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 In  the  linear  case,  and  if  errors  are  uncorrelated  in  time,  Kalman 
Smoother and Variational Assimilation are algorithmically equivalent. 
They produce the BLUE of the state of the system from all available 
data, over the whole assimilation window (Kalman Filter produces the 
BLUE only at the end of the final time of the window). If in addition 
errors are Gaussian, both algorithms achieve Bayesian estimation.	



	

 	





Incremental Method	



	

 Variational  assimilation,  as  it  has  been  described,  requires  the  use  of 
the adjoint of the full model.	



	

 Simplifying  the  adjoint  as  such  can  be  very  dangerous.  The 
computed  gradient  would  not  be  exact,  and  experience  shows  that 
optimization  algorithms  (and  especially  efficient  ones)  are  very 
sensitive to even slight misspecification of the gradient.	



	

 Principle  of  Incremental  Method  (Courtier  et  al.,  1994,  Q.  J.  R. 
Meteorol.  Soc.)  :  simplify  simultaneously  the  (local  tangent  linear) 
dynamics and the corresponding adjoint. 



Incremental Method (continuation 1)	



	

 - Basic (nonlinear) model	


	

  ξk+1 = Mk(ξk) 	



	

 - Tangent linear model	


	

  δξk+1 = Mk’ δξk 	


	

 	


	

 where Mk’ is jacobian of Mk at point ξk.	



	

 - Adjoint model	


	

  λk = Mk’T λk+1 + …	



	

  Incremental Method. Simplify Mk’ and Mk’T.	





Incremental Method (continuation 2)	



	

 More  precisely,  for  given  solution  ξk
(0) of  nonlinear  model,  replace  tangent 

linear and adjoint models respectively by 	


	

 	


	

  δξk+1 = Lk δξk 	

 	

  (2) 	


	

 	


	

 and	


	

 	


	

 λk = Lk

T λk+1 + …	



	

 where Lk is an appropriate simplification of jacobian Mk’.	



	

 It  is  then  necessary,  in  order  to  ensure  that  the  result  of  the  adjoint 
integration is the exact gradient of the objective function, to modify the basic 
model in such a way that the solution emanating from ξ0

(0) + δξ0 is equal to 
ξk

(0) + δξk, where δξk evolves according to (2). This makes the basic dynamics 
exactly linear.	





Incremental Method (continuation 3)	



	

 As  concerns  the  observation  operators  in  the  objective  function,  a  similar  procedure 
can be implemented if those operators are nonlinear. This leads to replacing Hk(ξk) by 
Hk(ξk

(0)) + Nkδξk,  where  Nk is  an appropriate ‘simple’ linear operator (possibly, but not 
necessarily, the jacobian of Hk at point ξk

(0)). The objective function depends only on the 
initial δξ0 deviation from ξ0

(0), and reads  

	

 JI(δξ0)  =  (1/2) (x0
b - ξ0

(0) - δξ0)T [P0
b]-1 (x0

b - ξ0
(0) - δξ0) 	



	

 	

 	

 	

 	

 + (1/2) Σk[dk - Nkδξk]T Rk
-1 [dk - Nkδξk]  

 where dk ≡ yk - Hk(ξk
(0)) is the innovation at time k, and the δξk evolve according to  

	

 	


	

  δξk+1 = Lk δξk 	

 	

  (2) 	


	

 	


	

 With  the  choices  made  here,  JI(δξ0) is  an  exactly  quadratic  function  of  δξ0.  The 

minimizing perturbation δξ0,m defines a new initial state ξ0
(1) ≡ ξ0

(0) + δξ0,m, from which a 
new solution ξk

(1) of the basic nonlinear equation is determined. The process is restarted 
in the vicinity of that new solution.	



	

 	


	

 	





Incremental Method (continuation 4)	



	

 This  defines  a  system  of  two-level  nested  loops  for  minimization. 
Advantage  is  that  many  degrees  of  freedom are  available  for  defining  the 
simplified  operators  Lk  and  Nk,  and  for  defining  an  appropriate  trade-off 
between practical implementability and physical usefulness and accuracy. It is 
the  incremental  method  which,  together  with  the  adjoint  method,  makes 
variational assimilation possible.	



	

 First-Guess-At-the-right-Time  3D-Var  (FGAT  3D-Var).  Corresponds  to  Lk  = 
In.  Assimilation is  four-dimensional  in  that  observations are  compared to  a 
first-guess which evolves in time, but is three-dimensional in that no dynamics 
other than the trivial dynamics expressed by the unit operator is present in the 
minimization. 	





	

 Buehner et al. (Mon. Wea. Rev., 2010)	


	

 	


	

 For  the  same  numerical  cost,  and  in  meteorologically  realistic 

situations,  Ensemble  Kalman  Filter  and  Variational  Assimilation 
produce results of similar quality.	





	

 How  to  take  model  error  into  account  in 
variational assimilation ?	





Weak constraint variational assimilation 	



Allows for errors in the assimilating model	



•  Data	


	

 	

 - Background estimate at time 0	


	

 	

 	


	

 	

   x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

 	


	

 	

    yk = Hkxk + εk	

 E(εkεk

T) = Rk	



	

 	

  - Model	


	

 	

  	


	

 	

   xk+1 = Mkxk + ηk 	

  E(ηkηk

T) = Qk k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	





	

 Then objective function	


	

 	



	

 (ξ0, ξ1, ..., ξK) → 	



	

 J(ξ0, ξ1, ..., ξK)   

  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	



	

 	

     + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	



	

 	

     + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]  

  
  Can include nonlinear Mk and/or Hk.	



	

  Implemented operationally at ECMWF for the assimilation in the stratosphere.	



	

 Becomes singular in the strong constraint limit Qk → 0 
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Dual  Algorithm  for  Variational  Assimilation  (aka  Physical  Space 
Analysis  System,  PSAS,  pronounced ‘pizzazz’;  see  in  particular  book 
and papers by Bennett)	



xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	



xa = xb + Pb
 HT

 Λ-1 d = xb + Pb
 HT

 m	



where Λ ≡ HPbHT + R, d ≡ y - Hxb and m ≡ Λ-1 d maximises	



µ  →  K(µ) = -(1/2) µT Λ µ + dTµ 	



Maximisation is performed in (dual of) observation space.	





Dual Algorithm for Variational Assimilation (continuation 2)	



Extends to time dimension, and to weak-constraint case, by defining state vector as	



	

 	

 	

 	

 x ≡ (x0
T, x1

T
 , …, xK

T)T	



or, equivalently, but more conveniently, as	



x ≡ (x0
T, η0

T
 , …, ηK-1

T)T	



where, as before	



	

 	

 ηk =  xk+1 - Mkxk   ,	

 k = 0, …, K-1 

The background for x0 is x0
b, the background for ηk is 0. Complete background is	



	

 	

 	

 	

 xb = (x0
bT, 0T

 , …,  0T)T	



It is associated with error covariance matrix 	


	

 	

 	

 	

 	


	

 	

 	

 	

  Pb = diag(P0

b, Q0 , …, QK-1)	





Dual Algorithm for Variational Assimilation (continuation 3)	



Define global observation vector as	



y ≡ (y0
T, y1

T
 , …, yK

T)T	



and global innovation vector as	



d ≡ (d0
T, d1

T
 , …, dK

T)T	



where 	

 	

 dk ≡ yk – Hk xk
b, with xk+1

b ≡ Mkxk
b ,	

 k = 0, …, K-1 	





Dual Algorithm for Variational Assimilation (continuation 4)	



For any state vector ξ = (ξ 0T, υ0
T

 , …, υK-1
T)T, the observation operator H 	



ξ  → Hξ = (u0
T, …, uK

T)T 	



is defined by the sequence of operations 	



u0 = H0ξ 0	



then for k = 0, …, K-1 	



ξk+1 = Mkξk + υk 	


uk+1  = Hk+1 ξk+1 	



The observation error covariance matrix is equal to	


	

 	

 	

 	

 	


	

 	

 	

 	

  R = diag(R0, …,  RK)	





Dual Algorithm for Variational Assimilation (continuation 5)	



Maximization of dual objective function 	


µ  →  K(µ) = -(1/2) µT Λ µ + dTµ 	



requires explicit repeated computations of its gradient 	



∇µ K  = - Λµ + d = - (HPbHT + R)µ + d	



Starting from µ = (µ0
T, …, µΚ

T)T belonging to (dual) of observation space, this requires 5 successive steps 	



	

 - Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above, viz.,	



	

 	

 Set 	

 χΚ = 0	


	

 	

 Then, for k = K-1, …, 0	


	

 	

 	

 	

    	



	

  νk  = χk+1  +  Hk+1
T

 µk+1	


χk  =  Mk

T
 νk	



	

 	

  Finally	

 	

           λ0  = χ0  +  H0
T

 µ0	



	

 The output of this step, which includes a backward integration of the adjoint model, is the vector 	


	

 (λ0

T, ν0
T

 , …, νK-1
T)T	





Dual Algorithm for Variational Assimilation (continuation 6)	



	

 - Step 2. Multiplication by Pb. This reduces to	



	

 	

 	

 ξ 0 = P0
b λ0	



	

 	

 	

 υk = Qkνk 	

 ,  k = 0, …, K-1 	



	

 - Step 3. Multiplication by H. Apply the process defined above on the vector (ξ 0T, 
υ0

T
 , …, υK-1

T)T, thereby producing vector (u0
T, …, uK

T)T.	



	

 - Step 4. Add vector Rµ, i. e. compute 	


	

 	

 	

 	

  ϕ0  = ξ0 + R0 µ0	


	

 	

 	

 	

 ϕk  = υk-1 + Rk µk	

  ,  k = 1, …,  	



	

 - Step 5. Change sign of vector ϕ = (ϕ0
T, …, ϕΚT)T, and add vector d = y - Hxb,	





Dual Algorithm for Variational Assimilation (continuation 7)	



Dual algorithm remains regular in the limit of vanishing model error. Can be used	


for both strong- and weak-constraint assimilation.	



No significant increase of computing cost in comparison with standard strong 	


constraint variational assimilation (Courtier, Louvel)	





Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999 



Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999 



Dual Algorithm for Variational Assimilation (continuation)	



Requires	



  Explicit background (not much of a problem)	



  Exact linearity (much more of a problem). Definition of iterative nonlinear 
procedures is being studied (Auroux, …)	





Auroux, Doctoral Dissertation, Université de Nice-Sophia Antipolis, Nice, 2003 



 Variational  assimilation  has  been  extended  to  non  Gaussian  probability  distributions 
(lognormal distributions), the unknown being the mode of the conditional distribution 
(M. Zupanski, Fletcher).	



	

 Bayesian character of variational assimilation ?	



	

 - If everything is linear and gaussian, ready recipe for obtaining bayesian sample	


	

 	


	

 Perturb  data  (background,  observations  and  model)  according  to  their  error 

probability distributions, do variational assimilation, and repeat process	



	

  Sample of system orbits thus obtained is bayesian	



	

 - If not, very little can be said at present 



Time-correlated Errors	



  Example of time-correlated observation errors	



  z1 = x + ζ1	

 	



  z2 = x + ζ2	

 	



	

 	

 E(ζ1) = E(ζ2) = 0   ;  E(ζ1
2) = E(ζ2

2) = s    ;     E(ζ1ζ2) = 0 	



	

 	

 BLUE of x from z1 and z2 gives equal weights to z1 and z2.	



	

 	

 Additional observation then becomes available 	


	

 	

 	


	

 	

 z3 = x + ζ3	

 	


	

 	

 E(ζ3) = 0    ;    E(ζ3

2) = s    ;    E(ζ1ζ3) = cs    ;    E(ζ2ζ3) = 0 	



	

 	

  BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)	





Time-correlated Errors (continuation 1)	



  Example of time-correlated model errors	



	

 	

 Evolution equation	


`	

 	

 xk+1 = xk + ηk	

  E(ηk

2) = q	


	

 	

 	


	

 	

 Observations	


	

 	

 yk = xk + εk , 	

  k = 0, 1, 2	

	

 E(εk

2) = r, 	

errors uncorrelated in time	


	

 	

 	


 Sequential  assimilation.  Weights  given  to  y0  and  y1  in  analysis  at  time  1  are  in  the  ratio 

r/(r+q). That ratio will be conserved in sequential assimilation. All right if model errors are 
uncorrelated in time.	



   
  Assume  E(η0η1) = cq	


	

 	

  Weights given to y0 and y1 in estimation of x2 are in the ratio 	



	

 	

 	

 	

 	

  	


  	



€ 

€ 

ρ =
r − qc

r + q + qc



Conclusion	



 Sequential assimilation, in which data are processed by batches, the data of one 
batch being discarded once that batch has been used, cannot be optimal if data in different 
batches are affected with correlated errors. This is so even if one keeps trace of the 
correlations. 

	

 Solution	



	

 	

 Process all correlated in the same batch (4DVar, some smoothers)	


	

 	

 	

 	

 	

  	


  	



€ 
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Time-correlated Errors (continuation 3)	



 Moral.  If  data  errors  are  correlated  in  time,  it  is  not  possible  to  discard  observations  as 
they are used. In particular, if model error is correlated in time, all observations are liable to 
be reweighted  as assimilation proceeds.	



	

 Variational assimilation can take time-correlated errors into account.	



	

 	

 Example of time-correlated observation errors. Global covariance matrix	



	

 	

 	

 R = (Rkk’ = E(εkεk’
T))	



	

 	

 Objective function	



ξ0 ∈  S   → 	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σkk’[yk - Hkξk]T [R -1]kk’ [yk’ - Hk’ξk’]  

	

 	

 where [R -1]kk’ is the kk’-sub-block of global inverse matrix R -1.	



	

 Similar approach for time-correlated model error.	



€ 
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Time-correlated Errors (continuation 4)	



 Temporal  correlation  of  observational  error  has  been  introduced  by  ECMWF  (Järvinen 
et  al.,  1999) in variational  assimilation of high-frequency surface pressure observations 
(correlation originates in that case in representativeness error).	



	

 Identification and quantification of time correlation of errors, especially model errors ?	



€ 



Conclusion on Sequential Assimilation	



	

 Pros 	


	

      	

 ‘Natural’, and well adapted to many practical situations	


           Provides, at least relatively easily, explicit estimate of estimation 

error	



	

 Cons 	


	

 	

 Carries information only forward in time (of no importance 	


	

 if one is interested only in doing forecast)	


	

 	

 In a strictly sequential assimilation (i.e., any individual piece 	


	

 of  information  is  discarded  once  it  has  been  used),  optimality  is 

possible only if errors are independent in time.	


	

 	

 	


	

 	

 	



	

 	





Conclusion on Variational Assimilation	



	

 Pros 	


	

  	

 Carries  information  both  forward  and  backward  in  time  (important  for 

reassimilation of past data).	


	

 	

 Can easily take into account temporal statistical dependence (Järvinen et al.)	


	

 	

 Does not require explicit computation of temporal evolution of estimation error	


	

 	

 Very well adapted to some specific problems (e. g., identification of tracer sources)	



	

 Cons 	


	

  	

 Does not readily provide estimate of estimation error 	


	

 	

 Requires  development  and  maintenance  of  adjoint  codes.  But  the  latter  can 

have other uses (sensitivity studies).	


	

  	


•  Dual approach seems most promising. But still needs further development for application 

in non exactly linear cases. 	



•  Is ensemble variational assimilation possible ? Probably yes. But also needs development.	





Exact bayesian estimation ?	



Particle filters	



Predicted ensemble at time t : {xb
n, n = 1, …, N},  each element with its own 

weight (probability) P(xb
n) 	



Observation vector at same time : y = Hx + ε	



Bayes’ formula	


P(xb

n|y) ∼ P(y|xb
n) P(xb

n) 	



Defines updating of weights	





Bayes’ formula	


P(xb

n|y) ∼ P(y|xb
n) P(xb

n) 	



Defines  updating  of  weights;  particles  are  not  modified.  Asymptotically 
converges to bayesian pdf. Very easy to implement.	



Observed fact. For large state dimension, ensemble tends to collapse.	





C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/
Snyder.pdf 



Problem originates  in  the  ‘curse  of  dimensionality’.  Large  dimension 
pdf’s are very diffuse, so that very few particles (if any) are present in 
areas where conditional probability  (‘likelihood’) P(y|x) is large.	



Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of 
filter  requires the size of ensembles to increase exponentially with 
space dimension.	





Curse of dimensionality	



Standard  one-dimensional  gaussian  random 
variable X	



	

 P[ ⎜X ⎜ < σ ] ≈ 0.84 

In dimension n = 100,  0.84100 = 3.10-8     

.	





Alternative possibilities (review in van Leeuwen, 2009, Mon. Wea. Rev., 4089-4114)	



Resampling. Define new ensemble.	



Simplest way. Draw new ensemble according to probability distribution defined by the updated 
weights. Give same weight to all particles. Particles are not modified, but particles with low 
weights are likely to be eliminated, while particles with large weights are likely to be drawn 
repeatedly. For multiple particles, add noise, either from the start, or in the form of ‘model 
noise’ in ensuing temporal integration. 	



Random  character  of  the  sampling  introduces  noise.  Alternatives  exist,  such  as  residual 
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights wn are multiplied by 
ensemble dimension N. Then p copies of each particle n are taken, where p is the integer 
part  of  Nwn.  Remaining  particles,  if  needed,  are  taken  randomly  from  the  resulting 
distribution.	





Importance Sampling. 	



Use a proposal density that is closer to the new observations than the density 
defined by the predicted particles (for instance the density defined by 
EnKF, after the latter has used the new observations). This however leads 
to using twice the same observations.	



In particular, Guided Sequential Importance Sampling (van Leeuwen, 2002). 
Idea  :  use  observations  performed at  time k  to  resample  ensemble  at 
some timestep anterior to k, or ‘nudge’ integration between times k-1 and 
k towards observation at time k.	





van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084	





Particle filters are actively studied (van Leeuwen, Morzfeld, …)  
  

  

  

  



Cours à venir	



Jeudi 6 avril	


Jeudi 13 avril	


Jeudi 20 avril	


Jeudi 11 mai	


Lundi 29 mai	


Jeudi 1 juin	


Jeudi 15 juin	


Jeudi 22 juin	



De  10h00  à  12h30,  Salle  de  la  Serre,  5ième  étage, 
Département de Géosciences, École Normale Supérieure,	



	

 24, rue Lhomond, Paris 5   	




