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 In  the  linear  case,  Kalman  Filter  and  Variational  Assimilation 
produce the same estimate at the end of the assimilation window, i. e., 
the  BLUE of  the  state  of  the  system from all  available  data.  If  in 
addition  errors  are  Gaussian,  both  algorithms  achieve  Bayesian 
estimation.	


	
 	




Incremental Method	


	
 Variational  assimilation,  as  it  has  been  described,  requires  the  use  of 
the adjoint of the full model.	


	
 Simplifying  the  adjoint  as  such  can  be  very  dangerous.  The 
computed  gradient  would  not  be  exact,  and  experience  shows  that 
optimization  algorithms  (and  especially  efficient  ones)  are  very 
sensitive to even slight misspecification of the gradient.	


	
 Principle  of  Incremental  Method  (Courtier  et  al.,  1994,  Q.  J.  R. 
Meteorol.  Soc.)  :  simplify  simultaneously  the  (local  tangent  linear) 
dynamics and the corresponding adjoint. 



Incremental Method (continuation 1)	


	
 - Basic (nonlinear) model	

	
  ξk+1 = Mk(ξk) 	


	
 - Tangent linear model	

	
  δξk+1 = Mk’ δξk 	

	
 	

	
 where Mk’ is jacobian of Mk at point ξk.	


	
 - Adjoint model	

	
  λk = Mk’T λk+1 + …	


	
  Incremental Method. Simplify Mk’ and Mk’T.	




Incremental Method (continuation 2)	


	
 More  precisely,  for  given  solution  ξk
(0) of  nonlinear  model,  replace  tangent 

linear and adjoint models respectively by 	

	
 	

	
  δξk+1 = Lk δξk 	
 	
  (2) 	

	
 	

	
 and	

	
 	

	
 λk = Lk

T λk+1 + …	


	
 where Lk is an appropriate simplification of jacobian Mk’.	


	
 It  is  then  necessary,  in  order  to  ensure  that  the  result  of  the  adjoint 
integration is the exact gradient of the objective function, to modify the basic 
model in such a way that the solution emanating from ξ0

(0) + δξ0 is equal to 
ξk

(0) + δξk, where δξk evolves according to (2). This makes the basic dynamics 
exactly linear.	




Incremental Method (continuation 3)	


	
 As  concerns  the  observation  operators  in  the  objective  function,  a  similar  procedure 
can be implemented if those operators are nonlinear. This leads to replacing Hk(ξk) by 
Hk(ξk

(0)) + Nkδξk,  where  Nk is  an appropriate ‘simple’ linear operator (possibly, but not 
necessarily, the jacobian of Hk at point ξk

(0)). The objective function depends only on the 
initial δξ0 deviation from ξ0

(0), and reads  

	
 JI(δξ0)  =  (1/2) (x0
b - ξ0

(0) - δξ0)T [P0
b]-1 (x0

b - ξ0
(0) - δξ0) 	


	
 	
 	
 	
 	
 + (1/2) Σk[dk - Nkδξk]T Rk
-1 [dk - Nkδξk]  

 where dk ≡ yk - Hk(ξk
(0)) is the innovation at time k, and the δξk evolve according to  

	
 	

	
  δξk+1 = Lk δξk 	
 	
  (2) 	

	
 	

	
 With  the  choices  made  here,  JI(δξ0) is  an  exactly  quadratic  function  of  δξ0.  The 

minimizing perturbation δξ0,m defines a new initial state ξ0
(1) ≡ ξ0

(0) + δξ0,m, from which a 
new solution ξk

(1) of the basic nonlinear equation is determined. The process is restarted 
in the vicinity of that new solution.	


	
 	

	
 	




Incremental Method (continuation 4)	


	
 This  defines  a  system  of  two-level  nested  loops  for  minimization. 
Advantage  is  that  many  degrees  of  freedom are  available  for  defining  the 
simplified  operators  Lk  and  Nk,  and  for  defining  an  appropriate  trade-off 
between practical implementability and physical usefulness and accuracy. It is 
the  incremental  method  which,  together  with  the  adjoint  method,  makes 
variational assimilation possible.	


	
 First-Guess-At-the-right-Time  3D-Var  (FGAT  3D-Var).  Corresponds  to  Lk  = 
In.  Assimilation is  four-dimensional  in  that  observations are  compared to  a 
first-guess which evolves in time, but is three-dimensional in that no dynamics 
other than the trivial dynamics expressed by the unit operator is present in the 
minimization. 	




	
 Buehner et al. (Mon. Wea. Rev., 2010)	

	
 	

	
 For  the  same  numerical  cost,  and  in  meteorologically  realistic 

situations,  Ensemble  Kalman  Filter  and  Variational  Assimilation 
produce results of similar quality.	




Two questions	


	
 -  How  to  propagate  information  backwards  in  time  ? 
(useful for reassimilation of past data)	


	
 -  How  to  take  into  account  possible  temporal  correlations 
in errors ?	


Kalman Filter, whether in its standard linear form or in its Ensemble form, 
does neither.	




Weak constraint variational assimilation 	


Allows for errors in the assimilating model	


•  Data	

	
 	
 - Background estimate at time 0	

	
 	
 	

	
 	
   x0

b  =  x0
  + ζ0

b 	
  E(ζ0
bζ0

bT) = P0
b	


	
 	
 - Observations at times k = 0, …, K	

	
 	
 	

	
 	
    yk = Hkxk + εk	
 E(εkεk

T) = Rk	


	
 	
  - Model	

	
 	
  	

	
 	
   xk+1 = Mkxk + ηk 	
  E(ηkηk

T) = Qk k = 0, …, K-1	
 	
 	
 	


	
 	
 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	




	
 Then objective function	

	
 	


	
 (ξ0, ξ1, ..., ξK) → 	


	
 J(ξ0, ξ1, ..., ξK)   

  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	


	
 	
     + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	


	
 	
     + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]  

  
  Can include nonlinear Mk and/or Hk.	


	
  Implemented operationally at ECMWF for the assimilation in the stratosphere.	


	
 Becomes singular in the strong constraint limit Qk → 0 

       
	
 	
 	




Dual  Algorithm  for  Variational  Assimilation  (aka  Physical  Space 
Analysis  System,  PSAS,  pronounced ‘pizzazz’;  see  in  particular  book 
and papers by Bennett)	


xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	


xa = xb + Pb
 HT

 Λ-1 d = xb + Pb
 HT

 m	


where Λ ≡ HPbHT + R, d ≡ y - Hxb and m ≡ Λ-1 d maximises	


µ  →  K(µ) = -(1/2) µT Λ µ + dTµ 	


Maximisation is performed in (dual of) observation space.	




Dual Algorithm for Variational Assimilation (continuation 2)	


Extends to time dimension, and to weak-constraint case, by defining state vector as	


	
 	
 	
 	
 x ≡ (x0
T, x1

T
 , …, xK

T)T	


or, equivalently, but more conveniently, as	


x ≡ (x0
T, η0

T
 , …, ηK-1

T)T	


where, as before	


	
 	
 ηk =  xk+1 - Mkxk   ,	
 k = 0, …, K-1 

The background for x0 is x0
b, the background for ηk is 0. Complete background is	


	
 	
 	
 	
 xb = (x0
bT, 0T

 , …,  0T)T	


It is associated with error covariance matrix 	

	
 	
 	
 	
 	

	
 	
 	
 	
  Pb = diag(P0

b, Q0 , …, QK-1)	




Dual Algorithm for Variational Assimilation (continuation 3)	


Define global observation vector as	


y ≡ (y0
T, y1

T
 , …, yK

T)T	


and global innovation vector as	


d ≡ (d0
T, d1

T
 , …, dK

T)T	


where 	
 	
 dk ≡ yk – Hk xk
b, with xk+1

b ≡ Mkxk
b ,	
 k = 0, …, K-1 	




Dual Algorithm for Variational Assimilation (continuation 4)	


For any state vector ξ = (ξ 0T, υ0
T

 , …, υK-1
T)T, the observation operator H 	


ξ  → Hξ = (u0
T, …, uK

T)T 	


is defined by the sequence of operations 	


u0 = H0ξ 0	


then for k = 0, …, K-1 	


ξk+1 = Mkξk + υk 	

uk+1  = Hk+1 ξk+1 	


The observation error covariance matrix is equal to	

	
 	
 	
 	
 	

	
 	
 	
 	
  R = diag(R0, …,  RK)	




Dual Algorithm for Variational Assimilation (continuation 5)	


Maximization of dual objective function 	

µ  →  K(µ) = -(1/2) µT Λ µ + dTµ 	


requires explicit repeated computations of its gradient 	


∇µ K  = - Λµ + d = - (HPbHT + R)µ + d	


Starting from µ = (µ0
T, …, µΚ

T)T belonging to (dual) of observation space, this requires 5 successive steps 	


	
 - Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above, viz.,	


	
 	
 Set 	
 χΚ = 0	

	
 	
 Then, for k = K-1, …, 0	

	
 	
 	
 	
    	


	
  νk  = χk+1  +  Hk+1
T

 µk+1	

χk  =  Mk

T
 νk	


	
 	
  Finally	
 	
           λ0  = χ0  +  H0
T

 µ0	


	
 The output of this step, which includes a backward integration of the adjoint model, is the vector 	

	
 (λ0

T, ν0
T

 , …, νK-1
T)T	




Dual Algorithm for Variational Assimilation (continuation 6)	


	
 - Step 2. Multiplication by Pb. This reduces to	


	
 	
 	
 ξ 0 = P0
b λ0	


	
 	
 	
 υk = Qkνk 	
 ,  k = 0, …, K-1 	


	
 - Step 3. Multiplication by H. Apply the process defined above on the vector (ξ 0T, 
υ0

T
 , …, υK-1

T)T, thereby producing vector (u0
T, …, uK

T)T.	


	
 - Step 4. Add vector Rµ, i. e. compute 	

	
 	
 	
 	
  ϕ0  = ξ0 + R0 µ0	

	
 	
 	
 	
 ϕk  = υk-1 + Rk µk	
  ,  k = 1, …,  	


	
 - Step 5. Change sign of vector ϕ = (ϕ0
T, …, ϕΚT)T, and add vector d = y - Hxb,	




Dual Algorithm for Variational Assimilation (continuation 7)	


Dual algorithm remains regular in the limit of vanishing model error. Can be used	

for both strong- and weak-constraint assimilation.	


No significant increase of computing cost in comparison with standard strong 	

constraint variational assimilation (Courtier, Louvel)	




Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999 



Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999 



Dual Algorithm for Variational Assimilation (continuation)	


Requires	


  Explicit background (not much of a problem)	


  Exact linearity (much more of a problem). Definition of iterative nonlinear 
procedures is being studied (Auroux, …)	




Auroux, Doctoral Dissertation, Université de Nice-Sophia Antipolis, Nice, 2003 



 Variational  assimilation  has  been  extended  to  non  Gaussian  probability  distributions 
(lognormal distributions), the unknown being the mode of the conditional distribution 
(M. Zupanski, Fletcher).	


	
 Bayesian character of variational assimilation ?	


	
 - If everything is linear and gaussian, ready recipe for obtaining bayesian sample	

	
 	

	
 Perturb  data  (background,  observations  and  model)  according  to  their  error 

probability distributions, do variational assimilation, and repeat process	


	
  Sample of system orbits thus obtained is bayesian	


	
 - If not, very little can be said at present 



Time-correlated Errors	


  Example of time-correlated observation errors	


  z1 = x + ζ1	
 	


  z2 = x + ζ2	
 	


	
 	
 E(ζ1) = E(ζ2) = 0   ;  E(ζ1
2) = E(ζ2

2) = s    ;     E(ζ1ζ2) = 0 	


	
 	
 BLUE of x from z1 and z2 gives equal weights to z1 and z2.	


	
 	
 Additional observation then becomes available 	

	
 	
 	

	
 	
 z3 = x + ζ3	
 	

	
 	
 E(ζ3) = 0    ;    E(ζ3

2) = s    ;    E(ζ1ζ3) = cs    ;    E(ζ2ζ3) = 0 	


	
 	
  BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)	




Time-correlated Errors (continuation 1)	


  Example of time-correlated model errors	


	
 	
 Evolution equation	

`	
 	
 xk+1 = xk + ηk	
  E(ηk

2) = q	

	
 	
 	

	
 	
 Observations	

	
 	
 yk = xk + εk , 	
  k = 0, 1, 2	
	
 E(εk

2) = r, 	
errors uncorrelated in time	

	
 	
 	

 Sequential  assimilation.  Weights  given  to  y0  and  y1  in  analysis  at  time  1  are  in  the  ratio 

r/(r+q). That ratio will be conserved in sequential assimilation. All right if model errors are 
uncorrelated in time.	


   
  Assume  E(η0η1) = cq	

	
 	
  Weights given to y0 and y1 in estimation of x2 are in the ratio 	


	
 	
 	
 	
 	
  	

  	


€ 

€ 

ρ =
r − qc

r + q + qc



Conclusion	


 Sequential assimilation, in which data are processed by batches, the data of one 
batch being discarded once that batch has been used, cannot be optimal if data in different 
batches are affected with correlated errors. This is so even if one keeps trace of the 
correlations. 

	
 Solution	


	
 	
 Process all correlated in the same batch (4DVar, some smoothers)	

	
 	
 	
 	
 	
  	

  	


€ 
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Time-correlated Errors (continuation 3)	


 Moral.  If  data  errors  are  correlated  in  time,  it  is  not  possible  to  discard  observations  as 
they are used. In particular, if model error is correlated in time, all observations are liable to 
be reweighted  as assimilation proceeds.	


	
 Variational assimilation can take time-correlated errors into account.	


	
 	
 Example of time-correlated observation errors. Global covariance matrix	


	
 	
 	
 R = (Rkk’ = E(εkεk’
T))	


	
 	
 Objective function	


ξ0 ∈  S   → 	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σkk’[yk - Hkξk]T [R -1]kk’ [yk’ - Hk’ξk’]  

	
 	
 where [R -1]kk’ is the kk’-sub-block of global inverse matrix R -1.	


	
 Similar approach for time-correlated model error.	


€ 
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Time-correlated Errors (continuation 4)	


 Temporal  correlation  of  observational  error  has  been  introduced  by  ECMWF  (Järvinen 
et  al.,  1999) in variational  assimilation of high-frequency surface pressure observations 
(correlation originates in that case in representativeness error).	


	
 Identification and quantification of time correlation of errors, especially model errors ?	


€ 



Conclusion on Sequential Assimilation	


	
 Pros 	

	
      	
 ‘Natural’, and well adapted to many practical situations	

           Provides, at least relatively easily, explicit estimate of estimation 

error	


	
 Cons 	

	
 	
 Carries information only forward in time (of no importance 	

if one is interested only in doing forecast)	

            In present form, optimality is possible only if errors are independent 

in time	

	
 	
 	


	
 	




Conclusion on Variational Assimilation	


	
 Pros 	

	
  	
 Carries  information  both  forward  and  backward  in  time  (important  for 

reassimilation of past data).	

	
 	
 Can easily take into account temporal statistical dependence (Järvinen et al.)	

	
 	
 Does not require explicit computation of temporal evolution of estimation error	

	
 	
 Very well adapted to some specific problems (e. g., identification of tracer sources)	


	
 Cons 	

	
  	
 Does not readily provide estimate of estimation error 	

	
 	
 Requires  development  and  maintenance  of  adjoint  codes.  But  the  latter  can 

have other uses (sensitivity studies).	

	
  	

•  Dual approach seems most promising. But still needs further development for application 

in non exactly linear cases. 	


•  Is ensemble variational assimilation possible ? Probably yes. But also needs development.	




	
 Kalman smoother 	


	
 Propagates information both forward and backward in time, as does 4DVar, 
but uses Kalman-type formulæ	


	
 Various possibilities 	


  Define new state vector  xT ≡ (x0
T, …, xK

T)	

	
 and use Kalman formula from a background xb

 and associated covariance 
matrix Πb.	


	
 Can take into account temporal correlations         

  Update sequentially vector (x0
T, …, xk

T) T for increasing k	

	
 Cannot take into account temporal correlations  

	
 Algorithms exist in ensemble form	




E. Cosme, 
HDR, 
2015, 
Lissage 
d’ensemble 
SEEK 



E. Cosme, HDR, 2015, Lissage d’ensemble SEEK 



	
 In  the  linear  case,  Kalman  Smoother  and  Variational  Assimilation 
produce the same estimate over the whole assimilation window, i. e., 
the  BLUE of  the  state  of  the  system from all  available  data.  If  in 
addition  errors  are  Gaussian,  both  algorithms  achieve  Bayesian 
estimation.	


	
 	



