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Best Linear Unbiased Estimate
State vector x, belonging to state space S'(dim.$S'= n), to be estimated.

Available data in the form of

" A ‘background’ estimate (e. g. forecast from the past), belonging to srate
space, with dimension n

xt = x+ &

= An additional set of data (e. g. observations), belonging to observation space,
with dimension p

y = Hx+ ¢
H is known linear observation operator.
Assume probability distribution is known for the couple (&, ¢).

Assume E(&) =0, E(¢) =0, E(&€™) =0 (not restrictive)
Set E(&PEPT) = PP (also often denoted B), E(e€") = R



Best Linear Unbiased Estimate (continuation 2)

Apply formula for Optimal Interpolation

x4 = xb + PP HT [HPPHT + R]" (y - Hx")
Pa=Pb_ pbHT[HPPHT + R]' HP

x? is the Best Linear Unbiased Estimate (BLUE) of x from x” and y.
Equivalent set of formule

x¢=x"+ P*H"R' (y - Hx?)
[P4]! = [PP]'+ HTR'H

Matrix K = PP H' [HP’H" + R]"' = P* HT R'! is gain matrix.

If probability distributions are globally gaussian, BLUE achieves bayesian
estimation, in the sense that P(x | x?, y) = 7\/[xa, P4].



Best Linear Unbiased Estimate (continuation 4)
Variational form of the BLUE
BLUE x? minimizes following scalar objective function, defined on state space
te §—

© J®=A2)P-HTPTI " -H+ (1/2) (y- HOYTR' (v - HE)

jb + 50

‘3D-Var’

Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.

Used operationally in USA, Australia, China, ...



Question. How to introduce temporal dimension in
estimation process ?

= Logic of Optimal Interpolation and of BLUE can be extended to time
dimension.

= But we know much more than just temporal correlations. We know
explicit dynamics.

Real (unknown) state vector at time k (in format of assimilating model) x,. Belongs
to state space S (dim.S'= n)

Evolution equation

Xip1 = Mi(x) + 1

M, 1s (known) model, 7, 1s (unknown) model error



Sequential Assimilation

e Assimilating model is integrated over period of time over which observations
are available. Whenever model time reaches an instant at which observations
are available, state predicted by the model is updated with new observations.
In the jargon of the trade, Optimal Interpolation designates an algorithm for
sequential assimilation in which the matrix P’ is constant with time, and 3D-
Var an algorithm in which, in addition, the analysis x“ is obtained through a
variational algorithm.

Variational Assimilation

e Assimilating model is globally adjusted to observations distributed over
observation period. Achieved by minimization of an appropriate scalar

objective function measuring misfit between data and sequence of model states
to be estimated.



Sequential Assimilation

Optimal Interpolation

= (Observation vector at time k

V= Hx + &

E(g) =0 ; E(gg") =R, 6

H linear

= Evolution equation

Xip1 = M () + 1y



Optimal Interpolation (2)

At time k, background x?, and associated error covariance matrix P’ known,
assumed to be independent of k.

=  Analysis step
x4 =x"+ PPHIHPPHT + R (v - Hix?y)

In 3D-Var, x% 1s obtained by (iterative) minimization of associated
objective function

* Forecast step

xbk+1 = M(x%)
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Sequential Assimilation. Kalman Filter

= (Observation vector at time k

Ve = Hx, + ¢, k=0, ...

E(g) =0 ; E(gg") =R, G

H, linear

= Evolution equation

Xepp = Mx, + m, k=0, ...

E(ny =0 ; E(Ukan) =0y (Skj
M, linear

u E(nkejT) =0 (errors uncorrelated in time)



At time k, background x*, and associated error covariance matrix P?, known

Analysis step

Xy =x0 + PP H T HPHE + R (3 - Hix))
Pa = PP - PP H T [H P H,T + R ] H P,

Forecast step

xbk+1 = M x‘,

PPy = E[(X - X D& - X )] = ELM, x4 - M - 1M x4y - Mixg - )71
= M E[(x% - x)(x% - x)TIM,T - E[1, (X% - x)] - E[(x - x)n,"] + E[m,n,"]
=M, P M,"+ O,



At time k, background x?, and associated error covariance matrix P?, known
k k

Analysis step

Xy =x0 + PP H T HPHE + R (3 - Hix))
Pa = PP - PP H T [H P H,T + R ] H P,

Forecast step

xbk+1 = M x%
P = M P M+ Q,

Kalman filter (KF, Kalman, 1960)

Must be started from some initial estimate (x*, P,)



If all operators are linear, and if errors are uncorrelated in time,
Kalman filter produces at time k the BLUE x”, (resp. x%,) of the real
state x, from all data prior to (resp. up to) time k, plus the associated
estimation error covariance matrix P?, (resp. P%,).

If in addition errors are gaussian, the corresponding conditional
probability distributions are the respective gaussian distributions

Nxb,, P] and N[xe,, P*].
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The components of the total expected rms error (Ermg), (trace: P )1/2.
in the estimation of solutions to the stochastic-dynmanic system (Y, ,H),
with ¥ given by (3.6) and H = (I 0), System noise is absent, Q » 0. The
filter used is the standard K-B filter (2.11) for the model.

a) Erms over land; ©b) Erns over the ocean; ¢) Erms over the entire L-domain

In each one of the figures, each curve represents one component of the
total Erms error. The curves labelled U, V, and P represent the u component,
v component and $ component, respcotively. They are found by sunning the
dingonal elements of Py which corrvspond to u, v, and $, respectively,
dividing by the number of terms in the sum, and then taking the square root.
In a) the aunmntinn extends over laad points only, in b) over ocean pointe
only, and in c) over the entire L-domaim, The vertical axis is scaled in
such » way that 1.0 corresponds to an Erms error of vy, for the U and ¥
curves, and of $g for the P curve. The observational error level is 0,089
for the U and V curves, and 0.080 for the P curve. The curves labelled

T represent the total Frma error over each region. Each T curve is a
weighted nverage of the corresponding U, V, and P curves, with the weights
chosen in such a way that the T curve measures the error in the total
energy u2 + v2 + 4271, conserved by the system (3.1). The observational
noise level for the T curve is then 0,088, Notice the immediate error
decreoase over land and the gradual decrease over the ocean. The total
estimation error tends to zero.
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Nonlinearities ?

Model is usually nonlinear, and observation operators (satellite observations) tend more and more
to be nonlinear.

Analysis step

X% = X+ PO H T HPYHT + R [y - H(xPp]
P4 =Pl - P’ H '[H PP H "+ R]"' H, P’
Forecast step

xbk+1 = M (x%)
Pl =M. P4 M, T+ O,

Extended Kalman Filter (EKF, heuristic !)



Costliest part of computation
PPy = M PO M+ O

Multiplication by M, = one integration of the model between times k and k+1.
Computation of M, P4, M,' =2n integrations of the model

Need for determining the temporal evolution of the uncertainty on
the state of the system is the major difficulty in assimilation of
meteorological and oceanographical observations



Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWEF, spectral
truncation T21, unit m. After F. Bouttier)
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Temporal evolution of the 500-hPa geopotential autocorrelation with respect to
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.



Two solutions :

e Low-rank filters

Use low-rank covariance matrix, restricted to modes
in state space on which it 1s known, or at least
assumed, that a large part of the uncertainty is
concentrated (this requires the definition of a norm
on state space).

Reduced Rank Square Root Filters (RRSORT,
Heemink)

Singular Evolutive Extended Kalman Filter (SEEK,
Pham)



Second solution :

o Ensemble filters

Uncertainty is represented, not by a covariance matrix, but by
an ensemble of point estimates in state space that are meant to
sample the conditional probability distribution for the state of
the system (dimension L = O(10-100)).

Ensemble is evolved in time through the full model, which
eliminates any need for linear hypothesis as to the temporal
evolution.

Ensemble Kalman Filter (EnKF, Evensen, Anderson, ...)



How to update predicted ensemble with new observations ?

Predicted ensemble at time & : {x}, [=1,...,L
Observation vector at same time : y = Hx + €

e Gaussian approach
Produce sample of probability distribution for real observed quantity Hx
Yi=Y-¥§
where ¢, 1s distributed according to probability distribution for observation error &.
Then use Kalman formula to produce sample of ‘analysed’ states
x4 = xb,+ PPHY [HPPH" + R]"!' (y, - Hx?)) , [=1,...,L (2)

where P? is the sample covariance matrix of predicted ensemble {x”}.

Remark. In case of Gaussian errors, if P? was exact covariance matrix of
background error, (2) would achieve Bayesian estimation, in the sense that {x¢}
would be a sample of conditional probability distribution for x, given all data up to
time k.
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a) forecast ensemble and obs.

b) updated ensemble

C. Snyder
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Month-long Performance of EnKF vs. 3Dvar with WRF

— EnKF —3DVar (prior, solid; posterior, dotted)
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Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior
analysis in terms of root-mean square difference averaged over the entire month

(Meng and Zhang 2007c, MWR, in review )



