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Best Linear Unbiased Estimate
State vector x, belonging to state space S'(dim.$S'= n), to be estimated.

Available data in the form of

" A ‘background’ estimate (e. g. forecast from the past), belonging to srate
space, with dimension n

xt = x+ &

= An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx+ ¢
H is known linear observation operator.
Assume probability distribution is known for the couple (&, ¢).

Assume E(&) =0, E(¢) =0, E(&€™) =0 (not restrictive)
Set E(&PEPT) = PP (also often denoted B), E(e€") = R



Best Linear Unbiased Estimate (continuation 1)

xt = x+& (1)
y = Hx+¢ (2)

A probability distribution being known for the couple (&, €), eqs (1-2)
define probability distribution for the couple (x, y), with

Ex)=xt, x’'=x-E(x)=-&
E(y)=Hx", y'=y-E(y)=y-Hx"=¢-HZ

d =y - Hx? is called the innovation vector.



Best Linear Unbiased Estimate (continuation 2)

Apply formula for Optimal Interpolation

x4 = xb + PP HT [HPPH™ + R]"' (y - Hx")
Pa = Pb- PP HT [HPPHT + R]' HP

x? is the Best Linear Unbiased Estimate (BLUE) of x from x” and y.
Equivalent set of formule

x¢=x"+ P*HTR! (y - Hx?)
[P4]! = [P°]'+ H'R'H

Matrix K = PP H' [HP?H" + R]'' = P* H' R"' is gain matrix.

If probability distributions are globally gaussian, BLUE achieves bayesian
estimation, in the sense that P(x | x?, y) = 7\/[xa, P4].



Best Linear Unbiased Estimate (continuation 3)

H can be any linear operator

Example : (scalar) satellite observation

x =(x,,...,x,)T temperature profile
Observation y=2hx+e=Hx+¢ , H=(h,....,h) , E@E)=r
Background x0=(xb L x D)t ,  error covariance matrix P’= (p,”)

x¢ = x>+ PP H"[HP°"H" + R]! (y - Hx?)
[HPPH' + R (y - Hx") = (y - 2 hx)) 1 (Ehhip, P+ 1) = 1 scalar !
s - P=phl, xf=xp+pPhu
* - Pr=diag(p;”) x*=x"+phu

— — b b
General case  x* =x” +Z;p,”h;u

Each level i is corrected, not only because of its own contribution to the observation, but because of the
contribution of the other levels to which its background error is correlated.
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Best Linear Unbiased Estimate (continuation 4)

Variational form of the BLUE

BLUE x? minimizes following scalar objective function, defined on state space
se §—
* JE =AY -HIPTI -5+ (112) (y- HO'R' (v - HE)
= ﬂb + ﬂo

‘3D-Var’

Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.

Used operationally in USA, Australia, China, ...



Question. How to introduce temporal dimension in
estimation process ?

Logic of Optimal Interpolation can be extended to time dimension.

But we know much more than just temporal correlations. We know
explicit dynamics.

Real (unknown) state vector at time k (in format of assimilating model) x,. Belongs
to state space .5 (dim.S'= n)

Evolution equation

Xipp = Mi(x) + 1,

M, is (known) model, 1, 1s (unknown) model error



Sequential Assimilation

e Assimilating model is integrated over period of time over which observations
are available. Whenever model time reaches an instant at which observations
are available, state predicted by the model is updated with new observations.

Variational Assimilation

e Assimilating model is globally adjusted to observations distributed over
observation period. Achieved by minimization of an appropriate scalar
objective function measuring misfit between data and sequence of model states
to be estimated.



Sequential Assimilation

Optimal Interpolation

= (Observation vector at time k

V= Hx + &

E(g) =0 ; E(gg") =R, 6

H linear

= Evolution equation

Xip1 = M () + 1y



Optimal Interpolation (2)

At time k, background x?, and associated error covariance matrix P> known,
assumed to be independent of k.

=  Analysis step

x4 =xb,+ PPHY[HPH' +R]" (v, - Hx")

* Forecast step

xbk+1 = M (x%)
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Sequential Assimilation. Kalman Filter

= (Observation vector at time k

Vi = Hix + &
E(g) =0 ; E(gg") =R, G
H, linear

= Evolution equation

X1 = Myx, + 1,

E(ny =0 ; E(Ukan) =0y (Skj
M, linear

u E(nkejT) =0 (errors uncorrelated in time)



At time k, background x*, and associated error covariance matrix P?, known

Analysis step

Xy =x0 + PP H T HPHE + R (3 - Hix))
Pa = PP - PP H T [H P H,T + R ] H P,

Forecast step

xbk+1 = M x‘,

PPy = E[(X - X D& - X )] = ELM, x4 - M - 1M x4y - Mixg - )71
= M E[(x% - x)(x% - x)TIM,T - E[1, (X% - x)] - E[(x - x)n,"] + E[m,n,"]
=M, P M,"+ O,



At time k, background x?, and associated error covariance matrix P?, known
k k

Analysis step

Xy =x0 + PP H T HPHE + R (3 - Hix))
Pa = PP - PP H T [H P H,T + R ] H P,

Forecast step

xbk+1 = M x%
P = M P M+ Q,

Kalman filter (KF, Kalman, 1960)

Must be started from some initial estimate (x*, P,)



If all operators are linear, and if errors are uncorrelated in time,
Kalman filter produces at time k the BLUE x”, (resp. x%,) of the real
state x, from all data prior to (resp. up to) time k, plus the associated
estimation error covariance matrix P?, (resp. P%,).

If in addition errors are gaussian, the corresponding conditional
probability distributions are the respective gaussian distributions

Nxb,, P] and N[xe,, P*].
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Fig. 2

The components of the total expected rms error (Ermg), (trace: P )1/2.
in the estimation of solutions to the stochastic-dynmanic system (Y, ,H),
with ¥ given by (3.6) and H = (I 0), System noise is absent, Q » 0. The
filter used is the standard K-B filter (2.11) for the model.

a) Erms over land; ©b) Erns over the ocean; ¢) Erms over the entire L-domain

In each one of the figures, each curve represents one component of the
total Erms error. The curves labelled U, V, and P represent the u component,
v component and $ component, respcotively. They are found by sunning the
dingonal elements of Py which corrvspond to u, v, and $, respectively,
dividing by the number of terms in the sum, and then taking the square root.
In a) the aunmntinn extends over laad points only, in b) over ocean pointe
only, and in c) over the entire L-domaim, The vertical axis is scaled in
such » way that 1.0 corresponds to an Erms error of vy, for the U and ¥
curves, and of $g for the P curve. The observational error level is 0,089
for the U and V curves, and 0.080 for the P curve. The curves labelled

T represent the total Frma error over each region. Each T curve is a
weighted nverage of the corresponding U, V, and P curves, with the weights
chosen in such a way that the T curve measures the error in the total
energy u2 + v2 + 4271, conserved by the system (3.1). The observational
noise level for the T curve is then 0,088, Notice the immediate error
decreoase over land and the gradual decrease over the ocean. The total
estimation error tends to zero.
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Nonlinearities ?

Model is usually nonlinear, and observation operators (satellite observations) tend more and more
to be nonlinear.

Analysis step

X% = X+ PO H T HPYHT + R [y - H(xPp]
P4 =Pl - P’ H '[H PP H "+ R]"' H, P’
Forecast step

xbk+1 = M (x%)
Pl =M. P4 M, T+ O,

Extended Kalman Filter (EKF, heuristic !)



