ density function p,(8) « exp[ - (£?)/2s,]
,=x+G& density function p,(&) o expl[ - (£2)/2s,]
¢, and &, mutually independent

x=£ < {=z-Eand §,=2,-&

* P(x=&1z,25) * pi(2-8) py(2,-5)
« exp| - (& -x*)*/2p7]
where 1/p® = 1/s, + 1/s, , x4=p*(z,/s, + 2,/5,)

Conditional probability distribution of x, given z, and z, : NV [x¢, p]
p* < (s, $,) independent of z, and z,
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Iathcod piyoix) ~ N7 1)
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athood pdyopd ~ N9 1)
posieriorx ~ NE75,075)

Fig. 1.1: Prior pdf p(z) (dashed line), posterior pdf p(z|y?) (solid line), and Gaussian
likelihood of observation p(y°|z) (dotted line), plotted against 2 for various values of
y°. (Adapted from Lorenc and Hammon 1988.)



Conditional expectation Xx? minimizes following scalar objective
function, defined on &-space

E—= J&= A2z -8/ s1+(z- 8/ s, ]

In addition

pt=1/77(8)
Conditional probability distribution in Gaussian case

P(x =&z, z,) « expl - (§-x9)*/2p“]
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Estimate
xX4=p*(z,/s,+ 25/$,)
with error p¢ such that

l/pt=1/s, + 1/s,

can be obtained, independently of any Gaussian hypothesis, as simply

corresponding to the linear combination of z;, and z, that minimizes the
error E[(x%—x)?]

Best Linear Unbiased Estimator (BLUE)



Z1=x+¢§
,=x+G&

Same as before, but &, and &, are now distributed according to exponential law
with parameter a, i. e.

p () x exp[-I&l/a]l ; Var(8) =2ad?

Conditional probability density function is now uniform over interval [z, 2,],
exponential with parameter a/2 outside that interval

E(x1z,2,) =(z1+2,))/2
Var(x 1z, 2,) = a> Q&3+ &+ 6+1/2) / (1 + 26), with 6= | z-z, | /(2a)

Increases from a?/2 to o as ¢ increases from 0 to oo. Can be larger than variance 2a°
of original errors (probability 0.08)

e tnp-al 1 e



Random vector x = (x;, X,, ..., x,)T = (x,) (e. g. pressure, temperature, abundance of
given chemical compound at n grid-points of a numerical model)

= Expectation E(x) = [E(x;)] ; centred vector x’ =x- E(x)
= (Covariance matrix
Ex'x'T) = [E(q'x)]

dimension nxn, symmetric non-negative (strictly definite positive except if linear
relationship holds between the x;”‘s with probability 1).

= Two random vectors
X=Xy, .00y x,)T
y= (yl’y2’ "°’yp)T

E(x’y™") = E(x;’y;")

dimension nxp



Covariance matrices will be denoted

= E(x’x’T)

XX

C,, = EXx’y")



Random function @(&) (field of pressure, temperature, abundance of

given chemical compound, ... ; & is now spatial and/or temporal
coordinate)
= Expectation E[P(5)] ; D'(8) = W& - E[P()]

Variance  Var[ D(E)] = E{[D’(©)]?}

Covariance function

(51, 5) — C@(§1, 5, = E[D(§) D(&)]

Correlation function

C0r¢(§1, E) = E[D(§) @(&)]/ {Var[D(§))] Var|D(&,)]}'"?



I1solines for the auto-correlations of the 500 mb
geopotential between the station in Hannover and
surrounding stations.

From Bertoni and Lund (1963)

After N. Gustafsson

“

. Isolines of the cross-correlation between the 500 mb

geopotential in station 01 384 (R) and the surface
pressure in surrounding stations.
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Figure 4.2.4.3: Isolines for the auto-cori‘elatic-:n of the 500 mb
u-wind component (dashed line) and the auto-
correlation of the 500 mb v-wind component (full
line). The "star" indicates the position of the re-
ference station. (From Buel (1972).

After N. Gustafsson



Figure 5.1.1.4.1 Auto-correlation of errors in 12h numerical fore-
casts of surface pressure in a reference station
(Stockholm) and other stations. :

After N. Gustafsson



Optimal Interpolation
Random field &(&)

Observation network &, &), ..., &,

For one particular realization of the field, observations

yj=€D(§j)+6j ,j=1,...,p , makingupvectory=(yj)
Estimate x = @(&) at given point &, in the form
xa=a+2j/5jyj = a+ Bly , where,B=(/o’j)

a and the f5’s being determined so as to minimize the expected quadratic
estimation error E[(x-x%)?]



Optimal Interpolation (continued 1)

Solution
x4 =E(x)+ Ex’y ") [EQ’y DI [y- E®)]
= E(x) + C,, [C,,]" [y - E(y)]

i.e., f'=C,IC,I"
a = E(x) - BTE(y)

Estimate is unbiased E(x-x) =0
Minimized quadratic estimation error

E[(x-x?)*] = E(x*) - E[(x’*)?])
= Cxx - ny [ny]-1 ny

Estimation made in terms of deviations x’ and y’ from expectations E(x)
and E(y).



Optimal Interpolation (continued 2)
x*=Ex) + Exy™") [EQ’y D] [y - E()]
Y= QD(SJ) T &

EQy;y,) = E[D(5) + & I[P (&) + €]

If observation errors ¢; are mutually uncorrelated, have common
variance r, and are uncorrelated with field @, then

E(y;y") = Co(§; )+ 1oy
and

Ex’y;") =Cy(§ 5)
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Optimal Interpolation (continued 3)
= = E@x) +C,[C,]" [y - E()]

Vector

u=(u)=[C,I"[y-E®y)]
is independent of variable to be estimated
xt=E(x) +Z; w E(x’y;’)

D& =E[D(E)] + zj H; E[D(§) yj’]
= ELO(E)] + 3, 1, CyfE E)

Correction made on background expectation is a linear combination of the p
functions Cy(§ &)

Cy(§ &), considered as a function of estimation position &, is the representer
associated with observation y;.



Optimal Interpolation (continued 4)

Univariate 1interpolation. Each physical field (e. g. temperature)
determined from observations of that field only.

Multivariate interpolation. Observations of different physical fields

are used simultaneously. Requires specification of cross-covariances
between various fields.

Cross-covariances between mass and velocity fields can simply be
modelled on the basis of geostrophic balance.

Cross-covariances between humidity and temperature (and other)
fields still a problem.
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4.: Schematic illustration of correlation functions
and cross-correlatiqn functions for multi-variate
analysis derived by the geostrophic assumption.

After N. Gustafsson
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Pigure 4.2.4.3: Isolines for the auto-correlation of the 500 mb
u-wind component (dashed line) and the auto-
correlation of the 500 mb v-wind component (full
line). The "star" indicates the position of the re-
ference station. (From Buel (1972).

After N. Gustafsson



g i
o , he | b
REVILy S ; =Y

Contour interval 5mb = ’ t ’ J- Y ~ N

e / 411- ol Wy NN
Fig. 4 vel pressure and recast corresponding e central area

with plotted s ions of pressure and win
(each fleche = 5 m/s)

After A. Lorenc, MWR, 1981

Q'

z




1200 GMT 19 January 1979 1200 GMT 19 January 1979

\9E I ISTE 160
TNG Ao

Y
— S p

Contour interval Smb Contour interval 5mb

J A S YR N S — B MO NN
1om/s =7 / | ! H _‘\ / 10m/s £/

165 165M 165 70N

FIG. 14, Sea level pressure and wind forecast corresponding to the central area of Fig. 11, with plotted surface observations FiG. 15. As in Fig. 14 for the analysis in the data-assimilation cycle.
of sea level pressure and wind (each barb = 5 m s™).

After A. Lorenc, MWR, 1981



Optimal Interpolation (continued 5)
Observation vector y
Estimation of a scalar x

¥ = E@) + C, [C,, " [y - E)]

E[(x-x?)*] = E(x?) - E[(x’*)*])
= Cxx - ny [ny]_1 ny

Estimation of a vector x

xt = E(x) + C,, [C,,] [y - EQ)]

E[(x-x%) (x-x)T] = E(x’x’T) - E(x’? x’4T)
= Cxx B ny [ny]_1 ny



