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Sequential Assimilation.  Kalman Filter  	


  
  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	


	

 	

 	

 	


  Evolution equation	



 xk+1 = Mkxk + ηk    k = 0, …, K-1	


 E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj 	



	

 Mk linear	



	

  	

 	

  

  E(ηkεj
T) = 0  (errors uncorrelated in time) 



	

 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k	



  Forecast step 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = Mk Pa

k Mk
T + Qk  

	

 Kalman filter (KF, Kalman, 1960)	



	

 Must be started from some initial estimate (xb
0, Pb

0)	





 	


	

 Costliest part of computation	


	

 	

 	

 	


	

 	

 Pb

k+1 = Mk Pa
k Mk

T + Qk  

	

 Multiplication by Mk = one integration of the model between times k and k+1.	


	

 Computation of Mk Pa

k Mk
T  ≈ 2n integrations of the model 	



	

 Need  for  determining  the  temporal  evolution  of  the  uncertainty  on 
the  state  of  the  system  is  the  major  difficulty  in  assimilation  of 
meteorological and oceanographical observations	





Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral 
truncation T21, unit m. After F. Bouttier)	





Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 



Two solutions :	



• Low-rank filters	


   Use low-rank covariance matrix, restricted to modes 

in  state  space  on  which  it  is  known,  or  at  least 
assumed,  that  a  large  part  of  the  uncertainty  is 
concentrated (this requires the definition of a norm 
on state space).	



 Reduced  Rank  Square  Root  Filters  (RRSQRT, 
Heemink)	



 Singular Evolutive Extended Kalman Filter (SEEK, 
Pham)	


	

 ….	





Second solution :	



•  Ensemble filters	


 	

 Uncertainty is represented, not by a covariance matrix, but by 

an ensemble of point estimates in state space that are meant to 
sample the conditional probability distribution for the state of 
the system (dimension L  ≈ O(10-100)).	



	

 Ensemble  is  evolved  in  time  through  the  full  model,  which 
eliminates any need for linear hypothesis as to the temporal 
evolution.	



	

 Ensemble Kalman Filter (EnKF, Evensen, Anderson, …)	





How to update predicted ensemble with new observations ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time : y = Hx + ε	



•  Gaussian approach	


 	

 	


	

 Produce sample of probability distribution for real observed quantity Hx 	


	

 yl = y - εl 

	

 where εl is distributed according to probability distribution for observation error ε.   	

 	



	

 Then use Kalman formula to produce sample of ‘analysed’ states	



	

 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 l = 1, …, L	

	

 (2)	



	

 where Pb
 is covariance matrix of predicted ensemble {xb

l}.	



	

 Remark.  In  case  of  Gaussian  errors,  if  Pb  was  exact  covariance  matrix  of 
background error, (2) would achieve Bayesian estimation, in the sense that {xa

l} 
would be a sample of conditional probability distribution for x, given all data up to 
time k.	





C. Snyder 



⎯  EnKF   ⎯ 3DVar (prior, solid; posterior, dotted) 

Prior  

posterior 

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 
analysis in terms of root-mean square difference averaged over the entire month  

Month-long Performance of EnKF vs. 3Dvar with WRF 

(Meng and Zhang 2007c, MWR, in review ) 



C. Snyder 



C. Snyder 



But problems	



-  Collapse  of  ensemble  for  small  ensemble  size  (less  than  a  few  hundred).  Empirical 
‘covariance inflation’	



-  Spurious  correlations  appear  at  large  geographical  distances.  Empirical  ‘localization’ (see 
Gaspari and Cohn, 1999, Q. J. R. Meteorol. Soc.)	



-  In formula	



xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 	

 l = 1, …, L	



Pb, which is covariance matrix of an L-size ensemble, has rank L-1 at most. This means that 
corrections made on ensemble elements are contained in a subspace with dimension L-1. 
Obviously very restrictive if L « p , L « n.	





Houtekamer and Mitchell (1998) use two ensembles, the elements of each of 
which are updated with covariance matrix of other ensemble.	





There exist many variants of Ensemble Kalman Filter	



Ensemble Transform Kalman Filter (ETKF, Bishop et al., Mon. Wea. Rev., 2001)	



Requires  a  prior  ‘control’ analysis  xc
a,  emanating  from a  background  xc

b.  An  ensemble  is 
evolved about that control without explicit use of the observations (and without feedback to 
control)	



More precisely, define L x L matrix T such that, given Pb = ZZT, then Pa = ZTTTZT (not trivial, 
but possible). Then the background deviations xb

l – xc
b are transformed through Z → ZT into 

an ensemble of analysis deviations xa
l – xc

a.	



	

 (does not avoid collapse of ensembles) 	



Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., Physica D, 2007)	



Each gridpoint is corrected only through the use of neighbouring observations. 	





Other variants of Ensemble Kalman Filter	



‘Unscented’ Kalman Filter (Wan and van der Merve, 2001, Wiley Publishing)	



Weighted Kalman Filter (Papadakis et al., 2010, Tellus A)	



Inflation-free Ensemble Kalman Filters (Bocquet and Sakov, 2012, Nonlin. Processes 
Geophys.)  	





Situation still not entirely clear.	



In any case, optimality always requires errors to be independent in time. In 
order to relax that constraint, it is necessarily to augment the state vector 
in the temporal dimension.	
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Bayesian properties of Ensemble Kalman Filter ?	



Very little is known.	



 Le Gland et al. (2011). In the linear and gaussian case, the discrete pdf 
defined by the filter, in the limit of infinite sample size L, tends to the 
bayesian gaussian pdf. 

	

 No result  for  finite  size  (note  that  ensemble  elements  are  not  mutually 
independent)	



	

 In  the  nonlinear  case,  the  discrete  pdf  tends  to  a  limit  which  is  in 
general not the bayesian pdf.	





	

 Variational Assimilation	



	

 Variational approach can easily be extended to time dimension.	



	

 Suppose for instance available data consist of 	



	

 	

 - Background estimate at time 0	


	

 	

    x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

    yk = Hkxk + εk	

 E(εkεj

T) = Rk δkj	



	

 	

  - Model (supposed for the time being to be exact) 	


	

 	

    xk+1 = Mkxk  k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	



	

 Then objective function	


	

 	


ξ0 ∈  S  → 	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
 subject to ξk+1 = Mkξk ,	

 k = 0, …, K-1	



	

 	

 	





	

 	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
  Background  is  not  necessary,  if  observations are  in  sufficient  number  to 

overdetermine the problem. Nor is strict linearity. 

 How to  minimize  objective  function  with  respect  to  initial  state  u  = ξ0  (u  is 
called the control variable of the problem) ?	



	

 Use  iterative  minimization  algorithm,  each  step  of  which  requires  the 
explicit knowledge of the local gradient ∇u J ≡  (∂J/∂ui) of J with respect to u.	





	

 How to numerically compute the gradient ∇u J ?	



	

 Direct  perturbation,  in  order  to  obtain  partial  derivatives  ∂J/∂ui  by  finite 
differences  ?  That  would  require  as  many  explicit  computations  of  the 
objective function J as there are components in u. Practically impossible.	



	

 Gradient computed by adjoint method.	





Adjoint Method	



	

 Input vector u = (ui), dimu = n	


	

 Numerical  process,  implemented  on  computer  (e.  g.  integration  of 

numerical model)	



u → v = G(u)	


	

 v = (vj) is output vector , dimv = m	



	

 Perturbation δu = (δui) of input. Resulting first-order perturbation on v	



	

 δvj = Σi (∂vj/∂ui) δui 	



	

 or, in matrix form	


	

 δv  =  G’δu	



	

 where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix, of G. 	





Adjoint Method (continued 1)	



	

 	

 	

 	

        δv  =  G’δu	

 	

 	

 (D)	



•  Scalar function of output 	


J(v)  =  J[G(u)]	



	

 Gradient ∇u J of J with respect to input u?	



	

 ‘Chain rule’	

 	

  	



∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)	



 	

  or 	


	

          ∇u J  =  G’T ∇v J 	

 	

  	

 (A)	





Adjoint Method (continued 2)	



	

 G is the composition of a number of successive steps	



G = GN ° … ° G2 ° G1	


	

 	


	

 ‘Chain rule’	

 	

  	



G’ = GN’ … G2’ G1’	



 	

 Transpose	



G’T = G1’T G2’T … GN’T	



	

 Transpose, or adjoint, computations are performed in reversed order of direct computations.	



	

 If  G  is  nonlinear,  local  jacobian  G’ depends  on  local  value  of  input  u.  Any  quantity  which  is  an 
argument  of  a  nonlinear  operation  in  the  direct  computation  will  be  used  again  in  the  adjoint 
computation. It must be kept in memory from the direct computation (or else be recomputed again in 
the course of the adjoint computation).	



	

 If  everything  is  kept  in  memory,  total  operation  count  of  adjoint  computation  is  at  most  4  times 
operation count of direct computation (in practice about 2).	





Adjoint Approach	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
 subject to ξk+1 = Mkξk ,	

 k = 0, …, K-1	



Control variable 	

  ξ0 = u	



Adjoint equation	



 λK = 	

        HK
T RK

-1 [HK ξK - yK]	



 λk = Mk
Tλk+1 + Hk

T Rk
-1 [Hk ξk - yk]	

 	

  	

 k = K-1, …, 1	



λ0 = M0
Tλ1      + H0

T R0
-1 [H0 ξ0 - y0]   +  [P0

b]-1 (ξ0 - x0
b) 	



	

 	

 	

 	

 ∇u J  = λ0 	

 	



Result of direct integration (ξk), which appears in quadratic terms in expression of	


objective function, must be kept in memory from direct integration.	





Adjoint Approach (continued 2)	



Nonlinearities ?	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]  
 subject to ξk+1 = Mk(ξk) ,	

 k = 0, …, K-1	



Control variable 	

  ξ0 = u	



Adjoint equation	



 λK = 	

        HK’T RK
-1 [HK(ξK) - yK]	



 λk = Mk’Tλk+1 + Hk’T Rk
-1 [Hk(ξk) - yk]	

 	

  	

 k = K-1, …, 1	



λ0 = M0’Tλ1      + H0’T R0
-1 [H0(ξ0) - y0]   +  [P0

b]-1 (ξ0 - x0
b) 	



	

 	

 	

 	

 ∇u J  = λ0 	

 	



Not approximate (it gives the exact gradient ∇uJ), and really used as described here.	





Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 

Same as before, but at the end of a 24-hr 4D-Var 



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Same as before, but at the end of a 24-hr 4D-Var 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



ECMWF, Results on one FASTEX case (1997) 



	

 Strong  Constraint  4D-Var  is  now  used  operationally  at 
several  meteorological  centres  (Météo-France,  UK 
Meteorological  Office,  Canadian  Meteorological  Centre, 
Japan Meteorological  Agency,  …) and,  until  recently,  at 
ECMWF.  The  latter  now  has  a  ‘weak  constraint’ 
component in its operational system. 	



	

 	




