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Best Linear Unbiased Estimate	


State vector x, belonging to state space S (dimS = n), to be estimated.	


Available data in the form of	



  A ‘background’ estimate  (e.  g.  forecast  from the  past),  belonging  to  state 
space, with dimension n 	



	

 xb  =  x  + ζb	

 	



  An additional set of data (e. g. observations), belonging to observation space, 
with dimension p	



	

 y  =  Hx + ε	



	

 H is known linear observation operator.	



Assume probability distribution is known for  the couple (ζb, ε).	


Assume E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 (not restrictive)	


Set E(ζbζbT) = Pb (also often denoted B), E(εεT) = R 	





Best Linear Unbiased Estimate (continuation 1)	



	

 xb  =  x  + ζb	

 	

 	

  (1)	


	

 y  =  Hx + ε	

 	

 	

  (2)	



	

 A  probability  distribution  being  known  for  the  couple  (ζb,  ε),  eqs  (1-2) 
define probability distribution for the couple (x, y), with 	



	

 E(x) = xb ,  x’ = x - E(x) = - ζb	



	

 E(y) = Hxb ,  y’ = y - E(y) = y - Hxb = ε - Hζb	



	

 d ≡ y - Hxb is called the innovation vector.	





Best Linear Unbiased Estimate (continuation 2)	



	

 Apply formulæ for Optimal Interpolation	



	

 	

 	

 xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	


	

 	

 	

 Pa = Pb

 - Pb
 HT

 [HPbHT 
 + R]-1 HPb	



 	

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.	


	

 	


	

 Equivalent set of formulæ 	


	

 	


	

 	

 	

 xa = xb + Pa

 HT
 R-1 (y - Hxb)	



	

 	

 	

 [Pa]-1 = [Pb]-1
 + HT

 R-1H	



 	

 Matrix K = Pb
 HT

 [HPbHT + R]-1 = Pa
 HT

 R-1 is gain matrix.	



	

 If  probability  distributions  are  globally  gaussian,  BLUE  achieves  bayesian 
estimation, in the sense that P(x | xb, y) = N [xa, Pa].	





Best Linear Unbiased Estimate (continuation 3)	



	

 H can be any linear operator	



	

 Example : (scalar) satellite observation	



	

 	

 	

 x = (x1, …, xn)T  temperature profile	


	

 	

 	

 	


	

 Observation 	

 y = Σi hixi + ε = Hx + ε  	

 ,      H = (h1, …, hn)     ,      E(ε2) = r	


	

 Background	

 xb = (x1

b, …, xn
b)T 	

 ,     error covariance matrix Pb = (pij

b)	



xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	



	

  [HPbHT + R]-1 (y - Hxb) = (y - Σι hιxιb) / (Σijhihj pij
b
 + r) ≡ µ	

 	

 scalar !	



•  -  Pb = pb In	

 	

  xi
a  = xi

b 
 + pb hi µ	



•  -  Pb = diag(pii
b) 	

 xi

a  = xi
b 

 + pii
b hi µ	



	

        -  General case 	

 xi
a  = xi

b 
 + Σj pij

b hj µ 	

 	



	

 Each  level  i  is  corrected,  not  only  because  of  its  own  contribution  to  the  observation,  but  because  of  the 
contribution of the other levels to which its background error is correlated.	





After A. Lorenc 



Best Linear Unbiased Estimate (continuation 4)	



	

 Variational form of the BLUE	



	

  BLUE xa minimizes following scalar objective function, defined on state space	



	

 ξ ∈  S  → 	



•      J(ξ)  =  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ) 
    = 	

         Jb	

 	

      + 	

      Jo	



	

 	

 	

 	

 ‘3D-Var’ 	

	



	

 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	


	

 	


	

 Used operationally in USA, Australia, China, …	





	

 Question.  How  to  introduce  temporal  dimension  in 
estimation process ?	



  Logic of Optimal Interpolation can be extended to time dimension.	



  But we know much more than just temporal correlations. We know 
explicit dynamics.	



	

 Real  (unknown)  state  vector  at  time  k  (in  format  of  assimilating  model)  xk.  Belongs 
to state space S (dimS = n)	



	

 Evolution equation	



 xk+1 = Mk(xk) + ηk  

  Mk is (known) model, ηk is (unknown) model error	





Sequential Assimilation	



•  Assimilating model is integrated over period of time over which observations 
are available. Whenever model time reaches an instant at which observations 
are available, state predicted by the model is updated with new observations.	



Variational Assimilation	



•  Assimilating  model  is  globally  adjusted  to  observations  distributed  over 
observation  period.  Achieved  by  minimization  of  an  appropriate  scalar 
objective function measuring misfit between data and sequence of model states 
to be estimated.	





Sequential Assimilation	



	

 Optimal Interpolation	


  
  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	


	

 	


  Evolution equation	



 xk+1 = Mk (xk) + ηk    k = 0, …, K-1	


  



	

 Optimal Interpolation (2)	


	

 	


	

 At time k, background xb

k and associated error covariance matrix Pb known, 
assumed to be independent of k.	



  Analysis step	



	

  xa
k = xb

k + Pb
 Hk

T
 [HkPbHk

T 
 + Rk]-1 (yk - Hkxb

k)	



•  Forecast step 

  xb
k+1 =  Mk( xa

k)	


	

  



After A. Lorenc 



Sequential Assimilation.  Kalman Filter  	


  
  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	


	

 	

 	

 	


  Evolution equation	



 xk+1 = Mkxk + ηk    k = 0, …, K-1	


 E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj 	



	

 Mk linear	



	

  	

 	

  

  E(ηkεj
T) = 0  (errors uncorrelated in time) 



	

 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k	



  Forecast step 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = E[(xb

k+1 - xk+1)(xb
k+1 - xk+1)T] = E[(Mk xa

k - Mkxk - ηk)(Mk xa
k - Mkxk - ηk)T] 	



	

 	

 = Mk E[(xa
k - xk)(xa

k - xk)T]Mk
T - E[ηk (xa

k - xk)T] - E[(xa
k - xk)ηk

T]  + E[ηkηk
T] 	



	

 	

 = Mk Pa
k Mk

T + Qk  



	

 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k	



  Forecast step 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = Mk Pa

k Mk
T + Qk  

	

 Kalman filter (KF, Kalman, 1960)	



	

 Must be started from some initial estimate (xb
0, Pb

0)	





 If  all  operators  are  linear,  and  if  errors  are  uncorrelated  in  time, 
Kalman filter produces at time k the BLUE xb

k (resp. xa
k) of the real 

state xk from all data prior to (resp. up to) time k, plus the associated 
estimation error covariance matrix Pb

k (resp. Pa
k).	



	

 If  in  addition  errors  are  gaussian,  the  corresponding  conditional 
probability distributions are the respective gaussian distributions 	



	

 N [xb
k, Pb

k] and N [xa
k, Pa

k].	







M. Ghil et al. 



M. Ghil et al. 



	

 Nonlinearities ?	



	

 Model is usually nonlinear, and observation operators (satellite observations) tend more and more 
to be nonlinear.	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 [yk - Hk(xb
k)]	



	

  Pa
k = Pb

k - Pb
k Hk’T

 [Hk’Pb
kHk’T + Rk]-1 Hk’ Pb

k	



  Forecast step 

  xb
k+1 =  Mk(xa

k)	


	

  Pb

k+1 = Mk’ Pa
k Mk’T + Qk  

	

 Extended Kalman Filter (EKF, heuristic !)	




