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Physical laws governing the flow	


  Conservation of mass	


	

 Dρ/Dt + ρ divU  =  0	

 	



  Conservation of energy	


	

 De/Dt - (p/ρ2) Dρ/Dt =  Q	



  Conservation of momentum	


	

 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	



  Equation of state	


	

  f(p, ρ, e) =  0	

 	

 	

 (p/ρ = rT, e = CvT)	



  Conservation of mass of secondary components (water in  the atmosphere, salt 
in the ocean, chemical species, …)	



	

 Dq/Dt + q divU  = S	



These physical laws must be expressed in practice in discretized (and necessarily	


imperfect) form, both in space and time	





 	



- Le système d’observation météorologique	



-  Assimilation.  Les  bases  de  l’estimation 
statistique 	



	

  

























ECMWF 



  Synoptic  observations  (ground  observations,  radiosonde  observations), 
performed simultaneously,  by international  agreement,  in all  meteorological 
stations around the world (00:00, 06:00, 12:00, 18:00 UTC)	



  Asynoptic  observations  (satellites,  aircraft),  performed  more  or  less 
continuously in time.	



  Direct observations (temperature, pressure, horizontal components of the wind, 
moisture), which are local and bear on the variables used for for describing the 
flow in numerical models.	



  Indirect observations (radiometric observations, …), which bear on some more 
or less complex combination (most often, a one-dimensional spatial integral) 
of variables used for for describing the flow 	



y = H(x)   	



	

  H : observation operator (for instance, radiative transfer equation)	





S. Louvel, Doctoral Dissertation, 1999	





E. Rémy, Doctoral Dissertation, 1999 



 Purpose of assimilation : reconstruct as accurately as possible the state of the 
atmospheric or oceanic flow, using all available appropriate information. The latter 
essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, and 
are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in practice in 
the form of a discretized, and necessarily approximate, numerical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although 
they basically are necessary consequences of the physical laws which govern the flow, these 
properties can usefully be explicitly introduced in the assimilation process. 



 Assimilation  is  one  of  many  ‘inverse  problems’ encountered 
in many fields of science and technology	



•  solid Earth geophysics	



•  plasma physics	



•  ‘nondestructive’ probing	



•  navigation (spacecraft, aircraft, ….)	



•  …	



	

 Solution  most  often  (if  not  always)  based  on  Bayesian,  or 
probabilistic,  estimation.  ‘Equations’ are  fundamentally  the 
same. 



Difficulties specific to assimilation of meteorological observations :	



	

 -  Very  large  numerical  dimensions  (n  ≈  106-109  parameters  to  be 
estimated,  p  ≈  4-5.107  observations  per  24-hour  period).  Difficulty 
aggravated in Numerical Weather Prediction by the need for the forecast to 
be ready in time.	



	

 - Non-trivial, actually chaotic, underlying dynamics	
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Both observations and ‘model’ are affected with some uncertainty ⇒ uncertainty on the estimate. 

 For some reason, uncertainty is conveniently described by probability distributions (don’t 
know too well why, but it works; see, e.g. Jaynes, 2007, Probability Theory: The Logic of 
Science, Cambridge University Press). 

 Assimilation is a problem in bayesian estimation. 

 Determine the conditional probability distribution for the state of the system, knowing 
everything we know (see Tarantola, A., 2005, Inverse Problem Theory and Methods for 
Model Parameter Estimation, SIAM). 



	

 Coût  des  différentes  composantes  de  la  chaîne  de  prévision 
opérationnelle du CEPMMT (septembre 2015, J.-N. Thépaut) :	



	

 4DVAR: 9.5% 
 HRES FC: 4.5% 
 EDA: 30% 
 ENS: 22% 
 ENS: hindcasts 14% 

 Other: 20% of which BC AN: 3.5% BC FC: 4% BC ENS: 9.5% 

	

 L'EDA fournit  à  la  fois  les  variances  d'erreur  d’ébauche  du  4D-Var,  et 
les  perturbations  initiales  (en  complément  des  vecteurs  singuliers)  de 
l'EPS.	





© Crown copyright   Met Office  	



ratio of supercomputer costs:   
1 day's  assimilation / 1 day forecast
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Computer power increased by 1M in 30 years. 
Only 0.04% of the Moore’s Law increase over 
this time went into improved DA algorithms, 
rather than improved resolution! 

Courtesy A. Lorenc 
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Bayesian Estimation   

 Determine  conditional  probability  distribution  of  the  state  of  the 
system, given the probability distribution of the uncertainty on the data	



  z1 = x + ζ1	

  ζ1 = N [0, s1] 	



	

 	

 	

 	

  density function 	

p1(ζ) ∝ exp[ - (ζ2)/2s1]	



  z2 = x + ζ2	

  ζ2 = N [0, s2] 	



	

 	

 	

 	

  density function 	

p2(ζ) ∝ exp[ - (ζ2)/2s2]	



•  ζ1 and ζ2 mutually independent	



What is the conditional probability P(x = ξ | z1, z2) that x be equal to some 
value ξ ?	





  z1 = x + ζ1	

 density function 	

 p1(ζ) ∝ exp[ - (ζ2)/2s1]	


  z2 = x + ζ2	

  density function 	

p2(ζ) ∝ exp[ - (ζ2)/2s2] 	



	

 	

 	

 ζ1 and ζ2 mutually independent	



x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ	



•  P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)	



	

 	

 	

         ∝  exp[ - (ξ -xa)2/2pa]  

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1
 + z2/s2)	



Conditional probability distribution of x, given z1 and z2 :N [xa, pa]	


pa < (s1, s2) independent of z1 and z2 	







 Conditional  expectation  xa  minimizes  following  scalar  objective 
function, defined on ξ-space	



	

 	

  ξ →   J(ξ) ≡  (1/2) [(z1 - ξ)2 / s1 + (z2 - ξ)2 / s2 ] 

	

  In addition	



	

 	

  pa = 1/ J’’(xa)  

 Conditional probability distribution in Gaussian case 

   P(x = ξ | z1, z2) ∝ exp[ - (ξ -xa)2/2pa]  

	

 	

 	

 	

 	

 J(ξ) + Cst  



 Estimate	



	

 	

 	

 xa = pa (z1/s1
 + z2/s2)	



	

 with error pa such that	



	

 	

 	

  1/pa = 1/s1 + 1/s2  	



 can be obtained, independently of any Gaussian hypothesis, as simply 
corresponding to the linear combination of z1 and z2  that minimizes the 
error Ε [(xa-x) 2]  

   Best Linear Unbiased Estimator (BLUE)  



  z1 = x + ζ1	

 	


  z2 = x + ζ2	

 	



	

 	

 Same as before, but ζ1 and ζ2 are now distributed according to exponential law 
	

 with parameter a, i. e.  	



	

 	

 	

 p (ζ) ∝ exp[-|ζ |/a]   ;    Var(ζ) = 2a2	



Conditional probability density function is now uniform over interval [z1, z2], 	


exponential with parameter a/2 outside that interval	



	

 E(x | z1, z2)  = (z1+z2)/2	



	

 Var(x | z1, z2) = a2 (2δ3/3 + δ2 + δ +1/2) / (1 + 2δ), with δ =  ⏐z1-z2⏐/(2a)	


	

 Increases from a2/2 to ∞ as δ increases from 0 to ∞. Can be larger than variance 2a2	



	

 of original errors (probability 0.08)	



	

 (Entropy -∫plnp always decreases in bayesian estimation)	





Bayesian estimation   

State vector x, belonging to state space S (dimS = n), to be estimated.	



Data vector z, belonging to data space D (dimD = m), available.	



	

  z = F(x, ζ)     (1) 

where  ζ  is  a  random  element  representing  the  uncertainty  on  the  data  (or,  more 
precisely, on the link between the data and the unknown state vector).	



For example	



	

 z = Γx + ζ	





 Bayesian estimation (continued)	



	

 Probability that x = ξ for given ξ ?	



  x = ξ    ⇒   z = F(ξ, ζ) 

	

 	

 P(x = ξ | z) = P[z = F(ξ, ζ)] / ∫ξ’ P[z = F(ξ’, ζ)] 

	

 Unambiguously defined iff, for any ζ, there is at most one x such that (1) is verified.	



	

 ⇔    data  contain  information,  either  directly  or  indirectly,  on  any  component  of 
x. Determinacy condition.	





 Bayesian  estimation  is  however  impossible  in  its  general  theoretical 
form in meteorological or oceanographical practice because	



•  It is impossible to explicitly describe a probability distribution in a space 
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈ 
106-9 of present Numerical Weather Prediction models.	



•  Probability distribution of errors on data very poorly known (model errors 
in particular).	





One has to restrict oneself to a much more modest goal. Two	


approaches exist at present	



  Obtain  some  ‘central’  estimate  of  the  conditional  probability 
distribution  (expectation,  mode,  …),  plus  some  estimate  of  the  
corresponding  spread  (standard  deviations  and  a  number  of 
correlations). 

  Produce an ensemble of estimates which are meant to sample the 
conditional probability distribution (dimension N ≈ O(10-100)).	





	

 Random  vector  x  =  (x1,  x2,  …,  xn)T  =  (xi)  (e.  g.  pressure,  temperature,  abundance  of 
given chemical compound at n grid-points of a numerical model)	



  Expectation E(x) ≡ [E(xi)] 	

 ;    centred vector    x’  ≡ x - E(x) 	



  Covariance  matrix 	



	

 	

 	

 	

 E(x’x’T) = [E(xi’xj’)]	

  	


	

 	


	

 dimension  nxn,  symmetric  non-negative  (strictly  definite  positive  except  if  linear 

relationship holds between the xi’‘s with probability 1).	



  Two random vectors	


	

 x = (x1, x2, …, xn)T	


	

 y = (y1, y2, …, yp)T	


	

 	

 	

 	



	

 	

 	

 	

 E(x’y’T) = E(xi’yj’)	

  	



	

         dimension nxp	



	

 	



	

 	





	

     Covariance  matrices will be denoted	



	

 	

 	

 	

 Cxx  ≡  E(x’x’T) 	



	

 	

 	

 	

 Cxy  ≡  E(x’y’T) 	

  	


	

 	


	

 	



	

 	



	

 	





	

 Random  function  Φ(ξ)  (field  of  pressure,  temperature,  abundance  of 
given  chemical  compound,  …  ;  ξ  is  now  spatial  and/or  temporal 
coordinate)	



  Expectation E[Φ(ξ)]  ; 	

 Φ’(ξ) ≡ Φ(ξ) - E[Φ(ξ)]	


  Variance      Var[Φ(ξ)] = E{[Φ’(ξ)]2}	



  Covariance function	



	

 	

 	

 (ξ1, ξ2) →  CΦ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)]	



  Correlation function	



	

 	

 	

 CorΦ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)] / {Var[Φ(ξ1)] Var[Φ(ξ2)]}1/2	


	

 	



	

 	





After N. Gustafsson 



After N. Gustafsson 



After N. Gustafsson 



Cours à venir	



Jeudi 6 avril	


Jeudi 13 avril	


Jeudi 20 avril	


Jeudi 11 mai	


Lundi 29 mai	


Jeudi 1 juin	


Jeudi 15 juin	


Jeudi 22 juin	



De  10h00  à  12h30,  Salle  de  la  Serre,  5ième  étage, 
Département de Géosciences, École Normale Supérieure,	



	

 24, rue Lhomond, Paris 5   	




