École Doctorale des Sciences de l'Environnement d'Île-de-France
Année Universitaire 2013-2014

Modélisation Numérique de l'Écoulement Atmosphérique et Assimilation de Données

Olivier Talagrand
Cours 5

19 Mai 2014

Best Linear Unbiased Estimate

State vector x, belonging to state space $S(\operatorname{dim} S=n)$, to be estimated.
Available data in the form of

- A 'background' estimate (e.g. forecast from the past), belonging to state space, with dimension n

$$
x^{b}=x+y^{b}
$$

- An additional set of data (e.g. observations), belonging to observation space, with dimension p
$y=H x+\varepsilon$
H is known linear observation operator.

Assume probability distribution is known for the couple $\left(\zeta^{b}, \varepsilon\right)$.
Assume $E\left(\zeta^{b}\right)=0, E(\varepsilon)=0, E\left(\xi^{b} \varepsilon^{\mathrm{T}}\right)=0$ (not restrictive)
Set $E\left(\xi^{b} \xi^{b \mathrm{~T}}\right)=P^{b}($ also often denoted $B), E\left(\varepsilon \varepsilon^{\mathrm{T}}\right)=R$

Best Linear Unbiased Estimate (continuation 1)

$$
\begin{align*}
& x^{b}=x+\xi^{b} \tag{1}\\
& y=H x+\varepsilon \tag{2}
\end{align*}
$$

A probability distribution being known for the couple ($\xi^{b}, \boldsymbol{\varepsilon}$), eqs (1-2) define probability distribution for the couple $(\boldsymbol{x}, \boldsymbol{y})$, with
$E(\boldsymbol{x})=\boldsymbol{x}^{b}, \boldsymbol{x}^{\prime}=\boldsymbol{x}-E(\boldsymbol{x})=-\xi^{b}$
$E(y)=H x^{b}, y^{\prime}=y-E(y)=y-H x^{b}=\varepsilon-H \xi^{b}$
$\boldsymbol{d} \equiv \boldsymbol{y}-H \boldsymbol{x}^{b}$ is called the innovation vector.

Best Linear Unbiased Estimate (continuation 2)

Apply formulæ for Optimal Interpolation

$$
\begin{aligned}
& \boldsymbol{x}^{a}=\boldsymbol{x}^{b}+P^{b} H^{\mathrm{T}}\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1}\left(\boldsymbol{y}-H \boldsymbol{x}^{b}\right) \\
& P^{a}=P^{b}-P^{b} H^{\mathrm{T}}\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1} H P^{b}
\end{aligned}
$$

x^{a} is the Best Linear Unbiased Estimate (BLUE) of x from x^{b} and y.

Equivalent set of formulæ

$$
\begin{aligned}
& \boldsymbol{x}^{a}=\boldsymbol{x}^{b}+P^{a} H^{\mathrm{T}} R^{-1}\left(\boldsymbol{y}-H \boldsymbol{x}^{b}\right) \\
& {\left[P^{a}\right]^{-1}=\left[P^{b}\right]^{-1}+H^{\mathrm{T}} R^{-1} H}
\end{aligned}
$$

Matrix $K=P^{b} H^{\mathrm{T}}\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1}=P^{a} H^{\mathrm{T}} R^{-1}$ is gain matrix .

If probability distributions are globally gaussian, BLUE achieves bayesian estimation, in the sense that $P\left(\boldsymbol{x} \mid \boldsymbol{x}^{b}, \boldsymbol{y}\right)=\mathcal{N}\left[\boldsymbol{x}^{a}, \boldsymbol{P}^{a}\right]$.

Best Linear Unbiased Estimate (continuation 3)

H can be any linear operator

Example : (scalar) satellite observation

$$
\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}} \text { temperature profile }
$$

Observation $\quad y=\Sigma_{i} h_{i} x_{i}+\varepsilon=\boldsymbol{H x}+\varepsilon \quad, \quad \boldsymbol{H}=\left(h_{1}, \ldots, h_{n}\right) \quad, \quad E\left(\varepsilon^{2}\right)=r$
Background $\quad \boldsymbol{x}^{b}=\left(x_{1}{ }^{b}, \ldots, x_{n}{ }^{b}\right)^{T} \quad, \quad$ error covariance matrix $P^{b}=\left(p_{i j}{ }^{b}\right)$

$$
\boldsymbol{x}^{a}=\boldsymbol{x}^{b}+P^{b} H^{\mathrm{T}}\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1}\left(\boldsymbol{y}-H \boldsymbol{x}^{b}\right)
$$

$\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1}\left(\boldsymbol{y}-H \boldsymbol{x}^{b}\right)=\left(y-\Sigma_{\iota} h_{\iota} x_{\iota}^{b}\right) /\left(\Sigma_{i j} h_{i} h_{j} p_{i j}^{b}+r\right) \equiv \mu \quad$ scalar !

- - $P^{b}=p^{b} \boldsymbol{I}_{n} \quad x_{i}^{a}=x_{i}^{b}+p^{b} h_{i} \mu$
- $-P^{b}=\operatorname{diag}\left(p_{i i}{ }^{b}\right) x_{i}{ }^{a}=x_{i}^{b}+p_{i i}{ }^{b} h_{i} \mu$
- General case $\quad x_{i}^{a}=x_{i}^{b}+\Sigma_{j} p_{i j}^{b} h_{j} \mu$

Each level i is corrected, not only because of its own contribution to the observation, but because of the contribution of the other levels to which its background error is correlated.

After A. Lorenc

Best Linear Unbiased Estimate (continuation 4)

Variational form of the BLUE

BLUE x^{a} minimizes following scalar objective function, defined on state space
$\xi \in S \rightarrow$

- $\quad J(\xi)=(1 / 2)\left(x^{b}-\xi\right)^{\mathrm{T}}\left[P^{b}\right]^{-1}\left(x^{b}-\xi\right)+(1 / 2)(y-H \xi)^{\mathrm{T}} R^{-1}(y-H \xi)$
$=\begin{array}{lll}J_{b} & +\quad J_{o}\end{array}$
'3D-Var'

Can easily, and heuristically, be extended to the case of a nonlinear observation operator H .

Used operationally in USA, Australia, China, ...

Question. How to introduce temporal dimension in estimation process ?

- Logic of Optimal Interpolation can be extended to time dimension.
- But we know much more than just temporal correlations. We know explicit dynamics.

Real (unknown) state vector at time k (in format of assimilating model) x_{k}. Belongs to state space $S(\operatorname{dim} S=n)$

Evolution equation

$$
x_{k+1}=M_{k}\left(x_{k}\right)+\eta_{k}
$$

M_{k} is (known) model, η_{k} is (unknown) model error

Sequential Assimilation

- Assimilating model is integrated over period of time over which observations are available. Whenever model time reaches an instant at which observations are available, state predicted by the model is updated with new observations.

Variational Assimilation

- Assimilating model is globally adjusted to observations distributed over observation period. Achieved by minimization of an appropriate scalar objective function measuring misfit between data and sequence of model states to be estimated.

Sequential Assimilation

Optimal Interpolation

- Observation vector at time k

$$
\begin{aligned}
& y_{k}=H_{k} x_{k}+\varepsilon_{k} \\
& E\left(\varepsilon_{k}\right)=0 ; E\left(\varepsilon_{k} \varepsilon_{j}^{\mathrm{T}}\right)=R_{k} \delta_{k j} \\
& H_{k} \text { linear }
\end{aligned}
$$

- Evolution equation

$$
x_{k+1}=M_{k}\left(x_{k}\right)+\eta_{k}
$$

$$
k=0, \ldots, K-1
$$

Optimal Interpolation (2)

At time k, background $x^{b}{ }_{k}$ and associated error covariance matrix P^{b} known, assumed to be independent of k.

- Analysis step

$$
x^{a}{ }_{k}=x^{b}{ }_{k}+P^{b} H_{k}^{\mathrm{T}}\left[H_{k} P^{b} H_{k}^{\mathrm{T}}+R_{k}\right]^{-1}\left(y_{k}-H_{k} x^{b}{ }_{k}\right)
$$

- Forecast step

$$
x^{b}{ }_{k+1}=M_{k}\left(x^{a}{ }_{k}\right)
$$

After A. Lorenc

Sequential Assimilation. Kalman Filter

- Observation vector at time k
$y_{k}=H_{k} x_{k}+\varepsilon_{k}$
$k=0, \ldots, K$
$E\left(\varepsilon_{k}\right)=0 \quad ; E\left(\varepsilon_{k} \varepsilon_{j}^{\mathrm{T}}\right)=R_{k} \delta_{k j}$
H_{k} linear
- Evolution equation

$$
\begin{array}{ll}
x_{k+1}=M_{k} x_{k}+\eta_{k} & k=0, \ldots, K-1 \\
E\left(\eta_{k}\right)=0 ; E\left(\eta_{k} \eta_{j}^{\mathrm{T}}\right)=Q_{k} \delta_{k j} & \\
M_{k} \text { linear } &
\end{array}
$$

- $E\left(\eta_{k} \varepsilon_{j}^{\mathrm{T}}\right)=0$ (errors uncorrelated in time)

At time k, background $x^{b}{ }_{k}$ and associated error covariance matrix $P^{b}{ }_{k}$ known

- Analysis step

$$
\begin{aligned}
& x^{a}{ }_{k}=x^{b}{ }_{k}+P^{b}{ }_{k} H_{k}^{\mathrm{T}}\left[H_{k} P^{b}{ }_{k} H_{k}^{\mathrm{T}}+R_{k}\right]^{-1}\left(y_{k}-H_{k} x^{b}{ }_{k}\right) \\
& P^{a}{ }_{k}=P^{b}{ }_{k}-P^{b}{ }_{k} H_{k}^{\mathrm{T}}\left[H_{k} P^{b}{ }_{k} H_{k}^{\mathrm{T}}+R_{k}\right]^{-1} H_{k} P^{b}{ }_{k}
\end{aligned}
$$

- Forecast step

$$
\begin{aligned}
x^{b}{ }_{k+1}= & M_{k} x^{a}{ }_{k} \\
P^{b}{ }_{k+1}= & E\left[\left(x^{b}{ }_{k+1}-x_{k+1}\right)\left(x^{b}{ }_{k+1}-x_{k+1}\right)^{\mathrm{T}}\right]=E\left[\left(M_{k} x^{a}{ }_{k}-M_{k} x_{k}-\eta_{k}\right)\left(M_{k} x^{a}{ }_{k}-M_{k} x_{k}-\eta_{k}\right)^{\mathrm{T}}\right] \\
& =M_{k} E\left[\left(x^{a}{ }_{k}-x_{k}\right)\left(x^{a}{ }_{k}-x_{k}\right)^{\mathrm{T}}\right] M_{k}{ }^{\mathrm{T}}-E\left[\eta_{k}\left(x^{a}{ }_{k}-x_{k}\right)^{\mathrm{T}}\right]-E\left[\left(x^{a}{ }_{k}-x_{k}\right) \eta_{k}^{\mathrm{T}}\right]+E\left[\eta_{k} \eta_{k}{ }^{\mathrm{T}}\right] \\
& =M_{k} P^{a}{ }_{k} M_{k}^{\mathrm{T}}+Q_{k}
\end{aligned}
$$

At time k, background $x^{b}{ }_{k}$ and associated error covariance matrix $P^{b}{ }_{k}$ known

- Analysis step

$$
\begin{aligned}
& x^{a}{ }_{k}=x^{b}{ }_{k}+P^{b}{ }_{k} H_{k}^{\mathrm{T}}\left[H_{k} P^{b}{ }_{k} H_{k}^{\mathrm{T}}+R_{k}\right]^{-1}\left(y_{k}-H_{k} x^{b}{ }_{k}\right) \\
& P^{a}{ }_{k}=P^{b}{ }_{k}-P^{b}{ }_{k} H_{k}^{\mathrm{T}}\left[H_{k} P^{b}{ }_{k} H_{k}^{\mathrm{T}}+R_{k}\right]^{-1} H_{k} P^{b}{ }_{k}
\end{aligned}
$$

- Forecast step

$$
\begin{aligned}
x^{b}{ }_{k+1} & =M_{k} x^{a}{ }_{k} \\
P^{b}{ }_{k+1} & =M_{k} P^{a}{ }_{k} M_{k}^{\mathrm{T}}+Q_{k}
\end{aligned}
$$

Kalman filter (KF, Kalman, 1960)

Must be started from some initial estimate $\left(x^{b}{ }_{0}, P^{b}{ }_{0}\right)$

If all operators are linear, and if errors are uncorrelated in time, Kalman filter produces at time k the BLUE $x^{b}{ }_{k}\left(\right.$ resp. $x^{a}{ }_{k}$) of the real state x_{k} from all data prior to (resp. up to) time k, plus the associated estimation error covariance matrix $P^{b}{ }_{k}\left(\right.$ resp. $\left.P^{a}\right)$.

If in addition errors are gaussian, the corresponding conditional probability distributions are the respective gaussian distributions $\mathcal{N}\left[x^{b}{ }_{k}, P^{b}{ }_{k}\right]$ and $\mathcal{N}\left[x^{a}{ }_{k}, P^{a}{ }_{k}\right]$.

A didactic example Gil et al.'

Barotropic model

$$
\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial t}+\operatorname{div}(\varphi \underline{v})=0 \\
\frac{\partial \underline{u}}{\partial t}+\operatorname{qrad}\left(\varphi+\frac{1}{2} u^{2}\right)+\underline{k} \times(f+\xi) \underline{v}=0
\end{array}\right.
$$

One dimension, periodic

Linearized (conserves energy

THe unv!
\%

tuteres me enot ove idia netio

Fig. 2
The components of the total expected rms error (Erns), (trace: $\left.\mathrm{P}_{\mathrm{k}}\right)^{1 / 2}$, In the estimation of solutions to the stochastic-dynanic system $\left.{ }^{(} \mathbf{Y}, \mathrm{H}\right)$, -1th \ddagger given by (3.6) and $H=(I 0)$. System noise is absent, $Q=0$. The filter used is the standard $K-B$ iliter (2.11) for the nodel.
A) Erms over Iand; b) Eris over the ocean; e) Eras over the entire L-domain

In each one of the figures, each curve represents one component of the total Erms error. The curves lnbelled t, V, and P represent the u component, v component asd $\hat{\text { o }}$ component, respectively. They are found by sunning the dingonal elements of P_{k} which correspond to u, v, and ϕ, respectively, dividing by the number of terms in the sum, and then taking the square root. In a) the aummation extends over land points only, in b) over ocean points only, and in c) over the entire L-rdomain. The vertical axis is scaled in such meny that 1.0 corresponds to an Erms error of $v_{m a x}$ for the U and V curves, and of to for the P curve. The observational error level is 0.089 for the U and V curves, and 0.080 for the P curve. The curves labelled T represent the total Frms error over esch region. Each T curve is a weighted nverage of the correspronding U, V, and P curves, with the weights chosen in such a way that the T curve measures the error in the total energy $u^{2}+v^{2}+\phi^{2} / 4$, conserved by the systen $(3,1)$. The observational noise level for the T curve ia then 0.088 . Notice the imnediate error decrease over land and the gradual decrease over the ocean. The total estimation error tends to sero.
M. Ghil et al.

M. Ghil et al.

Fig. 6 This figure and the following ones show the properties of the estinated algorithm (2.11) in the presence of systen noise, $Q \neq 0$. This ingure gives the Erms estimation error, and is homologous to Fig. 2. Notice the wharper increase of error over land between synoptic times, and the convergence of each curve to a periodic, nonzero function

Nonlinearities?

Model is usually nonlinear, and observation operators (satellite observations) tend more and more to be nonlinear.

- Analysis step

$$
\begin{aligned}
& x^{a}{ }_{k}=x^{b}{ }_{k}+P^{b}{ }_{k} H_{k}{ }^{, \mathrm{T}}\left[H_{k}{ }^{\prime} P^{b}{ }_{k} H_{k}{ }^{\mathrm{T}}+R_{k}\right]^{-1}\left[y_{k}-H_{k}\left(x^{b}{ }_{k}\right)\right] \\
& P^{a}{ }_{k}=P^{b}{ }_{k}-P^{b}{ }_{k} H_{k}{ }^{, \mathrm{T}}\left[H_{k}{ }^{\prime} P^{b}{ }_{k} H_{k}{ }^{\top}{ }^{\mathrm{T}}+R_{k}\right]^{-1} H_{k}{ }^{\prime} P^{b}{ }_{k}{ }^{2}
\end{aligned}
$$

- Forecast step

$$
\begin{aligned}
x^{b}{ }_{k+1} & =M_{k}\left(x^{a}{ }_{k}\right) \\
P^{b}{ }_{k+1} & =M_{k}{ }^{\prime} P^{a}{ }_{k} M_{k}{ }^{\mathrm{T}}+Q_{k}
\end{aligned}
$$

Extended Kalman Filter (EKF, heuristic !)

