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Exact bayesian estimation ?	


Particle filters	


Predicted ensemble at time t : {xb
n, n = 1, …, N },  each element with its 

own weight	

(probability) P(xb

n) 	


Observation vector at same time : y = Hx + ε	


Bayes’ formula	

P(xb

n|y) ∼ P(y|xb
n) P(xb

n) 	


Defines updating of weights	




Bayes’ formula	


P(xb
n|y) ∼ P(y|xb

n) P(xb
n) 	


Defines updating of weights; particles are not modified. Asymptotically converges to bayesian 
pdf. Very easy to implement.	


Observed fact. For large state dimension, ensemble tends to collapse.	




C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/
Snyder.pdf 



Problem originates  in  the  ‘curse  of  dimensionality’.  Large  dimension 
pdf’s are very diffuse, so that very few particles (if any) are present in 
areas where conditional probability  (‘likelihood’) P(y|x) is large.	


Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of 
filter  requires the size of ensembles to increase exponentially with 
space dimension.	




Alternative possibilities (review in van Leeuwen, 2009, Mon. Wea. Rev., 4089-4114)	


Resampling. Define new ensemble.	


Simplest way. Draw new ensemble according to probability distribution defined by the updated 
weights. Give same weight to all particles. Particles are not modified, but particles with low 
weights are likely to be eliminated, while particles with large weights are likely to be drawn 
repeatedly. For multiple particles, add noise, either from the start, or in the form of ‘model 
noise’ in ensuing temporal integration. 	


Random  character  of  the  sampling  introduces  noise.  Alternatives  exist,  such  as  residual 
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights wn are multiplied by 
ensemble dimension N. Then p copies of each particle n are taken, where p is the integer 
part  of  Nwn.  Remaining  particles,  if  needed,  are  taken  randomly  from  the  resulting 
distribution.	




Importance Sampling. 	


Use a proposal density that is closer to the new observations than the density 
defined by the predicted particles (for instance the density defined by 
EnKF,  after  the  latter  has  used  the  new  observations).  Independence 
between observations is then lost in the computation of likelihood P(y|x) 
(or is it not ?)	


In particular, Guided Sequential Importance Sampling (van Leeuwen, 2002). 
Idea  :  use  observations  performed at  time k  to  resample  ensemble  at 
some timestep anterior to k, or ‘nudge’ integration between times k-1 and 
k towards observation at time k.	




van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084	




Particle filters are actively studied (van Leeuwen, Morzfeld, …)  
  

  

  

  



If there is uncertainty on the state of the system, and dynamics of the system is perfectly known, 
uncertainty on the state along stable modes decreases over time, while uncertainty along 
unstable modes increases. 

  

 Stable (unstable) modes : perturbations to the basic state that decrease (increase) over time. 

  

  

  

  





 Consequence : Consider 4D-Var assimilation, which carries information 
both forward and backward in time, performed over time interval [t0, t1] 
over uniformly distributed noisy data. If assimilating model is perfect, 
estimation error is concentrated in stable modes at time t0, and in unstable 
modes at time t1. Error is smallest somewhere within interval [t0, t1]. 

 Similar result holds true for Kalman filter (or more generally any form 
of sequential asimilation), in which estimation error is concentrated in 
unstable modes at any time. 

  

  

  

  



Trevisan et al., 2010, Q. J. R. Meteorol. Soc.	






Lorenz (1963)	


 dx/dt = σ(y-x)	

	
 dy/dt = ρx - y - xz	

	
 dz/dt = -βz + xy	


	
 with parameter values σ = 10, ρ = 28, β = 8/3  ⇒  chaos	








Pires et al., Tellus, 1996 ; Lorenz system (1963) 



Minima in the variations of objective function correspond to solutions that have bifurcated 
from the observed solution, and to different folds in state space. 



 Quasi-Static Variational Assimilation (QSVA). Increase 
progressively length of the assimilation window, starting each 
new assimilation from the result of the previous one. This 
should ensure, at least if observations are in a sense 
sufficiently dense in time, that current estimation of the 
system always lies in the attractive basin of the absolute 
minimum of objective function (Pires et al., Swanson et al., 
Luong, Järvinen et al.) 

. 

  

  

  

  



Pires et al., Tellus, 1996 ; Lorenz system (1963) 





Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390 



Since, after an assimilation has been performed over a period of time, uncertainty is likely to be 
concentrated in modes that have been unstable, it might be useful for the next assimilation, 
and at least in terms of cost efficiency, to concentrate corrections on the background in those 
modes. 

Actually, presence of residual noise in stable modes can be damageable for analysis and 
subsequent forecast. 

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for the case of 3D-Var) 

  



  

Four-dimensional  variational  assimilation  in  the  unstable  subspace 
(4DVar-AUS)	


Trevisan et al.,  2010, Four-dimensional variational assimilation in the unstable 
subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136, 
487-496.	




4D-Var-AUS 

Algorithmic implementation 

Define N perturbations to the current state, and evolve them according to the tangent linear 
model, with periodic reorthonormalization in order to avoid collapse onto the dominant 
Lyapunov vector (same algorithm as for computation of Lyapunov exponents). 

Cycle successive 4D-Var‘s, restricting at each cycle the modification to be made on the current 
state to the space spanned by the N perturbations emanating from the previous cycle (if N is 
the dimension of state space, that is identical with standard 4D-Var). 

  



Experiments performed on the Lorenz (1996) model 

  

  

with value F = 8, which gives rise to chaos. 

Three values of I have been used, namely I = 40, 60, 80, which correspond  
to respectively N+ = 13, 19 and 26 positive Lyapunov exponents. 

In all three cases, the largest Lyapunov exponent corresponds to a doubling time  
of about 2 days (with 1 ‘day’ = 1/5 model time unit). 

Identical twin experiments (perfect model) 



Lorenz’96 model (M. Jardak) 



	
 ‘Observing system’ defined as in Fertig et al. (Tellus, 2007):	


	
 At  each  observation  time,  one  observation  every  four  grid  points 
(observation points shifted by one grid point at each observation time).	


	
 Observation frequency : 1.5 hour	


	
 Random  gaussian  observation  errors  with  expectation  0  and  standard 
deviation σ0 = 0.2 (‘climatological’ standard deviation 5.1).	


	
 Sequences  of  variational  assimilations  have  been  cycled  over 
windows with length τ  = 1, … , 5 days. Results are averaged over 5000 
successive windows.	




No explicit  background term (i.  e.,  with  error  covariance  matrix)  in  objective  function  : 
information from past lies in the background to be updated, and in the N perturbations 
which define the subspace in which updating is to be made.	


Best performance for N slightly above number  N+ of positive Lyapunov exponents.	




Different curves are almost identical on all three panels. Relative improvement obtained by decreasing 
subspace dimension N to its optimal value is largest for smaller window length τ.	






Experiments have been performed in which an explicit background term was present, the 
associated error covariance matrix having been obtained as the average of a sequence of full 
4D-Var’s. 

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-AUS. But 
they remain qualitatively similar, with best performance for 4D-Var-AUS with N slightly 
above N+.   



Minimum of objective function cannot be made smaller by reducing control space. Numerical 
tests show that minimum of objective function is smaller (by a few percent) for full 4D-Var 
than for 4D-Var-AUS. Full 4D-Var is closer to the noisy observations, but farther away from 
the truth. And tests also show that full 4D-Var performs best when observations are perfect 
(no noise). 

Results show that, if all degrees of freedom that are available to the model are used, the 
minimization process introduces components along the stable modes of the system, in which 
no error is present, in order to ensure a closer fit to the observations. This degrades the 
closeness of the fit to reality. The optimal choice is to restrict the assimilation to the unstable 
modes. 



Can have major practical algorithmic implications. 

Questions. 

- Degree of generality of results ? 

- Impact of model errors ? 
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Time averaged rms analysis error at the end  of the assimilation window(with length τ) as a function of increment  
subspace dimension (I = 60, N+=19), for different amplitudes of white model noise. 

(W. Ohayon and O. Pannekoucke, 2011). 

τ = 1 day τ = 2 days 
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Conclusions	


	
 Error  concentrates  in  unstable  modes  at  the  end  of  assimilation 
window.  It  must  therefore  be  sufficient,  at  the  beginning  of  new 
assimilation  cycle,  to  introduce  increments  only  in  the  subspace 
spanned by those unstable modes.	


	
 In  the  perfect  model  case,  assimilation  is  most  efficient  when 
increments are introduced in a space with dimension slightly above the 
number of non-negative Lyapunov exponents.	


	
 In  the  case  of  imperfect  model  (and  of  strong  constraint 
assimilation),  preliminary  results  lead  to  similar  conclusions,  with 
larger optimal subspace dimension,  and less well  marked optimality. 
Further work necessary.	


	
 In  agreement  with  theoretical  and  experimental  results  obtained  for 
Kalman Filter assimilation (Trevisan and Palatella, McLaughlin). 
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 Assimilation considered as a problem in bayesian estimation. 

 Determine the conditional probability distribution for the state of the system, knowing 
everything we know (the data), viz., 

  - observations proper 

           - physical laws governing the system (‘model’) 

  - …  

 Jaynes, E. T., 2003,  Probability theory: the logic of science, Cambridge University Press	


	
 Tarantola,  A.,  2005,  Inverse  Problem  Theory  and  Methods  for  Model  Parameter  Estimation,  Society 
for  Industrial  and  Applied  Mathematics  (http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/Books/
InverseProblemTheory.pdf)	
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Data of the form	


z = Γx + ζ, 	
 ζ ∼ N [µ, S]	


Known data vector z belongs to data space D, dimD = m,	

Unknown state vector x belongs to state space X, dimX = n 	

Γ known (mxn)-matrix, ζ unknown ‘error’	


Then conditional  probability distribution is	


	
 	
 	
       P(x | z) = N [xa, Pa]	

where	


	
 	
 	
       xa = (Γ T S-1Γ)-1 Γ T S-1 [z -  µ]	

	
 	
 	
       Pa = (Γ T S-1Γ)-1	


 Determinacy condition : rankΓ = n. Requires m ≥ n.	
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Variational form.	


Conditional expectation xa minimizes following scalar objective function, defined on state space X 

ξ ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]	


Variational  assimilation,  implemented  heuristically  in  many  places  on  (not  too)  nonlinear  data 
operators Γ.	


Pa = [∂2J /∂ξ2]-1 	
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Conditional  probability distribution	


	
 	
 	
       P(x | z) = N [xa, Pa]	

with	


	
 	
 	
       xa = (Γ T S-1Γ)-1 Γ T S-1 [z - µ]	

	
 	
 	
       Pa = (Γ T S-1Γ)-1	


Ready recipe for determining Monte-Carlo sample of conditional pdf P(x | z) : 	


- Perturb data vector z according to its own error probability distribution  	


	
 	
 	
     z  → z’ = z + δ, 	
 δ ∼ N [0, S]	


and compute  	

	
 	

 	
 	
 	
     x’a = (Γ T S-1Γ)-1 Γ T S-1 [z’ - µ]	


 x’a  is distributed according to N [xa, Pa] 	
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Ensemble Variational Assimilation (EnsVar) implements that 
algorithm, the expectations  x’a being computed by standard 
variational assimilation (optimization)	
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Purpose of the present work	


	
 - Objectively evaluate EnsVar as a probabilistic estimator in nonlinear and/or non-Gaussian cases.	


	
 -  Objectively  compare  with  other  existing  ensemble  assimilation  algorithms  :  Ensemble 
Kalman Filter (EnKF), Particle Filters (PF)	


	
 -  Simulations  performed  on  two  small-dimensional  chaotic  systems,  the  Lorenz’96  model  and 
the Kuramoto-Sivashinsky equation	


	
 Purely heuristic !	


	
 Conclusion.  Works  very  well,  at  least  on  small  dimension  chaotic  systems,  and  using  Quasi-
Static Variational Assimilation (QSVA) over long assimilation periods  	
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Experimental procedure (1)	


	
 0. Define a reference solution xt
r by integration of the numerical model	


	
 1. Produce ‘observations’ at successive times tk of the form	


	
 	
 	
 	
 yk = Hkxk + εk 	


	
 where  Hk is  (usually,  but  not  necessarily)  the  unit  operator,  and  εk  is  a  random (usually,  but  not 
necessarily, Gaussian) ‘observation error’.	
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Experimental procedure (2)	


	
 2. For given observations yk, repeat Nens times the following process	


	
 	
 - ‘Perturb’ the observations yk as follows	


	
 	
 	
 	
 yk →  zk = yk + δk 	


 	
 	
 where δk is an independent realization of the probability distribution which has produced εk.	


	
 	
 - Assimilate the ‘perturbed’ observations zk by variational assimilation	


	
 This  produces  Nens  (=30)  model  solutions  over  the  assimilation  window,  considered  as  making 
up a tentative sample of the conditional probability distribution for the state of the observed system 
over the assimilation window.	


	
 The  process  1-2  is  then  repeated  over  Nreal  successive  assimilation  windows.  Validation  is 
performed on the set of Nreal (=9000) ensemble assimilations thus obtained.       	
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Linearized Lorenz’96. 5 days	
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How to objectively evaluate the performance of an ensemble (or more generally probabilistic) 
estimation system ?	


	
 - There is no general objective criterion for Bayesianity	


	
 -  We  use  instead  the  weaker  property  of  reliability,  i.  e.  statistical  consistency  between 
predicted probabilities and observed frequencies of occurrence (it rains with frequency 40% in the 
circonstances where I have predicted 40% probability for rain).	


	
 Reliability  can  be  objectively  validated,  provided  a  large  enough  sample  of  realizations  of  the 
estimation system is available.	


	
 Bayesianity implies reliability, the converse not being true.	


	
 -  We  also  evaluate  resolution,  which  bears  no  direct  relation  to  bayesianity,  and  is  best  defined 
as  the  degree  of  statistical  dependence  between  the  predicted  probability  distribution  and  the 
verifying observation (J. Bröcker).  Resolution, beyond reliability, measures the degree of practical 
accuracy of the ensembles.  	




aaaaa 

50 Linearized Lorenz’96. 5 days	
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Linearized Lorenz’96. 5 days. Histogram of Jmin 	

E(Jmin) = p/2 (=200) ; σ(Jmin) = √(p/2) (≈14.14)    	




52 Nonlinear Lorenz’96. 5 days	




53 Nonlinear Lorenz’96. 5 days	




54 Nonlinear Lorenz’96. 5 days. Histogram of Jmin 	
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56 
Nonlinear Lorenz’96. 10 days. Histogram of Jmin 	
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61 
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- Results are independent of the Gaussian character of the observation errors (trials have been 
made with various probability distributions)  

- Ensembles produced by EnsVar are very close to Gaussian, even in strongly nonlinear cases. 
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-  Comparison Ensemble Kalman Filter (EnKF) and Particle 
Filters (PF) 

 Both of these algorithms being sequential, comparison is fair only at 

end of assimilation window  
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Nonlinear Lorenz’96. 5 days. Diagnostics at end of assimilation window	




65 
Nonlinear Lorenz’96. EnKF. Diagnostics after 5 days of assimilation	




66 
Nonlinear Lorenz’96. PF. Diagnostics after 5 days of assimilation	




67 
EnsVAR. Diagnostics for 5-day forecasts	




68 EnKF. Diagnostics for 5-day forecasts	




69 
PF. Diagnostics for 5-day forecasts	
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RMS errors at the end of 5-day assimilations and 5-day forecasts 
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Divergence between stochastic and deterministic solutions 
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Weak EnsVar 

Q = 0.1 

5-day assimilation 



74 

Weak EnsVar 

Q = 0.1 

10-day  
assimilation 
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Ensembles obtained are Gaussian, even if errors in data are not 

Produces Monte-Carlo sample of (probably not) bayesian pdf 
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And now ?	


	
 - Implementation on physically more realistic models (QG, Shallow water, …)	


	
 - Comparison with other ensemble algorithms (IEnKS)  	


	
 - Cycling and/or overlap	


	
 - Minimisation in unstable space (AUS, Trevisan et al. ) 	


	
 - …	


	
 	




 The End 
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