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Sequential Assimilation.  Kalman Filter  	

  
  Observation vector at time k	


 yk = Hkxk + εk    k = 0, …, K 

	
 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	


 Hk linear	

	
 	
 	
 	

  Evolution equation	


 xk+1 = Mkxk + ηk    k = 0, …, K-1	

 E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj 	


	
 Mk linear	


	
  	
 	
  

  E(ηkεj
T) = 0  (errors uncorrelated in time) 



	
 At time k, background xb
k and associated error covariance matrix Pb

k known	


  Analysis step	


	
  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	


	
  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 Hk Pb
k	


  Forecast step 

  xb
k+1 =  Mk xa

k	


	
  Pb
k+1 = Mk Pa

k Mk
T + Qk  

	
 Kalman filter (KF, Kalman, 1960)	


	
 Must be started from some initial estimate (xb
0, Pb

0)	




Kalman Filter implemented most often in geophysical fluid dynamics in the 
form of Ensemble Kalman Filter .	


Situation still not entirely clear.	


In any case, optimality always requires errors to be independent in time. In 
order to relax that constraint, it is necessarily to augment the state vector 
in the temporal dimension.	




Time-correlated Errors	


  Example of time-correlated observation errors	


  z1 = x + ζ1	
 	


  z2 = x + ζ2	
 	


	
 	
 E(ζ1) = E(ζ2) = 0   ;  E(ζ1
2) = E(ζ2

2) = s    ;     E(ζ1ζ2) = 0 	


	
 	
 BLUE of x from z1 and z2 gives equal weights to z1 and z2.	


	
 	
 Additional observation then becomes available 	

	
 	
 	

	
 	
 z3 = x + ζ3	
 	

	
 	
 E(ζ3) = 0    ;    E(ζ3

2) = s    ;    E(ζ1ζ3) = cs    ;    E(ζ2ζ3) = 0 	


	
 	
  BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)	




Time-correlated Errors (continuation 1)	


  Example of time-correlated model errors	


	
 	
 Evolution equation	

`	
 	
 xk+1 = xk + ηk	
  E(ηk

2) = q	

	
 	
 	

	
 	
 Observations	

	
 	
 yk = xk + εk , 	
  k = 0, 1, 2	
	
 E(εk

2) = r, 	
errors uncorrelated in time	

	
 	
 	

 Sequential  assimilation.  Weights  given  to  y0  and  y1  in  analysis  at  time  1  are  in  the  ratio 

r/(r+q). That ratio will be conserved in sequential assimilation. All right if model errors are 
uncorrelated in time.	


   
  Assume  E(η0η1) = cq	

	
 	
  Weights given to y0 and y1 in estimation of x2 are in the ratio 	


	
 	
 	
 	
 	
  	

  	


€ 

€ 

ρ =
r − qc

r + q + qc



Conclusion	


 Sequential assimilation, in which data are processed by batches, the data of one 
batch being discarded once that batch has been used, cannot be optimal if data in different 
batches are affected with correlated errors. This is so even if one keeps trace of the 
correlations. 

	
 Solution	


	
 	
 Process all correlated in the same batch (4DVar, some smoothers)	

	
 	
 	
 	
 	
  	

  	


€ 



Two questions	


	
 -  How  to  propagate  information  backwards  in  time  ? 
(useful for reassimilation of past data)	


	
 - How to take into account possible dependence in time ?	


Kalman Filter, whether in its standard linear form or in its Ensemble form, 
does neither.	




	
 Kalman smoother 	


	
 Propagates information both forward and backward in time, as does 4DVar, 
but uses Kalman-type formulæ	


	
 Various possibilities 	


  Define new state vector  xT ≡ (x0
T, …, xK

T)	

	
 and use Kalman formula from a background xb

 and associated covariance 
matrix Πb.	


	
 Can take into account temporal correlations         

  Update sequentially vector (x0
T, …, xk

T) T for increasing k	

	
 Cannot take into account temporal correlations  

	
 Algorithms exist in ensemble form	




	
 E. Cosme (1995)	


	
 Ensemble  smoother  based  on  Singular  Evolutive 
Extended Kalman Filter (SEEK) 	


	
 Of  second  type  above.  Retropropagates  corrections  on 
fields backwards in time, but  without modifying relative 
weights given to previous data, i.e.  cannot be optimal in 
case of tempral dependence between errors.	




E. Cosme, 
HDR, 
2015, 
Lissage 
d’ensemble 
SEEK 

Données 
synthétiques 



E. Cosme, HDR, 2015, Lissage d’ensemble SEEK 



Two questions	


	
 -  How  to  propagate  information  backwards  in  time  ? 
(useful for reassimilation of past data)	


	
 - How to take into account possible dependence in time ?	


Kalman Filter, whether in its standard linear form or in its Ensemble form, 
does neither.	




Variational Assimilation	


	
 Variational form of the BLUE	


	
  BLUE xa minimizes following scalar objective function, defined on state space	


	
 ξ ∈  S  →	


•      J(ξ) ≡  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)	


  ≡ 	
         Jb                    + 	
                     Jo	


	
 	
 	
 	
 ‘3D-Var’ 	
	


	
 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	

	
 	

	
 Used operationally in USA, Australia, China, …	




	
 Variational approach can easily be extended to time dimension.	


	
 Suppose for instance available data consist of 	


	
 	
 - Background estimate at time 0	

	
 	
    x0

b  =  x0
  + ζ0

b 	
  E(ζ0
bζ0

bT) = P0
b	


	
 	
 - Observations at times k = 0, …, K	

	
 	
    yk = Hkxk + εk	
 E(εkεj

T) = Rk δkj	


	
 	
  - Model (supposed for the time being to be exact) 	

	
 	
    xk+1 = Mkxk  k = 0, …, K-1	
 	
 	
 	


	
 	
 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	


	
 Then objective function	

	
 	

ξ0 ∈  S  → 	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
 subject to ξk+1 = Mkξk ,	
 k = 0, …, K-1	


	
 	
 	




	
 	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]	


subject to ξk+1 = Mkξk ,	
 k = 0, …, K-1  
  
  Background  is  not  necessary,  if  observations are  in  sufficient  number  to 

overdetermine the problem. Nor is strict linearity. 

 How to  minimize  objective  function  with  respect  to  initial  state  u  = ξ0  (u  is 
called the control variable of the problem) ?	


	
 Use  iterative  minimization  algorithm,  each  step  of  which  requires  the 
explicit knowledge of the local gradient ∇u J ≡  (∂J/∂ui) of J with respect to u.	




	
 How to numerically compute the gradient ∇u J ?	


	
 Direct  perturbation,  in  order  to  obtain  partial  derivatives  ∂J/∂ui  by  finite 
differences  ?  That  would  require  as  many  explicit  computations  of  the 
objective function J as there are components in u. Practically impossible.	


	
 Gradient computed by adjoint method.	




Adjoint Method	


	
 Input vector u = (ui), dimu = n	

	
 Numerical  process,  implemented  on  computer  (e.  g.  integration  of 

numerical model)	


u → v = G(u)	

	
 v = (vj) is output vector , dimv = m	


	
 Perturbation δu = (δui) of input. Resulting first-order perturbation on v	


	
 δvj = Σi (∂vj/∂ui) δui 	


	
 or, in matrix form	

	
 δv  =  G’δu	


	
 where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix, of G. 	




Adjoint Method (continued 1)	


	
 	
 	
 	
        δv  =  G’δu	
 	
 	
 (D)	


•  Scalar function of output 	

J(v)  =  J[G(u)]	


	
 Gradient ∇u J of J with respect to input u?	


	
 ‘Chain rule’	
 	
  	


∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)	


 	
  or 	

	
          ∇u J  =  G’T ∇v J 	
 	
  	
 (A)	




Adjoint Method (continued 2)	


	
 G is the composition of a number of successive steps	


G = GN ° … ° G2 ° G1	

	
 	

	
 ‘Chain rule’	
 	
  	


G’ = GN’ … G2’ G1’	


 	
 Transpose	


G’T = G1’T G2’T … GN’T	


	
 Transpose, or adjoint, computations are performed in reversed order of direct computations.	


	
 If  G  is  nonlinear,  local  jacobian  G’ depends  on  local  value  of  input  u.  Any  quantity  which  is  an 
argument  of  a  nonlinear  operation  in  the  direct  computation  will  be  used  again  in  the  adjoint 
computation. It must be kept in memory from the direct computation (or else be recomputed again in 
the course of the adjoint computation).	


	
 If  everything  is  kept  in  memory,  total  operation  count  of  adjoint  computation  is  at  most  4  times 
operation count of direct computation (in practice about 2).	




Adjoint Approach	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
 subject to ξk+1 = Mkξk ,	
 k = 0, …, K-1	


Control variable 	
  ξ0 = u	


Adjoint equation	


 λK = 	
        HK
T RK

-1 [HK ξK - yK]	

 ….	

 λk =  Mk

Tλk+1 + Hk
T Rk

-1 [Hk ξk - yk]	
 	
  	
 k = K-1, …, 1	

 ….	

 λ0 =  M0

Tλ1    + H0
T R0

-1 [H0 ξ0 - y0]   +  [P0
b]-1 (ξ0 - x0

b) 	


	
 	
 	
 	
 ∇u J  = λ0 	
 	


Result of direct integration (ξk), which appears in quadratic terms in expression of	

objective function, must be kept in memory from direct integration.	




Adjoint Approach (continued 2)	


Nonlinearities ?	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]  
 subject to ξk+1 = Mk(ξk) ,	
 k = 0, …, K-1	


Control variable 	
  ξ0 = u	


Adjoint equation	


 λK = 	
        HK’T RK
-1 [HK(ξK) - yK]	


 ….	

 λk =  Mk’Tλk+1 + Hk’T Rk

-1 [Hk(ξk) - yk]	
 	
  	
 k = K-1, …, 1	

 ….	

λ0 =  M0’Tλ1      + H0’T R0

-1 [H0(ξ0) - y0]   +  [P0
b]-1 (ξ0 - x0

b) 	


	
 	
 	
 	
 ∇u J  = λ0 	
 	


Not approximate (it gives the exact gradient ∇uJ), and really used as described here.	




Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 

Same as before, but at the end of a 24-hr 4D-Var 



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Same as before, but at the end of a 24-hr 4D-Var 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



ECMWF, Results on one FASTEX case (1997) 



	
 Strong  Constraint  4D-Var  is  now  used  operationally  at 
several  meteorological  centres  (Météo-France,  UK 
Meteorological  Office,  Canadian  Meteorological  Centre, 
Japan Meteorological  Agency,  …) and,  until  recently,  at 
ECMWF.  The  latter  now  has  a  ‘weak  constraint’ 
component in its operational system. 	


	
 	




Persistence = 0 ; climatology = 50 at long range	




Ini$al	  state	  error	  reduc$on	  

4DVar EDA 

Reforecasts from 
reanalysis 

Operational 
forecasts 

Credit E. Källén, ECMWF 



	
 In  the  linear  case,  and  if  errors  are  uncorrelated  in  time,  Kalman 
Smoother and Variational Assimilation are algorithmically equivalent. 
They produce the BLUE of the state of the system from all available 
data, over the whole assimilation window (Kalman Filter produces the 
BLUE only at the end of the final time of the window). If in addition 
errors are Gaussian, both algorithms achieve Bayesian estimation.	


	
 	




34 

Time-correlated Errors (continuation 3)	


 Moral.  If  data  errors  are  correlated  in  time,  it  is  not  possible  to  discard  observations  as 
they are used. In particular, if model error is correlated in time, all observations are liable to 
be reweighted as assimilation proceeds..	


	
 Variational assimilation can take time-correlated errors into account.	


	
 	
 Example of time-correlated observation errors. Global covariance matrix	


	
 	
 	
 R = (Rkk’ = E(εkεk’
T))	


	
 	
 Objective function	


ξ0 ∈  S   → 	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σkk’[yk - Hkξk]T [R -1]kk’ [yk’ - Hk’ξk’]  

	
 	
 where [R -1]kk’ is the kk’-sub-block of global inverse matrix R -1.	


	
 Similar approach for time-correlated model error.	


€ 



35 

Time-correlated Errors (continuation 4)	


 Temporal  correlation  of  observational  error  has  been  introduced  by  ECMWF  (Järvinen 
et  al.,  1999) in variational  assimilation of high-frequency surface pressure observations 
(correlation originates in that case in representativeness error).	


	
 Identification and quantification of time correlation of errors, especially model errors ?	


€ 



How to  write the adjoint of a code  ?	

	
 	

	
 Operation  a = b x c	


	
 Input  b, c	
  Output  a  but also b, c	


	
  For clarity, we write	


	
  a = b x c	

	
  b’ = b	

	
  c’ = c	


	
 ∂J/∂a,  ∂J/∂b’,  ∂J/∂c’ available. We want to determine ∂J/∂b,  ∂J/∂c 	


	
  Chain rule	


	
  ∂J/∂b = (∂J/∂a)(∂a/∂b) + (∂J/∂b’)(∂b’/∂b) + (∂J/∂c’)(∂c’/∂b) 	

	
 	
                c	
                     1	
 	
   0	

	
 	

	
  ∂J/∂b = (∂J/∂a) c + ∂J/∂b’	


	
  Similarly	


	
 ∂J/∂c = (∂J/∂a) b + ∂J/∂c’	

	
 	


	
 	

	
 	




M. Jardak 



Cours à venir	


Jeudi 6 avril	

Jeudi 13 avril	

Jeudi 20 avril	

Jeudi 11 mai	

Lundi 29 mai	

Jeudi 1 juin	

Jeudi 15 juin	

Jeudi 22 juin	


De  10h00  à  12h30,  Salle  de  la  Serre,  5ième  étage, 
Département de Géosciences, École Normale Supérieure,	


	
 24, rue Lhomond, Paris 5   	



