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Sequential Assimilation. Kalman Filter

= (bservation vector at time k&

o =Hx + ¢ k=0,...

E(g) =0 ; E(gg") =R, 6

H, linear

= Evolution equation

Xewy = Mix, + 1, k=0, ...

E(ny =0 ; E(man) = Oy 0y
M, linear

= F( nkng) = (0 (errors uncorrelated in time)



At time k, background x?, and associated error covariance matrix P?, known

Analysis step

X = x0 + PP H T [H PP HT + R (g - Hixdy)
pe = P - PP H [HPYHT + R H PP
Forecast step

xbk+1 = M x%
P = M P{M,T+ O,

Kalman filter (KF, Kalman, 1960)

Must be started from some initial estimate (x%, P”)



Kalman Filter implemented most often in geophysical fluid dynamics in the
form of Ensemble Kalman Filter .

Situation still not entirely clear.

In any case, optimality always requires errors to be independent in time. In
order to relax that constraint, it is necessarily to augment the state vector
in the temporal dimension.



Time-correlated Errors

Example of time-correlated observation errors

Z1=x+ ¢
L=x+§

E(Q) = E(Cz) =0 ; E(QZ) = E(sz) =S5 E(géz) =0

BLUE of x from z, and z, gives equal weights to z, and z,.
Additional observation then becomes available

B=x+G

E(é‘3) =0 ; E(§32) =5 E(C1C3) =cs E(§2C3) =0

BLUE of x from (z;, z,, z3) has weights in the proportion (1, 1+c, 1)



Time-correlated Errors (continuation 1)
Example of time-correlated model errors

Evolution equation

) Xep1 = X T 1 Em?)=q
Observations
Ve = X+ &, k=0,1,2 E(g?) = r, errors uncorrelated in time

Sequential assimilation. Weights given to y, and y, in analysis at time 1 are in the ratio
r/(r+q). That ratio will be conserved in sequential assimilation. All right if model errors are
uncorrelated in time.

Assume E(nyn,) = cq
Weights given to y, and y, in estimation of x, are in the ratio

r—gqc

r+q+qc



Conclusion

Sequential assimilation, in which data are processed by batches, the data of one
batch being discarded once that batch has been used, cannot be optimal if data in different
batches are affected with correlated errors. This is so even if one keeps trace of the
correlations.

Solution

Process all correlated in the same batch (4D Var, some smoothers)



Two questions

- How to propagate information backwards in time ?
(useful for reassimilation of past data)

- How to take into account possible dependence in time ?

Kalman Filter, whether in its standard linear form or in its Ensemble form,
does neither.



Kalman smoother

Propagates information both forward and backward in time, as does 4D Var,
but uses Kalman-type formula

Various possibilities

Define new state vector x'= (x,!, ..., x!)

and use Kalman formula from a background x, and associated covariance
matrix I1,.

Can take into account temporal correlations

Update sequentially vector (x,', ..., x,) T for increasing &
Cannot take into account temporal correlations

Algorithms exist in ensemble form



E. Cosme (199))

Ensemble smoother based on Singular Evolutive
Extended Kalman Filter (SEEK)

Of second type above. Retropropagates corrections on
fields backwards in time, but without modifying relative
weights given to previous data, i.e. cannot be optimal in
case of tempral dependence between errors.
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FI1GURE 3.6 — Evolution du champ d’erreur en SSH du jour 38, au cours des étapes
d'analyse successives. En haut a gauche : prévision du filtre; en haut a droite : analyse
du filtre. Les observations utilisées pour cette analyse sont distribuées le long des traces
grises. EKn bas a gauche : analyse du lisseur apres introduction des observations des jours

40 et 42; En bas a droite : analyse du lisseur apres introduction des observations des
jours 40 a 46.
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Ficure 3.7 — Evolution de I'erreur RMS de SSH au cours du temps. Ligne continue :
Résultat du filtre (les dents de scie refletent I'alternance des étapes de prévision et d’ana-
lyse); Points : lisseur a retard fixe de 8 jours.

E. Cosme, HDR, 2015, Lissage d’ensemble SEEK



Two questions

- How to propagate information backwards in time ?
(useful for reassimilation of past data)

- How to take into account possible dependence in time ?

Kalman Filter, whether in its standard linear form or in its Ensemble form,
does neither.



Variational Assimilation
Variational form of the BLUE
BLUE x“ minimizes following scalar objective function, defined on state space
te §—

* JO= AP -HTPTI " -H+ (1/2) (v- HY'R' (v - HY)

jb + «70

‘3D-Var’

Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.

Used operationally in USA, Australia, China, ...



Variational approach can easily be extended to time dimension.

Suppose for instance available data consist of

- Background estimate at time O

X" =x+& E(&°&") = Py’
- Observations at times k=0, ..., K

- Model (supposed for the time being to be exact)
Xy = Mix, k=0,...,K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear

Then objective function

R
IE) = (172) (xg” - EDTIPT (- &) + (172) Zily - H G R [y - H &

subjectto &, = M,§,, k=0,...,K-1



j(&o) = (172) (xob - go)T [Pob]_1 (xob - 50) + (172) 2 [y, - Hkgk]T Rk_l [k - Hkgk]

subject to &§,,, = M,§,, k=0,...,K-1

Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

How to minimize objective function with respect to initial state u = &, (u is
called the control variable of the problem) ?

Use iterative minimization algorithm, each step of which requires the
explicit knowledge of the local gradient V, /] = (9//0u;) of /] with respect to u.



How to numerically compute the gradient V] ?

Direct perturbation, in order to obtain partial derivatives 0//du; by finite
differences ? That would require as many explicit computations of the
objective function /] as there are components in u. Practically impossible.

Gradient computed by adjoint method.



Adjoint Method

Input vector u = (u;), dimu =n

Numerical process, implemented on computer (e. g. integration of
numerical model)

u—v==GwW)
v = (v)) 1s output vector , dimy = m

Perturbation ou = (du;) of input. Resulting first-order perturbation on v
ov; = Z,(dv/du;) ou,

or, in matrix form

ov = G’ éu

where G’= (dv/du,) is local matrix of partial derivatives, or jacobian matrix, of G.



Adjoint Method (continued 1)

ov = G’ du

* Scalar function of output
Jw) = JiG(w)]
Gradient V, /] of /] with respect to input u?
‘Chain rule’
0J/du;=%;9]/dv;(dv/du,)

or

V.J=G"V,]

(D)

(A)



Adjoint Method (continued 2)

G is the composition of a number of successive steps

G=Gy.....G,.G,
‘Chain rule’

G =Gy ...G,’G/
Transpose

GT=G/'TG,"...G"

Transpose, or adjoint, computations are performed in reversed order of direct computations.
If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an
argument of a nonlinear operation in the direct computation will be used again in the adjoint
computation. It must be kept in memory from the direct computation (or else be recomputed again in

the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).



Adjoint Approach

3(50) = (1/2) (xob - go)T [Pob]_l (xob - 50) +(1/2) Zk[yk - Hkgk]T Rk_l [y - Hkgk]
subject to &§,,, = M,§,, k=0,...,K-1

Control variable E=u

Adjoint equation

Ag= Hy' Ry! [H &g - v

)Lkz MIA . +HIR ! [H§ - y,] k=K-1,...,1

A= My'A + HOTRO_I [Hy & - yol + [Pob]_1 (& - xob)

Vg =%

Result of direct integration (&), which appears in quadratic terms in expression of
objective function, must be kept in memory from direct integration.



Adjoint Approach (continued 2)

Nonlinearities ?

J(&) = (1/2) (xy” - E)TIPT" (" - &) + (1/2) 2Ly, - Hi(EQIT R [y - H(E))]
subjectto &, = M (&), k=0,...,K-1

Control variable E=u
Adjoint equation
Ag= Hi "Rt [H(Eg) - ygl

M= M Xy + HT R TH(E) - vy k=K-1,...,1

A= MyTA + Hy PRy [HY(E) - vol + [P (& - xoP)

Vg =%

Not approximate (it gives the exact gradient V ), and really used as described here.
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Temporal evolution of the 500-hPa geopotential autocorrelation with respect to
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.



00 GMT 16, 0CT 1987HEIGHT 500 M8
120W  140°W 140°E 120°E

00 GMT 15 OCT 1987HEIGHT 500 M8
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FI1G. 1. Background fields for 0000 UTC 15 October-0000 UTC 16 October 1987. Shown here are the Northern Hemisphere (a) 500-

iPa geopotential height and (b) mean sea level pressure for 15 October and the (¢) 500-hPa geopotential height and (d) mean sea level
pressure for 16 October. The fields for 15 October are from the initial estimate of the initial conditions for the ADVAR minimization. The
fields for 16 October arc from the 24-h T63 adiabatic model forecast from the initial conditions. Contour intervals are 80 m and 5 hPa.

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



00 GMT 16 OCT 1987WIND 850 MBHEIGHT 850 MB.

Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414




r verifying analysis

A =

4D-Var verifying analysis

% ;; s '

)

ECMWEF, Results on one FASTEX case (1997)




Strong Constraint 4D-Var 1s now used operationally at
several meteorological centres (Météo-France, UK
Meteorological Office, Canadian Meteorological Centre,
Japan Meteorological Agency, ...) and, until recently, at
ECMWFEF. The Ilatter now has a ‘weak constraint’
component 1n its operational system.
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Figure 3: 500 hPa geopotential height mean square error skill score for Europe (top) and the northern hemisphere
extratropics (bottom). showing 12-month moving averages for forecast ranges from 24 to 192 hours. The last point

on each curve 1s for the 12-month period August 2013—July 2014.

Persistence = 0 ; climatology = 50 at long range




Initial state error reduction

HRes and ERA Interim 00,12UTC forecast sKill

500hPa geopotential
Lead time of Anomaly correlation reaching 99.5%
NHem Extratropics (iat 20.0 to 90.0, lon -180.0 to 180.0)
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Credit E. Killén, ECMWF



In the linear case, and if errors are uncorrelated in time, Kalman
Smoother and Variational Assimilation are algorithmically equivalent.
They produce the BLUE of the state of the system from all available
data, over the whole assimilation window (Kalman Filter produces the
BLUE only at the end of the final time of the window). If in addition
errors are Gaussian, both algorithms achieve Bayesian estimation.



Time-correlated Errors (continuation 3)

Moral. If data errors are correlated in time, it is not possible to discard observations as
they are used. In particular, if model error is correlated in time, all observations are liable to
be reweighted as assimilation proceeds..

Variational assimilation can take time-correlated errors into account.
Example of time-correlated observation errors. Global covariance matrix
R= (R, = E(g¢,h))
Objective function

fES -
j(go) = (172) (x()]7 - go)T [Pob]_1 (x()b - 50) + (1/2) Zkk’[yk - Hkgk]T [R_l]kk’ Ve~ Hk’gk’]

where [ R];,; is the kk’-sub-block of global inverse matrix &'

Similar approach for time-correlated model error.

34



Time-correlated Errors (continuation 4)

Temporal correlation of observational error has been introduced by ECMWF (Jiarvinen

et al., 1999) in variational assimilation of high-frequency surface pressure observations
(correlation originates in that case in representativeness error).

Identification and quantification of time correlation of errors, especially model errors ?

35



How to write the adjoint of a code ?

Operation a =b x ¢
Input b, ¢ Output a but also b, ¢

For clarity, we write

a=bxc
b’=b
c’'=c¢

dJ/da, AJ/db’, JJ/dc’ available. We want to determine dJ/db, JJ/dc

Chain rule

a1 db = (8J/3a)(dal db) + (3J/db")(db’1db) + (3/dc’)(dc’ 1 Ib)
c 1 0

aJ/9b = (dJ/da) ¢ + aJldb’

Similarly

aJlde = (3J/da) b + dJ/dc’



Gradient test

Positive gradient test Negative gradient test
10 10
10 ; ! ; 10 ! ! '

Gradient test

= (Gradient test

In(residue(c))
In(residue(c))

e - J(optimal control variable)

e = 273 zero machine
residue(a) = (J(X + adx) — J(x)) — aVI(x)dx
M. Jardak



Cours a venir

Jeudi 15 juin
Jeudi 22 juin

De 10h00 a 12h30, Salle d(j, la Serre, Sieme éEtage,
Département de Gé€osciences, Ecole Normale Supérieure,

24, rue Lhomond, Paris 5



