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Best Linear Unbiased Estimate	


State vector x, belonging to state space S (dimS = n), to be estimated.	


Available data in the form of	



  A ‘background’ estimate  (e.  g.  forecast  from the  past),  belonging  to  state 
space, with dimension n 	



	

 xb  =  x  + ζb	

 	



  An additional set of data (e. g. observations), belonging to observation space, 
with dimension p	



	

 y  =  Hx + ε	



	

 H is known linear observation operator.	



Assume probability distribution is known for  the couple (ζb, ε).	


Assume E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 (not restrictive)	


Set E(ζbζbT) = Pb (also often denoted B), E(εεT) = R 	





Best Linear Unbiased Estimate (continuation 2)	



	

 Apply formulæ for Optimal Interpolation	



	

 	

 	

 xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	


	

 	

 	

 Pa = Pb

 - Pb
 HT

 [HPbHT 
 + R]-1 HPb	



 	

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.	


	

 	


	

 Equivalent set of formulæ 	


	

 	


	

 	

 	

 xa = xb + Pa

 HT
 R-1 (y - Hxb)	



	

 	

 	

 [Pa]-1 = [Pb]-1
 + HT

 R-1H	



 	

 Vector d ≡  y – Hxb is innovation vector	


	

 Matrix K ≡ Pb

 HT
 [HPbHT + R]-1 = Pa

 HT
 R-1 is gain matrix.	



	

 If  probability  distributions  are  globally  gaussian,  BLUE  achieves  bayesian 
estimation, in the sense that P(x | xb, y) = N [xa, Pa].	





Best Linear Unbiased Estimate (continuation 3)	



	

 H can be any linear operator	



	

 Example : (scalar) satellite observation	



	

 	

 	

 x = (x1, …, xn)T  temperature profile	


	

 	

 	

 	


	

 Observation 	

 y = Σi hixi + ε = Hx + ε  	

 ,      H = (h1, …, hn)     ,      E(ε2) = r	


	

 Background	

 xb = (x1

b, …, xn
b)T 	

 ,     error covariance matrix Pb = (pij

b)	



xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	



	

  [HPbHT + R]-1 (y - Hxb) = (y - Σι hιxιb) / (Σijhihj pij
b
 + r) ≡ µ	

 	

 scalar !	



•  -  Pb = pb In	

 	

  xi
a  = xi

b 
 + pb hi µ	



•  -  Pb = diag(pii
b) 	

 xi

a  = xi
b 

 + pii
b hi µ	



	

        -  General case 	

 xi
a  = xi

b 
 + Σj pij

b hj µ 	

 	



	

 Each  level  i  is  corrected,  not  only  because  of  its  own  contribution  to  the  observation,  but  because  of  the 
contribution of the other levels to which its background error is correlated.	





Best Linear Unbiased Estimate (continuation 4)	



	

 Variational form of the BLUE	



	

  BLUE xa minimizes following scalar objective function, defined on state space	



	

 ξ ∈  S  →	



•      J(ξ) ≡  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)	



  ≡ 	

         Jb                    + 	

                     Jo	



	

 	

 	

 	

 ‘3D-Var’ 	

	



	

 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	


	

 	


	

 Used operationally in USA, Australia, China, …	





Best Linear Unbiased Estimate (continuation 4)	



	

 Variational form of the BLUE	



	

  BLUE xa minimizes following scalar objective function, defined on state space	



	

 ξ ∈  S  →	



•      J(ξ) ≡  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)	



  ≡ 	

         Jb                    + 	

                     Jo	



	

 	

 	

 	

 ‘3D-Var’ 	

	



	

 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	


	

 	


	

 Used operationally in USA, Australia, China, …	





	

 Question.  How  to  introduce  temporal  dimension  in 
estimation process ?	



  Logic of Optimal Interpolation and of BLUE can be extended to time 
dimension.	



  But we know much more than just temporal correlations. We know 
explicit dynamics.	



	

 Real  (unknown)  state  vector  at  time  k  (in  format  of  assimilating  model)  xk.  Belongs 
to state space S (dimS = n)	



	

 Evolution equation	



 xk+1 = Mk(xk) + ηk  

  Mk is (known) model, ηk is (unknown) model error	





Sequential Assimilation	



•  Assimilating model is integrated over period of time over which observations 
are available. Whenever model time reaches an instant at which observations 
are available, state predicted by the model is updated with new observations. 
In the jargon of the trade, Optimal Interpolation designates an algorithm for 
sequential assimilation in which the matrix Pb is constant with time, and 3D-
Var an algorithm in which, in addition, the analysis xa is obtained through a 
variational algorithm.   	



Variational Assimilation	



•  Assimilating  model  is  globally  adjusted  to  observations  distributed  over 
observation  period.  Achieved  by  minimization  of  an  appropriate  scalar 
objective function measuring misfit between data and sequence of model states 
to be estimated.	





Sequential Assimilation	



	

 Optimal Interpolation	


  
  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	


	

 	


  Evolution equation	



 xk+1 = Mk (xk) + ηk    k = 0, …, K-1	


  



	

 Optimal Interpolation (2)	


	

 	


	

 At  time  k,  background  xb

k  and  associated  error  covariance  matrix  Pb  known, 
assumed to be independent of k.	



  Analysis step	



	

  xa
k = xb

k + Pb
 Hk

T
 [HkPbHk

T 
 + Rk]-1 (yk - Hkxb

k)	



	

 In  3D-Var,  xa
k  is  obtained  by  (iterative)  minimization  of  associated 

objective function  	



•  Forecast step 

  xb
k+1 =  Mk( xa

k)	


	

  



After A. Lorenc 



Sequential Assimilation.  Kalman Filter  	


  
  Observation vector at time k	



 yk = Hkxk + εk    k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	


	

 	

 	

 	


  Evolution equation	



 xk+1 = Mkxk + ηk    k = 0, …, K-1	


 E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj 	



	

 Mk linear	



	

  	

 	

  

  E(ηkεj
T) = 0  (errors uncorrelated in time) 



	

 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k	



  Forecast step 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = E[(xb

k+1 - xk+1)(xb
k+1 - xk+1)T] = E[(Mk xa

k - Mkxk - ηk)(Mk xa
k - Mkxk - ηk)T] 	



	

 	

 = Mk E[(xa
k - xk)(xa

k - xk)T]Mk
T - E[ηk (xa

k - xk)T] - E[(xa
k - xk)ηk

T]  + E[ηkηk
T] 	



	

 	

 = Mk Pa
k Mk

T + Qk  



	

 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k	



  Forecast step 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = Mk Pa

k Mk
T + Qk  

	

 Kalman filter (KF, Kalman, 1960)	



	

 Must be started from some initial estimate (xb
0, Pb

0)	





 If  all  operators  are  linear,  and  if  errors  are  uncorrelated  in  time, 
Kalman filter produces at time k the BLUE xb

k (resp. xa
k) of the real 

state xk from all data prior to (resp. up to) time k, plus the associated 
estimation error covariance matrix Pb

k (resp. Pa
k).	



	

 If  in  addition  errors  are  gaussian,  the  corresponding  conditional 
probability distributions are the respective gaussian distributions 	



	

 N [xb
k, Pb

k] and N [xa
k, Pa

k].	







M. Ghil et al. 



M. Ghil et al. 



	

 Nonlinearities ?	



	

 Model is usually nonlinear, and observation operators (satellite observations) tend more and more 
to be nonlinear.	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 [yk - Hk(xb
k)]	



	

  Pa
k = Pb

k - Pb
k Hk’T

 [Hk’Pb
kHk’T + Rk]-1 Hk’ Pb

k	



  Forecast step 

  xb
k+1 =  Mk(xa

k)	


	

  Pb

k+1 = Mk’ Pa
k Mk’T + Qk  

	

 Extended Kalman Filter (EKF, heuristic !)	





 	


	

 Costliest part of computation	


	

 	

 	

 	


	

 	

 Pb

k+1 = Mk Pa
k Mk

T + Qk  

	

 Multiplication by Mk = one integration of the model between times k and k+1.	


	

 Computation of Mk Pa

k Mk
T  ≈ 2n integrations of the model 	



	

 Need  for  determining  the  temporal  evolution  of  the  uncertainty  on 
the  state  of  the  system  is  the  major  difficulty  in  assimilation  of 
meteorological and oceanographical observations	





Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral 
truncation T21, unit m. After F. Bouttier)	





Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 



Two solutions :	



• Low-rank filters	


   Use low-rank covariance matrix, restricted to modes 

in  state  space  on  which  it  is  known,  or  at  least 
assumed,  that  a  large  part  of  the  uncertainty  is 
concentrated (this requires the definition of a norm 
on state space).	



 Reduced  Rank  Square  Root  Filters  (RRSQRT, 
Heemink)	



 Singular Evolutive Extended Kalman Filter (SEEK, 
Pham)	


	

 ….	





Reduced Rank Square Root Kalman Filter (RRSQRT, Verlaan and Heemink, 
1997)	



A covariance matrix P can be written as 	



P = S ST	



where  the  column  vectors  of  S  are  the  (orthogonal)  principal  components 
(eigenvectors)  of  P  (the  modulus  of  each  vector  is  the  square  root  of  the 
associated eigenvalue).	



The principle of RRSQRT is to restrict the background error covariance matrix Pb 

to r « n principal components, thereby approximating Pb by (the time index k is 
dropped)	



Pb ≈ Sb SbT	



where Sb has dimensions n x r.	





RRSQRT (continuation 1)	



Setting Ψ  ≡  (HSb)T, the gain matrix of the Kalman filter and the analysis error 
covariance matrix respectively become   	



K = Sb Ψ (ΨTΨ + R)-1	



and	



Pa = Sa SaT	



with	



Sa = Sb [Ir - Ψ (ΨTΨ + R)-1ΨT] 1/2	





RRSQRT (continuation 2)	



In the prediction phase, the column vectors of Sa are evolved by the tangent linear 
model (an evolution of a perturbed state by the full model is also possible). If a 
model error is to be introduced, that is done by reducing the order r of Sa to r-
q, and introducing q new column vectors meant to represent the model error.	



Orthogonality  of  the  column  vectors  is  lost  in  the  prediction,  and  has  to  be 
reestablished. And, even if process is started from dominant column vectors, 
that dominance may of course be lost.	



Advantages  :  in  addition  to  reduced  computational  cost,  numerical  errors  are 
reduced when dealing with square root covariance matrices, as done here, than 
with full matrices (better conditioning).    	





Singular Evolutive Extended Kalman Filter (SEEK, Pham, 1996)	



Based on the fact that, because of the linearity of Kalman Filter, the rank of the 
covariance matrix Pa

 or Pb cannot increase in either the update or the model 
evolution. SEEK performs a linear filter starting from a low rank Pb

0, and so 
runs the exact Kalman filter in the case of a perfect model. The algorithmic 
implementation  takes  advantage  of  the  rank-deficiency  of  the  covariance 
matrix. The rank of the latter is conserved (or decreased), but the subspace 
spanned by the directions with non-zero error evolves, in both the update and 
the dynamic evolution.	



In case model error is present, corresponding covariance matrix Qk is projected 
onto the directions with non-zero error (this is of course an approximation).        



Singular Evolutive Interpolated Kalman Filter (SEIK, Pham, 2001)	



Non-trivial extension of SEEK to nonlinear model or observation operators. Rank 
deficiency is now forced.	





Second solution :	



•  Ensemble filters	


 	

 Uncertainty is represented, not by a covariance matrix, but by 

an ensemble of point estimates in state space that are meant to 
sample the conditional probability distribution for the state of 
the system (dimension L  ≈ O(10-100)).	



	

 Ensemble  is  evolved  in  time  through  the  full  model,  which 
eliminates any need for linear hypothesis as to the temporal 
evolution.	



	

 Ensemble Kalman Filter (EnKF, Evensen, Anderson, …)	





How to update predicted ensemble with new observations ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time : y = Hx + ε	



•  Gaussian approach	


 	

 	


	

 Produce sample of probability distribution for real observed quantity Hx 	


	

 yl = y - εl 

	

 where εl is distributed according to probability distribution for observation error ε.   	

 	



	

 Then use Kalman formula to produce sample of ‘analysed’ states	



	

 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 l = 1, …, L	

	

 (2)	



	

 where Pb
 is the sample covariance matrix of predicted ensemble {xb

l}.	



	

 Remark.  In  case  of  Gaussian  errors,  if  Pb  was  exact  covariance  matrix  of 
background error, (2) would achieve Bayesian estimation, in the sense that {xa

l} 
would be a sample of conditional probability distribution for x, given all data up to 
time k.	





C. Snyder 



⎯  EnKF   ⎯ 3DVar (prior, solid; posterior, dotted) 

Prior  

posterior 

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 
analysis in terms of root-mean square difference averaged over the entire month  

Month-long Performance of EnKF vs. 3Dvar with WRF 

(Meng and Zhang 2007c, MWR, in review ) 



The case of a nonlinear observation operator ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time :   y = H(x) + ε  	

    H nonlinear	



Two possibilities	



1. Take tangent linear approximation (as in Extended KF) and introduce jacobian H’ 	



2. Come back to original formula	



xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	



That  formula does not  require  any other  link between x and y  than the one defined by the 
covariances matrices Cxy and Cyy.	



Here, as shown on the occasion of the derivation of the BLUE, E(x) is the backgound xb, and y - 
E(y) is the innovation y – H(xb)   	



Solution. Compute Cxy and Cyy as sample covariances matrices of the ensembles {xb
l} and {yl - 

H(xb
l)}, where the yl’s  are, as before, the perturbed observations yl = y - εl.     	





But problems	



- Collapse of ensemble for small ensemble size (less than a few hundred). Collapse originates in 
the fact that gain matrix Pb

 HT
 [HPbHT 

 + R]-1 is nonlinear wrt background error matrix Pb, 
resulting in a systematic sampling effect. Solution : empirical ‘covariance inflation’.	



-  Spurious  correlations  appear  at  large  geographical  distances.  Empirical  ‘localization’ (see 
Gaspari and Cohn, 1999, Q. J. R. Meteorol. Soc.)	



-  In formula	



xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 	

 l = 1, …, L	



Pb, which is covariance matrix of an L-size ensemble, has rank L-1 at most. This means that 
corrections made on ensemble elements are contained in a subspace with dimension L-1. 
Obviously very restrictive if L « p , L « n.	





Houtekamer and Mitchell (1998) use two ensembles, the elements of each of 
which are updated with covariance matrix of other ensemble.	





There exist many variants of Ensemble Kalman Filter	



Ensemble Transform Kalman Filter (ETKF, Bishop et al., Mon. Wea. Rev., 2001)	



Requires  a  prior  ‘control’ analysis  xc
a,  emanating  from a  background  xc

b.  An  ensemble  is 
evolved about that control without explicit use of the observations (and without feedback to 
control)	



More precisely, define L x L matrix T such that, given Pb = ZZT, then Pa = ZTTTZT (not trivial, 
but possible). Then the background deviations xb

l – xc
b are transformed through Z → ZT into 

an ensemble of analysis deviations xa
l – xc

a.	



	

 (does not avoid collapse of ensembles) 	



Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., Physica D, 2007)	



Each gridpoint is corrected only through the use of neighbouring observations. 	





Other variants of Ensemble Kalman Filter	



‘Unscented’ Kalman Filter (Wan and van der Merve, 2001, Wiley Publishing)	



Weighted Kalman Filter (Papadakis et al., 2010, Tellus A)	



Inflation-free Ensemble Kalman Filters (Bocquet and Sakov, 2012, Nonlin. Processes 
Geophys.)  	





38 

Bayesian properties of Ensemble Kalman Filter ?	



Very little is known.	



 Le Gland et al. (2011). In the linear and gaussian case, the discrete pdf 
defined by the filter, in the limit of infinite sample size L, tends to the 
bayesian gaussian pdf. 

	

 No result  for  finite  size  (note  that  ensemble  elements  are  not  mutually 
independent)	



	

 In  the  nonlinear  case,  the  discrete  pdf  tends  to  a  limit  which  is  in 
general not the bayesian pdf.	





Situation still not entirely clear.	



In any case, optimality always requires errors to be independent in time. In 
order to relax that constraint, it is necessarily to augment the state vector 
in the temporal dimension.	




