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Exact bayesian estimation ?
Particle filters

Predicted ensemble at time ¢z : {x* ,n =1, ..., N }, each element with its
own weight

(probability) P(x")
Observation vector at same time : y = Hx + &

Bayes’ formula
P(x’,|y) ~ P(ylx”,) P(x”,)

Defines updating of weights



Bayes’ formula

P(x’,|y) ~ P(ylx",) P(x",)

Defines updating of weights; particles are not modified. Asymptotically converges to bayesian
pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.



Behavior of max w*
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Problem originates in the ‘curse of dimensionality’. Large dimension
pdf’s are very diffuse, so that very few particles (if any) are present in
areas where conditional probability (‘likelihood’) P(y|x) is large.

Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of
filter requires the size of ensembles to increase exponentially with
space dimension.



Alternative possibilities (review in van Leeuwen, 2009, Mon. Wea. Rev., 4089-4114)

Resampling . Define new ensemble.

Simplest way. Draw new ensemble according to probability distribution defined by the updated
weights. Give same weight to all particles. Particles are not modified, but particles with low
weights are likely to be eliminated, while particles with large weights are likely to be drawn
repeatedly. For multiple particles, add noise, either from the start, or in the form of ‘model
noise’ in ensuing temporal integration.

Random character of the sampling introduces noise. Alternatives exist, such as residual
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights w, are multiplied by
ensemble dimension N. Then p copies of each particle n are taken, where p is the integer
part of Nw,. Remaining particles, if needed, are taken randomly from the resulting
distribution.



Importance Sampling.

Use a proposal density that is closer to the new observations than the density
defined by the predicted particles (for instance the density defined by
EnKF, after the latter has used the new observations). Independence

between observations is then lost in the computation of likelihood P(y|x)
(or 1s it not ?)

In particular, Guided Sequential Importance Sampling (van Leeuwen, 2002).
Idea : use observations performed at time k to resample ensemble at
some timestep anterior to k, or ‘nudge’ integration between times k-1 and
k towards observation at time k.
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Fic. 12. Comparison of rms error (m? s~') between ensemble mean
and independent observations (dotted line) and the std dev in the
ensemble (solid line). The excellent agreement shows that the SIRF
1s working correctly.

van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084



Particle filters are actively studied (van Leeuwen, Morzfeld, ...)



If there is uncertainty on the state of the system, and dynamics of the system is perfectly known,
uncertainty on the state along stable modes decreases over time, while uncertainty along

unstable modes increases.

Stable (unstable) modes : perturbations to the basic state that decrease (increase) over time.
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Consequence : Consider 4D-Var assimilation, which carries information
both forward and backward in time, performed over time interval [z, ¢]
over uniformly distributed noisy data. If assimilating model 1s perfect,
estimation error is concentrated in stable modes at time #,, and in unstable

modes at time #,. Error 1s smallest somewhere within interval [z, #,].

Similar result holds true for Kalman filter (or more generally any form
of sequential asimilation), in which estimation error is concentrated in

unstable modes at any time.
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Figure 3. Time average RMS error within 1, 3, 5 days assimilation windows as a function of t' = ¢t — 7, with o, = .2, 10~° for the model
configuration I = 40. Left panel: 4DVar. Right panel: 4DVar-AUS with NV = 15. Solid lines refer to total assimilation error, dashed lines
refer to the error component in the stable subspace eis, ..., €40.

Trevisan et al., 2010

. Q. J. R. Meteorol. Soc.
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Fig. 3. Variations of the error-free forward cost-function Ji(z. £, x) (Lorenz system) in the plane spanned by the stable
and unstable directions, as determined from the tangent linear system (see text), and for 7 =6 (panel (a)) and 7 =8
(panel (b)) respectively. The metric has been distorted in order to make the stable and unstable manifolds orthogonal
to each other in the figure. The scale on the contour lines is logarithmic (decimal logarithm). Contour interval:

0.1. For clarity, negative contours, which would be present only in the central “valley” directed along the stable
manifold, have not been drawn.
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Lorenz (1963)

dx/dt = o(y-x)
dyldt = px-y-xz
dz/dt = -z + xy

with parameter values o= 10, p =28, f=8/3 = chaos
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Fig. 2. Time variations, along the reference solution, of
the variable x(7) of the Lorenz system.
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Fig. 4. Panel (a): Cross-section of the error-free forward
cost-function J(, £, x) along the unstable manifold, for
various values of 7. Panel (b). As in panel (a), for 1 =9.7,
and with a display interval ten times as large, respectively
for the error-free forward cost-function J(z, £, x) (solid
curve) and for the error-contaminated cost-function
Jo(7, %, x) (dashed curve). In the latter case, the total
variance of the observational noise is E% = 75.

Pires et al., Tellus, 1996 ; Lorenz system (1963)
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Fig. 5. Variations of the coordinate x along the orbits originating from the minima P, 4, B, C (indicated in Fig. 4b)
of the error-free cost-function.

Minima in the variations of objective function correspond to solutions that have bifurcated
from the observed solution, and to different folds in state space.



Quasi-Static Variational Assimilation (QSVA). Increase
progressively length of the assimilation window, starting each
new assimilation from the result of the previous one. This
should ensure, at least if observations are In a sense
sufficiently dense in time, that current estimation of the
system always lies in the attractive basin of the absolute
minimum of objective function (Pires et al., Swanson ef al.,

Luong, Jarvinen et al.)
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Fig. 7. Projection of the 100 minimizing solutions, at the end of the assimilation period, onto the plane spanned by
the stable and unstable directions, defined as in Fig. 3. Values of r are indicated on the panels. The projection is not
an orthogonal projection, but a projection parallel to the local velocity vector (dx/dz, dy/dr, dz/dr) (central manifold ).

Pires et al., Tellus, 1996 ; Lorenz system (1963)



Cloud of points Linear tangent

u(C(z, x)) Cloud of points QSVA raw assimilation system Upper bound
=0 ] 1 1 1
t=1 0.36 0.37 0.39 0.46
t=2 59%x1072 5.74 45x1072 0.401
=3 33x10°2 29.4 29x1072 0.397
T=28 1.4x10°2 59.9 * 0.396

In the left column, the estimates are calculated from the ensemble of 100 assimilations (see also Fig. 7). The 2nd
column contains the values obtained from the raw assimilation. In the 3rd column, the estimates are obtained from
the tangent linear system and egs. (3.5-3.9) (the star indicates a computational overflow). The estimates in the right-

hand column are the upper bounds defined by eq. (3.13).
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Since, after an assimilation has been performed over a period of time, uncertainty is likely to be
concentrated in modes that have been unstable, it might be useful for the next assimilation,
and at least in terms of cost efficiency, to concentrate corrections on the background in those

modes.

Actually, presence of residual noise in stable modes can be damageable for analysis and

subsequent forecast.

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for the case of 3D-Var)



Four-dimensional variational assimilation in the unstable subspace
(4DVar-AUS)

Trevisan et al., 2010, Four-dimensional variational assimilation in the unstable

subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136,
487-496.



4D-Var-AUS

Algorithmic implementation

Define N perturbations to the current state, and evolve them according to the tangent linear
model, with periodic reorthonormalization in order to avoid collapse onto the dominant

Lyapunov vector (same algorithm as for computation of Lyapunov exponents).

Cycle successive 4D-Var‘s, restricting at each cycle the modification to be made on the current
state to the space spanned by the N perturbations emanating from the previous cycle (if N is

the dimension of state space, that is identical with standard 4D-Var).



Experiments performed on the Lorenz (1996) model

d _ _
—rj = (2j+1 —Tj—2)2j—1 — 2 + F
dt

with 7 =1,...,1.

with value F'= 8, which gives rise to chaos.

Three values of 7 have been used, namely /= 40, 60, 80, which correspond
to respectively N*= 13, 19 and 26 positive Lyapunov exponents.

In all three cases, the largest Lyapunov exponent corresponds to a doubling time
of about 2 days (with 1 ‘day’ = 1/5 model time unit).

Identical twin experiments (perfect model)



Ens/4Da "Var solutions and refrence solution att = 1

Lorenz’96 model (M. Jardak)




‘Observing system’ defined as in Fertig et al. (Tellus, 2007):

At each observation time, one observation every four grid points
(observation points shifted by one grid point at each observation time).

Observation frequency : 1.5 hour

Random gaussian observation errors with expectation O and standard
deviation g,= 0.2 (‘climatological’ standard deviation 5.1).

Sequences of  variational assimilations have been cycled over

windows with length 7 =1, ... , 5 days. Results are averaged over 5000
successive windows.
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Figure 1. Time average RMS analysis error at ¢ = 7 as a function of the subspace dimension /N for three model configurations: /=40, 60,
80. Different curves in the same panel refer to different assimilation windows from 1 to 5 days. The observation error standard deviation 1s
o, = 0.2.

No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Best performance for N slightly above number N* of positive Lyapunov exponents.
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Figure 2. Time average RMS analysis error at ¢ = 7 as a function of the length of the assimilation window for three model configurations:
I=40, 60, 80. Different curves in the same panel refer to a different subspace dimension NV of 4DVar-AUS and to standard 4DVar. o, = 0.2.

Different curves are almost identical on all three panels. Relative improvement obtained by decreasing
subspace dimension N to its optimal value is largest for smaller window length 7.
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Experiments have been performed in which an explicit background term was present, the
associated error covariance matrix having been obtained as the average of a sequence of full
4D-Var’s.

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-AUS. But
they remain qualitatively similar, with best performance for 4D-Var-AUS with N slightly

above N°.



Minimum of objective function cannot be made smaller by reducing control space. Numerical
tests show that minimum of objective function is smaller (by a few percent) for full 4D-Var
than for 4D-Var-AUS. Full 4D-Var is closer to the noisy observations, but farther away from
the truth. And tests also show that full 4D-Var performs best when observations are perfect

(no noise).

Results show that, if all degrees of freedom that are available to the model are used, the
minimization process introduces components along the stable modes of the system, in which
no error is present, in order to ensure a closer fit to the observations. This degrades the
closeness of the fit to reality. The optimal choice is to restrict the assimilation to the unstable

modes.



Can have major practical algorithmic implications.

Questions.

- Degree of generality of results ?

- Impact of model errors ?
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subspace dimension (/ = 60, N'=19), for different amplitudes of white model noise.

(W. Ohayon and O. Pannekoucke, 2011).
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Conclusions

Error concentrates in unstable modes at the end of assimilation
window. It must therefore be sufficient, at the beginning of new
assimilation cycle, to introduce increments only in the subspace
spanned by those unstable modes.

In the perfect model case, assimilation is most efficient when
increments are introduced in a space with dimension slightly above the
number of non-negative Lyapunov exponents.

In the case of mperfect model (and of strong constraint
assimilation), preliminary results lead to similar conclusions, with
larger optimal subspace dimension, and less well marked optimality.
Further work necessary.

In agreement with theoretical and experimental results obtained for

Kalman Filter assimilation (Trevisan and Palatella, McLaughlin). 37
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Assimilation considered as a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system, knowing

everything we know (the data), viz.,

- observations proper

- physical laws governing the system (‘model’)
Jaynes, E. T., 2003, Probability theory: the logic of science, Cambridge University Press

Tarantola, A., 2005, Inverse Problem Theory and Methods for Model Parameter Estimation, Society
for Industrial and Applied Mathematics (http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/Books/
InverseProblemTheory.pdf)

39



Data of the form

z=Tx+§ E~ N, S]

Known data vector z belongs to data space D, dimD = m,
Unknown state vector x belongs to state space X, dimX =n
I'known (mxn)-matrix, £ unknown ‘error’

Then conditional probability distribution is

P(x | 2) = N[xe, P4]

where

=TS D) ITs ! [z- u]
pPa=(ITS'y!

Determinacy condition : rankl = n. Requires m > n.

40



Variational form.

Conditional expectation x* minimizes following scalar objective function, defined on state space X

EE€E X = A5 = (11D [IE- w]"' STIE- (z-w)]

Variational assimilation, implemented heuristically in many places on (not too) nonlinear data
operators I

Pe= (0271021

41



Conditional probability distribution

P(x | 2) = N[xe, P4]
with

x4 = (FTs-ln-l I'Ts'[z- u]
Pa= (TSI}

Ready recipe for determining Monte-Carlo sample of conditional pdf P(x | z) :

- Perturb data vector z according to its own error probability distribution
7z =7 =746, 6~MN0,S]

and compute
x4 =TSTDTITS 7’ - ul

x’¢ 1s distributed according to Nxe, P

42



Ensemble Variational Assimilation (EnsVar) implements that
algorithm, the expectations x’¢ being computed by standard
variational assimilation (optimization)

43



Purpose of the present work

- Objectively evaluate EnsVar as a probabilistic estimator in nonlinear and/or non-Gaussian cases.

- Objectively compare with other existing ensemble assimilation algorithms : Ensemble
Kalman Filter (EnKF), Particle Filters (PF)

- Simulations performed on two small-dimensional chaotic systems, the Lorenz’96 model and
the Kuramoto-Sivashinsky equation

Purely heuristic !

Conclusion. Works very well, at least on small dimension chaotic systems, and using Quasi-
Static Variational Assimilation (QSVA) over long assimilation periods

44



Experimental procedure (1)
0. Define a reference solution x,; by integration of the numerical model
1. Produce ‘observations’ at successive times 7, of the form
yi=Hx, + g,

where /, is (usually, but not necessarily) the unit operator, and ¢, is a random (usually, but not
necessarily, Gaussian) ‘observation error’.

45



Experimental procedure (2)
2. For given observations y,, repeat /V, times the following process
- ‘Perturb’ the observations y, as follows
Y™ L= Yt O
where 0, 1s an independent realization of the probability distribution which has produced ¢,.
- Assimilate the ‘perturbed’ observations z, by variational assimilation

This produces N,  (=30) model solutions over the assimilation window, considered as making
up a tentative sample of the conditional probability distribution for the state of the observed system
over the assimilation window.

The process 1-2 is then repeated over N, successive assimilation windows. Validation is

rea

performed on the set of V,,,,(=9000) ensemble assimilations thus obtained.

46



The Lorenz96 model

@ Forward model

dry
dt
@ Set-up parameters :

© the index k is cyclic so that zx—N = T+ N = Tk.
©Q F' = 8, external driving force.
© —x, a damping term.
Q N = 40, the system size.
©@ Nens = 30, number of ensemble members.

1
o A
Q At = 0.05 = 6hours, the time step.
©Q frequency of observations : every 12 hours.
©Q number of realizations : 9000 realizations.

~ 2.5days, A max the largest Lyapunov exponent.

O. Talagrand & M. Jardak Optimization for Bayesian Estimation

— ($k+1 - -”Ek—z)wk—l —xp+F for k=1,--.
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How to objectively evaluate the performance of an ensemble (or more generally probabilistic)
estimation system ?

- There 1s no general objective criterion for Bayesianity

- We use instead the weaker property of reliability, i. e. statistical consistency between
predicted probabilities and observed frequencies of occurrence (it rains with frequency 40% in the
circonstances where I have predicted 40% probability for rain).

Reliability can be objectively validated, provided a large enough sample of realizations of the
estimation system is available.

Bayesianity implies reliability, the converse not being true.

- We also evaluate resolution, which bears no direct relation to bayesianity, and is best defined
as the degree of statistical dependence between the predicted probability distribution and the
verifying observation (J. Brocker). Resolution, beyond reliability, measures the degree of practical
accuracy of the ensembles.

49
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EnsVar : the non-linear Lorenz96 model (10 days ~ 2 TU

enzembie optimal control, reference and obzervation= 15 enzemble optimal trajectorle: and reference zolution=
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EnsVar : consistency

s

Nonlinear Lorenz’96. 10 days. Histogram of 7/

min
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Quasi-Static Variational Assimilation (QSVA)

0 Data Assimilation over [0 T with T=N .dt = M. dt T
4D-Var over [0 1] starting from the observations

0 T
_—8

4D-Var over [0 21] starting from the minimizer found above
—_—-- |
0 21

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T
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EnsVar : the non-linear Lorenz96 model 10 days with
QSVA
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EnsVar : the non-linear Lorenz96 model 18 days with
QSVA
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EnsVar : forecasting
Brier Skill Scores as a function of the lead time
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EnsVar : observation frequency impact

Impact on the reliability and resolution
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- Results are independent of the Gaussian character of the observation errors (trials have been

made with various probability distributions)

- Ensembles produced by EnsVar are very close to Gaussian, even in strongly nonlinear cases.
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- Comparison Ensemble Kalman Filter (EnKF) and Particle
Filters (PF)

Both of these algorithms being sequential, comparison is fair only at

end of assimilation window
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5 EnKF trajectories and respective reference solutions rank histogram
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ensergble optimal trajectories and their respective reference solutions
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ense{gble optimal trajectories and their respective reference solutions
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ense;gble optimal trajectories and their respective reference solutions
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DA procedure S .
Assimilation | Forecasting
method

EnsVAR 0.2193510 | 1.49403506
EnKF 0.2449690 | 1.67176110
PF 0.7579790 | 2.62461295

RMS errors at the end of 5-day assimilations and 5-day forecasts
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Weak constraint EnsVar

e define the objective function.

1
J(z,m,m2,- -+ IN-1,MN) = 5 {(z — z) "B (z — )}

—Z{ ) Ry )}+QZ"71Q

@ B background error covariance matrix and R observation error
covariance matrix.

Q@ (Q model error covariance matrix.
@ H : R®te*c 5 R°* observation operator.
@ z;, background state vector and y; observation vector at time t = ;.

@ 7: model error vector at t = ¢; with x(¢;) = M;.. . , (z(ti_1)) + s

o find the optimal control variable (zg?*, n7?*, nof", - -- .n3¥*) and the
optimal trajectory z°Pt.

opt opt opt opt . . )
('E T2 5 ) min 3(‘577717”27'” -77N)
T,m1,m2, N EA

Pt — mtti(_ti—l (mtti_ﬁ—ti—z"(gﬁtz*—h (mtﬁ—to (wgpt) Opt)_|_ Opt) +nopt )+
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] Lo e n s ]

Difference of stochastic and deterministic solutions L2-norm

Divergence between stochastic and deterministic solutions
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Ensemble optimal and reference trajectories
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5-day assimilation



R=04,60Q=01, 10 days and 9000 realisations
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| Summary _

@ Under non-linearity and non-Gaussianity the EnsVar is a reliable and

consistent ensemble estimator (provided the QSVA is used for long
DA windows) .

@ EnsVar is at least as good an estimator as EnKF and PF.

@ Similar results have been obtained for the Kuramuto-Sivashinsky
model.

Ensembles obtained are Gaussian, even if errors in data are not

Produces Monte-Carlo sample of (probably not) bayesian pdf
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P
"

O - =
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EnsVar : Pros and cons _

@ Easy to implement when having a 4D-Var code
@ Highly parallelizable

@ No problems with algorithm stability (i.e. no ensemble collapse, no
need for localization and inflation, no need for weight resampling)

@ Propagates information in both ways and takes into account
temporally correlated errors

@ Costly (Nens 4D-Var assimilations).
@ Empirical.

@ Cycling of the process (work in progress).
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And now ?

- Implementation on physically more realistic models (QG, Shallow water, ...)

- Comparison with other ensemble algorithms (IEnKS)

- Cycling and/or overlap

- Minimisation in unstable space (AUS, Trevisan ef al. )
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The End



