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 Variational Assimilation	



	

 Variational approach can easily be extended to time dimension.	



	

 Suppose for instance available data consist of 	



	

 	

 - Background estimate at time 0	


	

 	

    x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

    yk = Hkxk + εk	

 E(εkεj

T) = Rk δkj	



	

 	

  - Model (supposed for the time being to be exact) 	


	

 	

    xk+1 = Mkxk  k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	



	

 Then objective function	


	

 	


ξ0 ∈  S  → 	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
 subject to ξk+1 = Mkξk ,	

 k = 0, …, K-1	



	

 	

 	





	

 Strong  Constraint  4D-Var  is  now  used  operationally  at 
several  meteorological  centres  (Météo-France,  UK 
Meteorological  Office,  Canadian  Meteorological  Centre, 
Japan Meteorological  Agency,  …) and,  until  recently,  at 
ECMWF.  The  latter  now  has  a  ‘weak  constraint’ 
component in its operational system. 	



	

 	





	

 Buehner et al. (Mon. Wea. Rev., 2010)	


	

 	


	

 For  the  same  numerical  cost,  and  in  meteorologically  realistic 

situations,  Ensemble  Kalman  Filter  and  Variational  Assimilation 
produce results of similar quality.	





Incremental Method	



	

 Variational  assimilation,  as  it  has  been  described,  requires  the  use  of 
the adjoint of the full model.	



	

 Simplifying  the  adjoint  as  such  can  be  very  dangerous.  The 
computed  gradient  would  not  be  exact,  and  experience  shows  that 
optimization  algorithms  (and  especially  efficient  ones)  are  very 
sensitive to even slight misspecification of the gradient.	



	

 Principle  of  Incremental  Method  (Courtier  et  al.,  1994,  Q.  J.  R. 
Meteorol.  Soc.)  :  simplify  simultaneously  the  (local  tangent  linear) 
dynamics and the corresponding adjoint. 



Incremental Method (continuation 1)	



	

 - Basic (nonlinear) model	


	

  ξk+1 = Mk(ξk) 	



	

 - Tangent linear model	


	

  δξk+1 = Mk’ δξk 	


	

 	


	

 where Mk’ is jacobian of Mk at point ξk.	



	

 - Adjoint model	


	

  λk = Mk’T λk+1 + …	



	

  Incremental Method. Simplify Mk’ and Mk’T.	





Incremental Method (continuation 2)	



	

 More  precisely,  for  given  solution  ξk
(0) of  nonlinear  model,  replace  tangent 

linear and adjoint models respectively by 	


	

 	


	

  δξk+1 = Lk δξk 	

 	

  (2) 	


	

 	


	

 and	


	

 	


	

 λk = Lk

T λk+1 + …	



	

 where Lk is an appropriate simplification of jacobian Mk’.	



	

 It  is  then  necessary,  in  order  to  ensure  that  the  result  of  the  adjoint 
integration is the exact gradient of the objective function, to modify the basic 
model in such a way that the solution emanating from ξ0

(0) + δξ0 is equal to 
ξk

(0) + δξk, where δξk evolves according to (2). This makes the basic dynamics 
exactly linear.	





Incremental Method (continuation 3)	



	

 As  concerns  the  observation  operators  in  the  objective  function,  a  similar  procedure 
can be implemented if those operators are nonlinear. This leads to replacing Hk(ξk) by 
Hk(ξk

(0)) + Nkδξk,  where  Nk is  an appropriate ‘simple’ linear operator (possibly, but not 
necessarily, the jacobian of Hk at point ξk

(0)). The objective function depends only on the 
initial δξ0 deviation from ξ0

(0), and reads  

	

 JI(δξ0)  =  (1/2) (x0
b - ξ0

(0) - δξ0)T [P0
b]-1 (x0

b - ξ0
(0) - δξ0) 	



	

 	

 	

 	

 	

 + (1/2) Σk[dk - Nkδξk]T Rk
-1 [dk - Nkδξk]  

 where dk ≡ yk - Hk(ξk
(0)) is the innovation at time k, and the δξk evolve according to  

	

 	


	

  δξk+1 = Lk δξk 	

 	

  (2) 	


	

 	


	

 With  the  choices  made  here,  JI(δξ0) is  an  exactly  quadratic  function  of  δξ0.  The 

minimizing perturbation δξ0,m defines a new initial state ξ0
(1) ≡ ξ0

(0) + δξ0,m, from which a 
new solution ξk

(1) of the basic nonlinear equation is determined. The process is restarted 
in the vicinity of that new solution.	



	

 	


	

 	





Incremental Method (continuation 4)	



	

 This  defines  a  system  of  two-level  nested  loops  for  minimization. 
Advantage  is  that  many  degrees  of  freedom are  available  for  defining  the 
simplified  operators  Lk  and  Nk,  and  for  defining  an  appropriate  trade-off 
between practical implementability and physical usefulness and accuracy. It is 
the  incremental  method  which,  together  with  the  adjoint  method,  makes 
variational assimilation possible.	



	

 First-Guess-At-the-right-Time  3D-Var  (FGAT  3D-Var).  Corresponds  to  Lk  = 
In.  Assimilation is  four-dimensional  in  that  observations are  compared to  a 
first-guess which evolves in time, but is three-dimensional in that no dynamics 
other than the trivial dynamics expressed by the unit operator is present in the 
minimization. 	





Weak constraint variational assimilation allows for errors in the assimilating	


model	



•  Data	


	

 	

 - Background estimate at time 0	


	

 	

 	


	

 	

   x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

 	


	

 	

    yk = Hkxk + εk	

 E(εkεk

T) = Rk	



	

 	

  - Evolution equation	


	

 	

  	


	

 	

   xk+1 = Mkxk + ηk 	

  E(ηkηk

T) = Qk k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	





	

 Then objective function	


	

 	



	

 (ξ0, ξ1, ..., ξK) → 	



	

 J(ξ0, ξ1, ..., ξK)   

  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	



	

 	

     + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	



	

 	

     + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]  

  
  Can include nonlinear Mk and/or Hk. 

       
	

 	

 	





Time-correlated Errors	



  Example of time-correlated observation errors	



  z1 = x + ζ1	

 	



  z2 = x + ζ2	

 	



	

 	

 E(ζ1) = E(ζ2) = 0   ;  E(ζ1
2) = E(ζ2

2) = s    ;     E(ζ1ζ2) = 0 	



	

 	

 BLUE of x from z1 and z2 gives equal weights to z1 and z2.	



	

 	

 Additional observation then becomes available 	


	

 	

 	


	

 	

 z3 = x + ζ3	

 	


	

 	

 E(ζ3) = 0    ;    E(ζ3

2) = s    ;    E(ζ1ζ3) = cs    ;    E(ζ2ζ3) = 0 	



	

 	

  BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)	





Time-correlated Errors (continuation 1)	



  Example of time-correlated model errors	



	

 	

 Evolution equation	


`	

 	

 xk+1 = xk + ηk	

  E(ηk

2) = q	


	

 	

 	


	

 	

 Observations	


	

 	

 yk = xk + εk , 	

  k = 0, 1, 2	

	

 E(εk

2) = r, 	

errors uncorrelated in time	


	

 	

 	


  Sequential  assimilation.  Weights  given  to  y0  and  y1  in  analysis  at  time  1  are  in  the 

ratio r/(r+q).  That ratio will  be conserved in sequential  assimilation.  All  right if  model 
errors are uncorrelated in time.	



   
  Assume  E(η0η1) = cq	


	

 	

  Weights given to y0 and y1 in estimation of x2 are in the ratio 	



	

 	

 	

 	

 	

  	


  	



€ 

€ 

ρ =
r − qc

r + q + qc



 Variational  assimilation  has  been  extended  to  non  Gaussian  probability  distributions 
(lognormal distributions), the unknown being the mode of the conditional distribution 
(M. Zupanski, Fletcher).	



	

 Bayesian character of variational assimilation ?	



	

 - If everything is linear and gaussian, ready recipe for obtaining bayesian sample	


	

 	


	

 Perturb  data  (background,  observations  and  model)  according  to  their  error 

probability distributions, do variational assimilation, and repeat process	



	

  Sample of system orbits thus obtained is bayesian	



	

 - If not, very little can be said at present 



Conclusion on Sequential Assimilation	



	

 Pros 	


	

      	

 ‘Natural’, and well adapted to many practical situations	


           Provides, at least relatively easily, explicit estimate of estimation 

error	



	

 Cons 	


	

 	

 Carries information only forward in time (of no importance 	


if one is interested only in doing forecast)	


            In present form, optimality is possible only if errors are independent 

in time	


	

 	

 	



	

 	





Conclusion on Variational Assimilation	



	

 Pros 	


	

  	

 Carries  information  both  forward  and  backward  in  time  (important  for 

reassimilation of past data).	


	

 	

 Can easily take into account temporal statistical dependence (Järvinen et al.)	


	

 	

 Does not require explicit computation of temporal evolution of estimation error	


	

 	

 Very well adapted to some specific problems (e. g., identification of tracer sources)	



	

 Cons 	


	

  	

 Does not readily provide estimate of estimation error 	


	

 	

 Requires  development  and  maintenance  of  adjoint  codes.  But  the  latter  can 

have other uses (sensitivity studies).	


	

  	


•  Dual approach seems most promising. But still needs further development for application 

in non exactly linear cases. 	



•  Is ensemble variational assimilation possible ? Probably yes. But also needs development.	





How to  write the adjoint of a code  ?	


	

 	


	

 Operation  a = b x c	



	

 Input  b, c	

  Output  a  but also b, c	



	

  For clarity, we write	



	

  a = b x c	


	

  b’ = b	


	

  c’ = c	



	

 ∂J/∂a,  ∂J/∂b’,  ∂J/∂c’ available. We want to determine ∂J/∂b,  ∂J/∂c 	



	

  Chain rule	



	

  ∂J/∂b = (∂J/∂a)(∂a/∂b) + (∂J/∂b’)(∂b’/∂b) + (∂J/∂c’)(∂c’/∂b) 	


	

 	

                c	

                     1	

 	

   0	


	

 	


	

  ∂J/∂b = (∂J/∂a) c + ∂J/∂b’	



	

  Similarly	



	

 ∂J/∂c = (∂J/∂a) b + ∂J/∂c’	


	

 	



	

 	


	

 	





M. Jardak 


