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Sequential Assimilation.  Kalman Filter  	

  
  Observation vector at time k	


 yk = Hkxk + εk     k = 0, …, K 

	
 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	


 Hk linear	

	
 	
 	
 	

  Evolution equation	


 xk+1 = Mkxk + ηk    k = 0, …, K-1	

 E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj 	


	
 Mk linear	


	
  	
 	
  

  E(ηkεj
T) = 0  (errors uncorrelated in time) 



	
 At time k, background xb
k and associated error covariance matrix Pb

k known	


  Analysis step	


	
  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	


	
  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k	


  Forecast step 

  xb
k+1 =  Mk xa

k	


	
  Pb
k+1 = Mk Pa

k Mk
T + Qk  

	
 Kalman filter (KF, Kalman, 1960)	


	
 Must be started from some initial estimate (xb
0, Pb

0)	




Second solution :	


•  Ensemble filters	

 	
 Uncertainty is represented, not by a covariance matrix, but by 

an ensemble of point estimates in state space that are meant to 
sample the conditional probability distribution for the state of 
the system (dimension L  ≈ O(10-100)).	


	
 Ensemble  is  evolved  in  time  through  the  full  model,  which 
eliminates any need for linear hypothesis as to the temporal 
evolution.	


	
 Ensemble Kalman Filter (EnKF, Evensen, Anderson, …)	




How to update predicted ensemble with new observations ?	


Predicted ensemble at time k : {xb
l},	
 l = 1, …, L	


Observation vector at same time : y = Hx + ε	


•  Gaussian approach	

 	
 	

	
 Produce sample of probability distribution for real observed quantity Hx 	

	
 yl = y - εl 

	
 where εl is distributed according to probability distribution for observation error ε.   	
 	


	
 Then use Kalman formula to produce sample of ‘analysed’ states	


	
 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	
 l = 1, …, L	
	
 (2)	


	
 where Pb
 is the sample covariance matrix of predicted ensemble {xb

l}.	


	
 Remark.  In  case  of  Gaussian  errors,  if  Pb  was  exact  covariance  matrix  of 
background error, (2) would achieve Bayesian estimation, in the sense that {xa

l} 
would be a sample of conditional probability distribution for x, given all data up to 
time k.	




⎯  EnKF   ⎯ 3DVar (prior, solid; posterior, dotted) 

Prior  

posterior 

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 
analysis in terms of root-mean square difference averaged over the entire month  

Month-long Performance of EnKF vs. 3Dvar with WRF 

(Meng and Zhang 2007c, MWR, in review ) 



The case of a nonlinear observation operator ?	


Predicted ensemble at time k : {xb
l},	
 l = 1, …, L	


Observation vector at same time :   y = H(x) + ε  	
   H nonlinear	


Come back to original formula  (class 4)	


xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	


That formula does not require any other link between x and y than the one defined by 
the covariances matrices Cxy and Cyy.	


Here, as shown on the occasion of the derivation of the BLUE, E(x) is the backgound 
xb, and y - E(y) is the innovation y – H(xb)   	


Solution. Compute Cxy and Cyy as sample covariances matrices of the ensembles {xb
l} 

and {yl - H(xb
l)}, where the yl’s  are, as before, the perturbed observations yl = y - 

εl.     	




But problems	


- Collapse of ensemble for small ensemble size (less than a few hundred). Collapse originates in 
the fact that gain matrix Pb

 HT
 [HPbHT 

 + R]-1 is nonlinear wrt background error matrix Pb, 
resulting in a systematic sampling effect. Solution : empirical ‘covariance inflation’.	


-  Spurious  correlations  appear  at  large  geographical  distances.  Empirical  ‘localization’ (see 
Gaspari and Cohn, 1999, Q. J. R. Meteorol. Soc.)	


-  In formula	


xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	
 	
 l = 1, …, L	


Pb, which is covariance matrix of an L-size ensemble, has rank L-1 at most. This means that 
corrections made on ensemble elements are contained in a subspace with dimension L-1. 
Obviously very restrictive if L « p , L « n.	




Houtekamer and Mitchell (1998) use two ensembles, the elements of each of 
which are updated with covariance matrix of other ensemble.	




There exist many variants of Ensemble Kalman Filter	


Ensemble Transform Kalman Filter (ETKF, Bishop et al., Mon. Wea. Rev., 2001)	


Requires  a  prior  ‘control’ analysis  xc
a,  emanating  from a  background  xc

b.  An  ensemble  is 
evolved about that control without explicit use of the observations (and without feedback to 
control)	


More precisely, define L x L matrix T such that, given Pb = ZZT, then Pa = ZTTTZT (not trivial, 
but possible). Then the background deviations xb

l – xc
b are transformed through Z → ZT into 

an ensemble of analysis deviations xa
l – xc

a.	


	
 (does not avoid collapse of ensembles) 	


Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., Physica D, 2007)	


Each gridpoint is corrected only through the use of neighbouring observations. 	




Other variants of Ensemble Kalman Filter	


‘Unscented’ Kalman Filter (Wan and van der Merve, 2001, Wiley Publishing)	


Weighted Kalman Filter (Papadakis et al., 2010, Tellus A)	


Inflation-free Ensemble Kalman Filters (Bocquet and Sakov, 2012, Nonlin. Processes 
Geophys.)  	
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Bayesian properties of Ensemble Kalman Filter ?	


Very little is known.	


 Le Gland et al. (2011). In the linear and gaussian case, the discrete pdf 
defined by the filter, in the limit of infinite sample size L, tends to the 
bayesian gaussian pdf. 

	
 No result  for  finite  size  (note  that  ensemble  elements  are  not  mutually 
independent)	


	
 In  the  nonlinear  case,  the  discrete  pdf  tends  to  a  limit  which  is  in 
general not the bayesian pdf.	




Situation still not entirely clear.	


In any case, optimality always requires errors to be independent in time. In 
order to relax that constraint, it is necessarily to augment the state vector 
in the temporal dimension.	




Time-correlated Errors	


  Example of time-correlated observation errors	


  z1 = x + ζ1	
 	


  z2 = x + ζ2	
 	


	
 	
 E(ζ1) = E(ζ2) = 0   ;  E(ζ1
2) = E(ζ2

2) = s    ;     E(ζ1ζ2) = 0 	


	
 	
 BLUE of x from z1 and z2 gives equal weights to z1 and z2.	


	
 	
 Additional observation then becomes available 	

	
 	
 	

	
 	
 z3 = x + ζ3	
 	

	
 	
 E(ζ3) = 0    ;    E(ζ3

2) = s    ;    E(ζ1ζ3) = cs    ;    E(ζ2ζ3) = 0 	


	
 	
  BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)	




Time-correlated Errors (continuation 1)	


  Example of time-correlated model errors	


	
 	
 Evolution equation	

`	
 	
 xk+1 = xk + ηk	
  E(ηk

2) = q	

	
 	
 	

	
 	
 Observations	

	
 	
 yk = xk + εk , 	
  k = 0, 1, 2	
	
 E(εk

2) = r, 	
errors uncorrelated in time	

	
 	
 	

 Sequential  assimilation.  Weights  given  to  y0  and  y1  in  analysis  at  time  1  are  in  the  ratio 

r/(r+q). That ratio will be conserved in sequential assimilation. All right if model errors are 
uncorrelated in time.	


   
  Assume  E(η0η1) = cq	

	
 	
  Weights given to y0 and y1 in estimation of x2 are in the ratio 	


	
 	
 	
 	
 	
  	

  	


€ 

€ 

ρ =
r − qc

r + q + qc



Conclusion	


 Sequential assimilation, in which data are processed by batches, the data of one 
batch being discarded once that batch has been used, cannot be optimal if data in different 
batches are affected with correlated errors. This is so even if one keeps trace of the 
correlations. 

	
 Solution	


	
 	
 Process all correlated in the same batch (4DVar, some smoothers)	

	
 	
 	
 	
 	
  	

  	


€ 



Variational Assimilation	


	
 Variational form of the BLUE	


	
  BLUE xa minimizes following scalar objective function, defined on state space	


	
 ξ ∈  S  →	


•      J(ξ) ≡  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)	


  ≡ 	
         Jb                    + 	
                     Jo	


	
 	
 	
 	
 ‘3D-Var’ 	
	


	
 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	

	
 	

	
 Used operationally in USA, Australia, China, …	




	
 Variational approach can easily be extended to time dimension.	


	
 Suppose for instance available data consist of 	


	
 	
 - Background estimate at time 0	

	
 	
    x0

b  =  x0
  + ζ0

b 	
  E(ζ0
bζ0

bT) = P0
b	


	
 	
 - Observations at times k = 0, …, K	

	
 	
    yk = Hkxk + εk	
 E(εkεj

T) = Rk δkj	


	
 	
  - Model (supposed for the time being to be exact) 	

	
 	
    xk+1 = Mkxk  k = 0, …, K-1	
 	
 	
 	


	
 	
 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	


	
 Then objective function	

	
 	

ξ0 ∈  S  → 	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
 subject to ξk+1 = Mkξk ,	
 k = 0, …, K-1	


	
 	
 	




	
 	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
  Background  is  not  necessary,  if  observations are  in  sufficient  number  to 

overdetermine the problem. Nor is strict linearity. 

 How to  minimize  objective  function  with  respect  to  initial  state  u  = ξ0  (u  is 
called the control variable of the problem) ?	


	
 Use  iterative  minimization  algorithm,  each  step  of  which  requires  the 
explicit knowledge of the local gradient ∇u J ≡  (∂J/∂ui) of J with respect to u.	




	
 How to numerically compute the gradient ∇u J ?	


	
 Direct  perturbation,  in  order  to  obtain  partial  derivatives  ∂J/∂ui  by  finite 
differences  ?  That  would  require  as  many  explicit  computations  of  the 
objective function J as there are components in u. Practically impossible.	


	
 Gradient computed by adjoint method.	




Adjoint Method	


	
 Input vector u = (ui), dimu = n	

	
 Numerical  process,  implemented  on  computer  (e.  g.  integration  of 

numerical model)	


u → v = G(u)	

	
 v = (vj) is output vector , dimv = m	


	
 Perturbation δu = (δui) of input. Resulting first-order perturbation on v	


	
 δvj = Σi (∂vj/∂ui) δui 	


	
 or, in matrix form	

	
 δv  =  G’δu	


	
 where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix, of G. 	




Adjoint Method (continued 1)	


	
 	
 	
 	
        δv  =  G’δu	
 	
 	
 (D)	


•  Scalar function of output 	

J(v)  =  J[G(u)]	


	
 Gradient ∇u J of J with respect to input u?	


	
 ‘Chain rule’	
 	
  	


∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)	


 	
  or 	

	
          ∇u J  =  G’T ∇v J 	
 	
  	
 (A)	




Adjoint Method (continued 2)	


	
 G is the composition of a number of successive steps	


G = GN ° … ° G2 ° G1	

	
 	

	
 ‘Chain rule’	
 	
  	


G’ = GN’ … G2’ G1’	


 	
 Transpose	


G’T = G1’T G2’T … GN’T	


	
 Transpose, or adjoint, computations are performed in reversed order of direct computations.	


	
 If  G  is  nonlinear,  local  jacobian  G’ depends  on  local  value  of  input  u.  Any  quantity  which  is  an 
argument  of  a  nonlinear  operation  in  the  direct  computation  will  be  used  again  in  the  adjoint 
computation. It must be kept in memory from the direct computation (or else be recomputed again in 
the course of the adjoint computation).	


	
 If  everything  is  kept  in  memory,  total  operation  count  of  adjoint  computation  is  at  most  4  times 
operation count of direct computation (in practice about 2).	




Adjoint Approach	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
 subject to ξk+1 = Mkξk ,	
 k = 0, …, K-1	


Control variable 	
  ξ0 = u	


Adjoint equation	


 λK = 	
        HK
T RK

-1 [HK ξK - yK]	


 λk = Mk
Tλk+1 + Hk

T Rk
-1 [Hk ξk - yk]	
 	
  	
 k = K-1, …, 1	


λ0 = M0
Tλ1      + H0

T R0
-1 [H0 ξ0 - y0]   +  [P0

b]-1 (ξ0 - x0
b) 	


	
 	
 	
 	
 ∇u J  = λ0 	
 	


Result of direct integration (ξk), which appears in quadratic terms in expression of	

objective function, must be kept in memory from direct integration.	




Adjoint Approach (continued 2)	


Nonlinearities ?	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]  
 subject to ξk+1 = Mk(ξk) ,	
 k = 0, …, K-1	


Control variable 	
  ξ0 = u	


Adjoint equation	


 λK = 	
        HK’T RK
-1 [HK(ξK) - yK]	


 λk = Mk’Tλk+1 + Hk’T Rk
-1 [Hk(ξk) - yk]	
 	
  	
 k = K-1, …, 1	


λ0 = M0’Tλ1      + H0’T R0
-1 [H0(ξ0) - y0]   +  [P0

b]-1 (ξ0 - x0
b) 	


	
 	
 	
 	
 ∇u J  = λ0 	
 	


Not approximate (it gives the exact gradient ∇uJ), and really used as described here.	




Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 

Same as before, but at the end of a 24-hr 4D-Var 



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Same as before, but at the end of a 24-hr 4D-Var 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 


