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Physical laws governing the flow

=  Conservation of mass
Dp/Dt + pdivU = 0

= Conservation of energy
De/Dt - (p/?) Dp/Dt = Q

=  Conservation of momentum
DU/Dt + (1/p) gradp - g+ 2 2 AU=F

= Equation of state
fir,p,e)=0 (plp=rT,e=C,T)

= Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, ...)

Dg/Dt + q divU =S

These physical laws must be expressed in practice in discretized (and necessarily

imperfect) form, both in space and time 3



- Le systeme d’observation météorologique

- Assimilation. Les bases de 1’estimation
statistique



ECMWEF Data Coverage (All obs DA) - Synop-Ship-Metar
19/Apr/2017; 00 UTC
Total number of obs = 75324
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ECMWEF Data Coverage (All obs DA) - Temp
19/Apr/2017; 00 UTC
Total number of obs = 1872




ECMWF Data Coverage (All obs DA) - Pilot-Profiler
19/Apr/2017; 00 UTC
Total number of obs = 3846




ECMWEF Data Coverage (All obs DA) - Aircraft
19/Apr/2017; 00 UTC
Total number of obs = 204324
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ECMWEF Data Coverage (All obs DA) - AMSU-A
19/Apr/2017; 00 UTC
Total number of obs = 526686
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ECMWEF Data Coverage (All obs DA) - AMV WV

19/Apr/2017; 00 UTC
Total number of obs = 451877
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ECMWF Data Coverage (All obs DA) - AMV VIS
19/Apr/2017; 00 UTC
Total number of obs = 129800
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ECMWEF Data Coverage (All obs DA) - GPSRO
19/Apr/2017; 00 UTC
Total number of obs = 8716
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ECMWEF Data Coverage (All obs DA) - Buoy
19/Apr/2017; 00 UTC
Total number of obs = 16603




ECMWEF Data Coverage (All obs DA) - OZONE
19/Apr/2017; 00 UTC
Total number of obs = 62793
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ECMWF

Numberof active obserations perday (millions)
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Synoptic observations (ground observations, radiosonde observations),

performed simultaneously, by international agreement, in all meteorological
stations around the world (00:00, 06:00, 12:00, 18:00 UTC)

Asynoptic observations (satellites, aircraft), performed more or less
continuously in time.

Direct observations (temperature, pressure, horizontal components of the wind,
moisture), which are local and bear on the variables used for for describing the
flow in numerical models.

Indirect observations (radiometric observations, ...), which bear on some more
or less complex combination (most often, a one-dimensional spatial integral)
of variables used for for describing the flow

y = H(x)

H : observation operator (for instance, radiative transfer equation)



Echamillonnage de la circulation océanique par les missions altimétriques sur 10 jours :
combinaison Topex-Poséidon/ERS-1

S. Louvel, Doctoral Dissertation, 1999




Longitude

N
<
1

38 ¢

Latitude

FiG. 1 — Bassin méditerranéen occidental: réseau d observation tomographique de [’ex-
périence Thétis 2 et limites du domaine spatial utilis€ pour les ezpériences numériques

d’assimilation.

E. Rémy, Doctoral Dissertation, 1999



Purpose of assimilation : reconstruct as accurately as possible the state of the
atmospheric or oceanic flow, using all available appropriate information. The latter

essentially consists of

= The observations proper, which vary in nature, resolution and accuracy, and

are distributed more or less regularly in space and time.

= The physical laws governing the evolution of the flow, available in practice in

the form of a discretized, and necessarily approximate, numerical model.

= ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although
they basically are necessary consequences of the physical laws which govern the flow, these

properties can usefully be explicitly introduced in the assimilation process.



Assimilation is one of many ‘inverse problems’ encountered
in many fields of science and technology

e solid Earth geophysics

e plasma physics
* ‘nondestructive’ probing

* navigation (spacecraft, aircraft, ....)

Solution most often (if not always) based on Bayesian, or
probabilistic, estimation. ‘Equations’ are fundamentally the
same.



Difficulties specific to assimilation of meteorological observations :

- Very large numerical dimensions (n = 10°10° parameters to be
estimated, p = 4-5.107 observations per 24-hour period). Difficulty
aggravated in Numerical Weather Prediction by the need for the forecast to

be ready in time.

- Non-trivial, actually chaotic, underlying dynamics



Both observations and ‘model’ are affected with some uncertainty = uncertainty on the estimate.

For some reason, uncertainty is conveniently described by probability distributions (don’t
know too well why, but it works; see, e.g. Jaynes, 2007, Probability Theory: The Logic of
Science, Cambridge University Press).

Assimilation is a problem in bayesian estimation.

Determine the conditional probability distribution for the state of the system, knowing

everything we know (see Tarantola, A., 2005, Inverse Problem Theory and Methods for
Model Parameter Estimation, SIAM).
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Colt des différentes composantes de la chaine de prévision
opérationnelle du CEPMMT (septembre 2015, J.-N. Thépaut) :

4DVAR: 9.5%
HRES FC: 4.5%
EDA: 30%

ENS: 22%

ENS: hindcasts 14%

Other: 20% of which BC AN: 3.5% BC FC: 4% BC ENS: 9.5%

L'EDA fournit a la fois les variances d'erreur d’ébauche du 4D-Var, et

les perturbations initiales (en complément des vecteurs singuliers) de
I'EPS.



ratio of supercomputer costs:
1 day's assimilation / 1 day forecast

100

Computer power increased by 1M in 30 years.

Only 0.04% of the Moore’s Law increase over

this time went into improved DA algorithms,
rather than improved resolution!
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Bayesian Estimation

Determine conditional probability distribution of the state of the
system, given the probability distribution of the uncertainty on the data

=X+ §1=M0,51]
density function p,(&) « expl - (&%)/2s]

Z2=x'|'§2 szMOaSQ]
density function p,(&) o expl[ - (£2)/2s,]

* , and &, mutually independent

What is the conditional probability P(x = &1 z,, z,) that x be equal to some
value & ?

26



z1=x+ density function p,(&) « exp| - (&2)/2s,]
,=x+ &, density function p,(&) « expl - (&%)/2s,]
&, and &, mutually independent

x=§ « §=z-§and §,=2,-&

* P(x=&1z),2) ¢ pi(2-8) py(2,-8)
o expl - (& -x9)*/2p“]

where 1/p9 = 1/s, + 1/s, , x9= p?(z,/s, + 2,/5,)

Conditional probability distribution of x, given z, and z, N [xe, p]
p* < (84, s,) iIndependent of z, and z,



prorx - NiD3)
Ikathcod piyoix) ~ N3 1)
postencrx ~ N2 25 075)

peioex - N(0,.3)
Kathood piyodd ~ NS 1)
posiriorx ~ N(ATS,075)

prorx -~ N(D,3)
Ikathocodpiyolx) ~ N7 1)
pogtenorx ~ NS 25 075)

pricex ~ N(0,3)
athood pdyodd ~ N9.1)
posktirx ~ NE75,075)

Fig. 1.1: Prior pdf p(z) (dashed line), posterior pdf p(z|y®) (solid line), and Gaussian
likelihood of observation p(y°|z) (dotted line), plotted against 2 for various values of
y°. (Adapted from Lorenc and Hammon 1988.)



Conditional expectation Xx“ minimizes following scalar objective
function, defined on &-space

E—= J& = 112)[(z -8/ s+ (z- 8/ 5, ]

In addition

p*=1/7"(x)
Conditional probability distribution in Gaussian case

P(x= &1z, 2,) « expl - (§-x9)*/2p"]

J

1

(&) + Cst



Estimate
X4 =pa (Zl/Sl + Z2/S2)
with error p“ such that

I/p*=1/s, + 1/s,

can be obtained, independently of any Gaussian hypothesis, as simply

corresponding to the linear combination of z, and z, that minimizes the
error E [(x*—x)?]

Best Linear Unbiased Estimator (BLUE)



Z1=x+ ¢
L,=x+G

Same as before, but £, and &, are now distributed according to exponential law
with parameter a, i. e.

p (&) xexpl-I€l/a] ; Var(f)=2a

Conditional probability density function is now uniform over interval [z, z,],
exponential with parameter a/2 outside that interval

E(x 1z, 25) =(z442,)/2
Var(x | z;, 2,) = a®> Q&3 + &+ 6 +1/2) / (1 + 26), with 6 = |z1—z2 | /2a)

Increases from a?/2 to o as ¢ increases from 0 to o. Can be larger than variance 2a>
of original errors (probability 0.08)

. lap-alwysd b esian estimat



Bayesian estimation

State vector x, belonging to state space S'(dim.S'= n), to be estimated.
Data vector z, belonging to data space 7)(dimZ) = m), available.

z=F(x, § (1)

where ¢ is a random element representing the uncertainty on the data (or, more
precisely, on the link between the data and the unknown state vector).

For example

z=Ix+C



Bayesian estimation (continued)
Probability that x = & for given & ?
x=§ = z=FE 9
P(x=Elz)=Plz=F(& 0]/ [- Plz=F(&, 0]
Unambiguously defined iff, for any C, there is at most one x such that (1) is verified.

< data contain information, either directly or indirectly, on any component of
x. Determinacy condition.



Bayesian estimation 1s however impossible in its general theoretical
form in meteorological or oceanographical practice because

It 1s impossible to explicitly describe a probability distribution in a space
with dimension even as low as 7 = 10°, not to speak of the dimension n =
10%? of present Numerical Weather Prediction models.

Probability distribution of errors on data very poorly known (model errors
in particular).



One has to restrict oneself to a much more modest goal. Two
approaches exist at present

= Obtain some ‘central’ estimate of the conditional probability
distribution (expectation, mode, ...), plus some estimate of the
corresponding spread (standard deviations and a number of
correlations).

* Produce an ensemble of estimates which are meant to sample the
conditional probability distribution (dimension N = O(10-100)).



Random vector x = (x, x,, ..., x,)1 = (x;) (e. g. pressure, temperature, abundance of
given chemical compound at n grid-points of a numerical model)

= Expectation E(x) = [E(x;)] ; centred vector x’ =x- E(x)
= (Covariance matrix
E@x™) = [E(;'x)]

dimension nxn, symmetric non-negative (strictly definite positive except if linear
relationship holds between the x,”‘s with probability 1).

= Two random vectors
X = (X, %, .00y X,)T
y = (yl’yza "'ayp)T

E(x’y ’T) — E(xiayja)

dimension nxp



Covariance matrices will be denoted

= E(x’x’h)

XX

C,, = E(x’y")



Random function @(&) (field of pressure, temperature, abundance of

given chemical compound, ... ; & is now spatial and/or temporal
coordinate)
" Expectation E[P(§)] ; D’(8) = DS) - E[P(5)]

Variance  Var[®(§)] = E{[ P’ (§)]*}

Covariance function

(51, ) — Ccp(’gl, ) = E[DP(§) D(&5)]

Correlation function

Cory(& &) = EL'(&) D (E)]/ {Varl D(E)] Var D(E)]}”



.: Isolines for the auto-correlations of the 500 mb
geopotential between the station in Hannover and

surrounding stations.
From Bertoni and Lund (1963)

After N. Gustafsson

“

. Isolines of the cross-correlation between the 500 mb

geopotential in station 01 384 (R) and the surface
pressure in surrounding stations.



After N. Gustafsson

o~

Figure 4.2.4.3: Iloiincn for the auto-cori:elatic.m of the 500 mb

u-wind component (dashed line) and the auto-
correlation of the 500 mb v-wind component (full
line). The "star" indicates the position of the re-
ference station. (Prom Buel (1972).



Figure 5.1.1.4.1 Auto-correlation of errors in 12h numerical fore-
casts of surface pressure in a reference station
(Stockholm) and other stations. -

After N. Gustafsson



Cours a venir

Teudi 6 avei]
Teudi 13 avei]
Teudi 20 avei]
Jeudi 11 mai
Lundi 29 mai
Jeudi 1 juin
Jeudi 15 juin
Jeudi 22 juin

De 10h00 a 12h30, Salle dcj, la Serre, Sieme éEtage,
Département de Gé€osciences, Ecole Normale Supérieure,

24, rue Lhomond, Paris 5



