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If there is uncertainty on the state of the system, and dynamics of the system is perfectly known,
uncertainty on the state along stable modes decreases over time, while uncertainty along

unstable modes increases.

Stable (unstable) modes : perturbations to the basic state that decrease (increase) over time.
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Consequence : Consider 4D-Var assimilation, or any form of smoother,
which carries information both forward and backward in time, performed
over time interval [f, ¢;] over uniformly distributed noisy data. If
assimilating model is perfect, estimation error is concentrated in stable
modes at time #,, and in unstable modes at time ¢,. Error is smallest

somewhere within interval [7,, ¢,].

Similar result holds true for Kalman filter (or more generally any form
of sequential assimilation), in which estimation error is concentrated in

unstable modes at any time.
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Figure 3. Time average RMS error within 1, 3, 5 days assimilation windows as a function of t' = t — 7, with o, = .2, 10~° for the model
configuration I = 40. Left panel: 4DVar. Right panel: 4DVar-AUS with N = 15. Solid lines refer to total assimilation error, dashed lines

refer to the error component in the stable subspace eis, ...,

Trevisan et al., 2010, Q. J. R. Meteorol. Soc.

€40.
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Fig. 3. Variations of the error-free forward cost-function Ji(z. £, x) (Lorenz system) in the plane spanned by the stable
and unstable directions, as determined from the tangent linear system (see text), and for 7 =6 (panel (a)) and =8
(panel (b)) respectively. The metric has been distorted in order to make the stable and unstable manifolds orthogonal
to each other in the figure. The scale on the contour lines is logarithmic (decimal logarithm). Contour interval:
0.1. For clarity, negative contours, which would be present only in the central “valley” directed along the stable
manifold, have not been drawn.



Lorenz (1963)

dx/dt = o(y-x)
dyldt = px -y -xz
dz/dt = -z + xy

with parameter values o= 10, p =28, f=8/3 = chaos
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Fig. 2. Time variations, along the reference solution, of
the variable x(z) of the Lorenz system.



Twin (strong constraint) experiment. Observations Yy,
Hx, + ¢, at successive times k, and objective function of
form

5(50) = (1/2) Zk[yk - Hkgk]T Rk_1 [yk - Hkgk]

No ‘background’ term from the past, but observation y, at
time k£ = 0.
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Fig. 4. Panel (a): Cross-section of the error-free forward
cost-function J (7, £, x) along the unstable manifold, for
various values of 7. Panel (b). As in panel (a), for r =9.7,
and with a display interval ten times as large, respectively
for the error-free forward cost-function J(t, £, x) (solid
curve) and for the error-contaminated cost-function
Jo(1, %, x) (dashed curve). In the latter case, the total
variance of the observational noise is E2 = 75.

Pires et al., Tellus, 1996 ; Lorenz system (1963)
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Fig. 5. Variations of the coordinate x along the orbits originating from the minima P, 4, B, C (indicated in Fig. 4b)
of the error-free cost-function.

Minima in the variations of objective function correspond to solutions that have bifurcated
from the observed solution, and to different folds in state space.



Quasi-Static Variational Assimilation (QOSVA). Increase
progressively length of the assimilation window, starting each
new assimilation from the result of the previous one. This
should ensure, at least 1f observations are 1n a sense
sufficiently dense 1n time, that current estimation of the
system always lies 1n the attractive basin of the absolute
minimum of objective function (Pires et al., Swanson et al.,

Luong, Jarvinen et al.)



Cloud of points Linear tangent

u(C(z, x)) Cloud of points QSVA raw assimilation system Upper bound
=0 ] 1 1 1
=1 0.36 0.37 0.39 0.46
t=2 59x1072 5.74 45x1072 0.401
=3 33x10°7 294 29x10°7 0.397
=28 1.4x10°2 59.9 * 0.396

In the left column, the estimates are calculated from the ensemble of 100 assimilations (see also Fig. 7). The 2nd
column contains the values obtained from the raw assimilation. In the 3rd column, the estimates are obtained from
the tangent linear system and eqgs. (3.5-3.9) (the star indicates a computational overflow). The estimates in the right-

hand column are the upper bounds defined by eq. (3.13).
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Fig. 7. Projection of the 100 minimizing solutions, at the end of the assimilation period, onto the plane spanned by
the stable and unstable directions, defined as in Fig. 3. Values of r are indicated on the panels. The projection is not
an orthogonal projection, but a projection parallel to the local velocity vector (dx/dr. dy/dr, dz/dr) (central manifold ).

Pires et al., Tellus, 1996 ; Lorenz system (1963)
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Since, after an assimilation has been performed over a period of time, uncertainty is likely to be
concentrated in modes that have been unstable, it might be useful for the next assimilation,
and at least in terms of cost efficiency, to concentrate corrections on the background in those

modes.

Actually, presence of residual noise in stable modes can be damageable for analysis and

subsequent forecast.

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for the case of 3D-Var)



Four-dimensional variational assimilation in the wunstable subspace
(4DVar-AUS)

Trevisan et al., 2010, Four-dimensional variational assimilation in the unstable

subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136,
487-496.



4D-Var-AUS

Algorithmic implementation

Define N perturbations to the current state, and evolve them according to the tangent linear
model, with periodic reorthonormalization in order to avoid collapse onto the dominant

Lyapunov vector (same algorithm as for computation of Lyapunov exponents).

Cycle successive 4D-Var‘s, restricting at each cycle the modification to be made on the current
state to the space spanned by the N perturbations emanating from the previous cycle (if N is

the dimension of state space, that is identical with standard 4D-Var).



Experiments performed on the Lorenz (1996) model

d

pri i (j+1 —xj—2)rj—1 —x; + F

with 7 =1,..., 1.
with periodic conditions in j, and value F' = 8§, which gives rise to chaos.

Three values of I have been used, namely 7 =40, 60, 80, which correspond
to respectively N"= 13, 19 and 26 positive Lyapunov exponents.

In all three cases, the largest Lyapunov exponent corresponds to a doubling time
of about 2 days (with 1 ‘day’ = 1/5 model time unit).

Identical twin experiments (perfect model)



Ens/4Da "Var solutions and refrence solution att = 1

Lorenz’96 model (M. Jardak)




EnsVar : the non-linear Lorenz96 model 10 days with
QSVA
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‘Observing system’ defined as in Fertig et al. (Tellus, 2007):

At each observation time, one observation every four grid points
(observation points shifted by one grid point at each observation time).

Observation frequency : 1.5 hour

Random gaussian observation errors with expectation 0 and standard
deviation 0, = 0.2 (‘climatological’ standard deviation 5.1).

Sequences of  variational assimilations have been cycled over
windows with length T =1, ... , 5 days. Results are averaged over 5000
successive windows.
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Figure 1. Time average RMS analysis error at ¢ = 7 as a function of the subspace dimension /N for three model configurations: =40, 60,
80. Different curves in the same panel refer to different assimilation windows from 1 to 5 days. The observation error standard deviation 1s
g, = 0.2.

No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Best performance for N slightly above number N' of positive Lyapunov exponents.
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Figure 2. Time average RMS analysis error at £ = 7 as a function of the length of the assimilation window for three model configurations:
I=40, 60, 80. Different curves in the same panel refer to a different subspace dimension /N of 4DVar-AUS and to standard 4DVar. o, = 0.2.

Different curves are almost identical on all three panels. Relative improvement obtained by decreasing
subspace dimension N to its optimal value is largest for smaller window length 7.
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Figure 3. Time average RMS error within 1, 3, 5 days assimilation windows as a function of ¢’ = ¢t — 7, with o, = .2, 10~° for the model
configuration 7 = 40. Left panel: 4DVar. Right panel: 4DVar-AUS with N = 15. Solid lines refer to total assimilation error, dashed lines

refer to the error component in the stable subspace eis, ...
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Experiments have been performed in which an explicit background term was present, the
associated error covariance matrix having been obtained as the average of a sequence of full
4D-Var’s.

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-AUS. But
they remain qualitatively similar, with best performance for 4D-Var-AUS with N slightly

above N'.



Minimum of objective function cannot be made smaller by reducing control space. Numerical
tests show that minimum of objective function is smaller (by a few percent) for full 4D-Var
than for 4D-Var-AUS. Full 4D-Var is closer to the noisy observations, but farther away from
the truth. And tests also show that full 4D-Var performs best when observations are perfect

(no noise).

Results show that, if all degrees of freedom that are available to the model are used, the
minimization process introduces components along the stable modes of the system, in which
no error is present, in order to ensure a closer fit to the observations. This degrades the
closeness of the fit to reality. The optimal choice is to restrict the assimilation to the unstable

modes.

These results apply because no explicit background is available at the initial time of the
assimilation window (only the unstable subspace is known). A proper background (obtained
for instance from a properly implemented Kalman Filter, or from an Ensemble Variational
Assimilation) would not only say the the uncertainty is restricted to the unstable space, but
how it is distributed in that subspace. The ‘restriction’ to the unstable subspace would be

automatically made.



Can have major practical algorithmic implications.

Questions.

- Degree of generality of results ?

- Impact of model errors ?
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Conclusions

Error concentrates in unstable modes at the end of assimilation
window. It must therefore be sufficient, at the beginning of new
assimilation cycle, to introduce increments only in the subspace
spanned by those unstable modes.

In the perfect model case, assimilation 1s most efficient when
increments are introduced in a space with dimension slightly above the
number of non-negative Lyapunov exponents.

In the case of imperfect model (and of strong constraint
assimilation), preliminary results lead to similar conclusions, with
larger optimal subspace dimension, and less well marked optimality.
Further work necessary.

In agreement with theoretical and experimental results obtained for

Kalman Filter assimilation (Trevisan and Palatella, McLaughlin). 3
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Assimilation considered as a problem 1n bayesian estimation.

Determine the conditional probability distribution for the state of the system, knowing

everything we know (the data), viz.,

- observations proper

- physical laws governing the system (‘model’)
Jaynes, E. T., 2003, Probability theory: the logic of science, Cambridge University Press

Tarantola, A., 2005, Inverse Problem Theory and Methods for Model Parameter Estimation, Society
for Industrial and Applied Mathematics (http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/Books/
InverseProblemTheory.pdf)
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Data of the form

Z=Fx+§: C"“MM’S]

Known data vector z belongs to data space D, dimD = m,
Unknown state vector x belongs to state space X, dimX=n
I'’known (mxn)-matrix,  unknown ‘error’

Then conditional probability distribution is

P(x | z) = N[x4, P9

where

x4 = (FTS'1D'1 I'TS! [z - u]
Pa = (FT S—ll‘)—l

Determinacy condition : rankl’= n. Requires m>n.Setp=m-n

34



Variational form.

Conditional expectation x* minimizes following scalar objective function, defined on state space X

EE X = A8 = D) LE-w]' STTE- (z-w)]

Variational assimilation, implemented heuristically in many places on (not too much) nonlinear data
operators I

Pi=[9°7/0&]"

35



Conditional probability distribution

P(x | 2) = V[x*, Pq]
with

xt= (IS IS [z -yl
Pe = (FTs-ll')-l

Ready recipe for determining Monte-Carlo sample of conditional pdf P(x | z) :

- Perturb data vector z according to its own error probability distribution
7 =7=z+6, 0~N0,5]

and compute
X =TSN TSz - ul

x’¢ 1s distributed according to N[xe, P9

36



Ensemble Variational Assimilation (EnsVar) implements that
algorithm, the expectations x’¢ being computed by standard
variational assimilation (optimization)

37



Purpose of the present work

- Objectively evaluate EnsVar as a probabilistic estimator in nonlinear and/or non-Gaussian cases.

- Objectively compare with other existing ensemble assimilation algorithms : FEnsemble
Kalman Filter (EnKF), Particle Filters (PF)

- Simulations performed on two small-dimensional chaotic systems, the Lorenz’96 model and
the Kuramoto-Sivashinsky equation

Purely heuristic !

Conclusion. Works very well, at least on small dimension chaotic systems, and using Quasi-
Static Variational Assimilation (QSVA) over long assimilation periods

38



Experimental procedure (1)
0. Define a reference solution x, by integration of the numerical model
1. Produce ‘observations’ at successive times 7, of the form
Vo= Hpx + &

where /1, is (usually, but not necessarily) the unit operator, and ¢, is a random (usually, but not
necessarily, Gaussian) ‘observation error’.

39



Experimental procedure (2)

2. For given observations y,, repeat V,,  times the following process

ens

- ‘Perturb’ the observations y, as follows

Vo™ =Yt O
where 6, is an independent realization of the probability distribution which has produced ¢,.
- Assimilate the ‘perturbed’ observations z, by variational assimilation

This produces N,  (=30) model solutions over the assimilation window, considered as making
up a tentative sample of the conditional probability distribution for the state of the observed system
over the assimilation window.

The process 1-2 is then repeated over N, successive assimilation windows. Validation is

performed on the set of V,, ,(=9000) ensemble assimilations thus obtained.

40



The Lorenz96 model

@ Forward model

d:
% = (wk-i-l —;’L‘k_z)wk_l —xzp+F for k=1,--- N

e Set-up parameters :

©Q the index k is cyclic so that zx—N = Tr+N = k.
©Q F = 8, external driving force.
© —x, a damping term.
Q@ N = 40, the system size.
© Nens = 30, number of ensemble members.

1
o A
Q At = 0.05 = 6hours, the time step.
@ frequency of observations : every 12 hours.
© number of realizations : 9000 realizations.

~ 2.5days, Amax the largest Lyapunov exponent.

0. Talagrand & M. Jardak Optimization for Bayesian Estimation
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How to objectively evaluate the performance of an ensemble (or more generally probabilistic)
estimation system ?

- There is no general objective criterion for Bayesianity

- We use instead the weaker property of reliability, i. e. statistical consistency between
predicted probabilities and observed frequencies of occurrence (it rains with frequency 40% in the
circonstances where I have predicted 40% probability for rain).

Reliability can be objectively validated, provided a large enough sample of realizations of the
estimation system is available.

Bayesianity implies reliability, the converse not being true.

- We also evaluate resolution, which bears no direct relation to bayesianity, and is best defined
as the degree of statistical dependence between the predicted probability distribution and the
verifying observation (J. Brocker). Resolution, beyond reliability, measures the degree of practical
accuracy of the ensembles.
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EnsVar : the non-linear Lorenz96 model (10 days ~ 2 TU
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EnsVar : consistency

Y

Nonlinear Lorenz’96. 10 days. Histogram of 7/

min
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Quasi-Static Variational Assimilation (QSVA)

o

Data Assimilation over [0 T]with T=N .dt = M. dt T
4D-Var over [0 1] starting from the observations

0 1
_—-—

4D-Var over [0 21] starting from the minimizer found above
—_—)
0 27

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T
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EnsVar : the non-linear Lorenz96 model 10 days with
QSVA
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EnsVar : the non-linear Lorenz96 model 18 days with

QSVA
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EnsVar : forecasting

Brier skill score
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EnsVar : observation frequency impact

Impact on the reliability and resolution
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- Results are independent of the Gaussian character of the observation errors (trials have been

made with various probability distributions)

- Ensembles produced by EnsVar are very close to Gaussian, even in strongly nonlinear cases.
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- Comparison Ensemble Kalman Filter (EnKF) and Particle
Filters (PF)

Both of these algorithms being sequential, comparison is fair only at

end of assimilation window
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er}soemble optimal trajectories and respective reference solutions
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Nonlinear Lorenz’96. 5 days. Diagnostics at end of assimilation window
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5 EnKF trajectories and respective reference solutions
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PF trajectories and respective reference solutions
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ensergble optimal trajectories and their respective reference solutions
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ense1r£\ble optimal trajectories and their respective reference solutions
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ense1r§|ble optimal trajectories and their respective reference solutions
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DA procedure o .
Assimilation | Forecasting
method

EnsVAR 0.2193510 | 1.49403506
EnKF 0.2449690 | 1.67176110
PF 0.7579790 | 2.62461295

RMS errors at the end of 5-day assimilations and 5-day forecasts
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Weak constraint EnsVar

e define the objective function.

1 _
3(:577717772,-.. .7]N—1,77N):§{(.’L'—;’Eb)TB l(x—wb)} 4

3 D2 (s — Hilw) "Ry 0 — Hil) }+2§jm

© B background error covariance matrix and R observation error
covariance matrix.

Q@ (Q model error covariance matrix.

@ H : R®***c — R°" observation operator.

Q@ =, background state vector and y; observation vector at time t = ¢;.

© 7. model error vector at t =¢t; with @ (t;) = M, ¢, , (x(tiz1)) +m:

o find the optimal control variable (zg?*, ny?*, nof*, - - .n3¥*) and the

optimal trajectory z°P?.

(.Eopt op opt opt ) —

t7772 )"t min 3(17,771,772,'“ '77N)

r,mni,n2, " .MN eA
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M2 La e n o]

Difference of stochastic and deterministic solutions L2-norm

Divergence between stochastic and deterministic solutions
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Weak constraint EnsVar 18 days assimilation, C=0.1 and 1200 realizations

Enzemble cptimal solutions and reference rank histogram
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Q=01 R=04

Weak constraint nonlinear case, 18 days (no QSVA) and 1200 realisations
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observad ralaiive fraquancy

Diagnostics sur 13 derniers jours

EnsVar, EnKF and PF diagnostics, 18 days assimilation, @=0.1 and 1200 realisations
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| Summary _

@ Under non-linearity and non-Gaussianity the EnsVar is a reliable and

consistent ensemble estimator (provided the QSVA is used for long
DA windows) .

@ EnsVar is at least as good an estimator as EnKF and PF.

@ Similar results have been obtained for the Kuramuto-Sivashinsky
model.

Ensembles obtained are Gaussian, even if errors in data are not

Produces Monte-Carlo sample of (probably not) bayesian pdf

UL
"
¢
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EnsVar : Pros and cons _

e Easy to implement when having a 4D-Var code
e Highly parallelizable

@ No problems with algorithm stability (i.e. no ensemble collapse, no
need for localization and inflation, no need for weight resampling)

e Propagates information in both ways and takes into account
temporally correlated errors

@ Costly (Nens 4D-Var assimilations).
@ Empirical.
@ Cycling of the process (work in progress).

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




And now ?

- Implementation on physically more realistic models (QG, Shallow water, ...)

- Comparison with other ensemble algorithms (IEnKS)

- Cycling and/or overlap

- Minimisation in unstable space (AUS, Trevisan et al. )
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Assimilation, which originated from the need of defining initial conditions for numerical weather forecasts, has gradually
extended to many diverse applications

. Oceanography

. Atmospheric chemistry (both troposphere and stratosphere)

. Oceanic biogeochemistry

. Ground hydrology

. Terrestrial biosphere and vegetation cover

. Glaciology

. Magnetism (both planetary and stellar)

. Plate tectonics

o Planetary atmospheres (Mars, ...)

. Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)
. Identification of source of tracers

. Parameter identification

. A priori evaluation of anticipated new instruments

. Definition of observing systems (Observing Systems Simulation Experiments)
. Validation of models

. Sensitivity studies (adjoints)

It has now become a major tool of numerical environmental science
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A few of the (many) remaining problems :

= Observability (what to observe in order to know what we want to know ? Data are noisy, system
is chaotic !)

* More accurate identification and quantification of errors affecting data particularly the
assimilating model (will always require independent hypotheses)

= Assimilation of images



. HDFLook project (LOAR-USTL MODIS October 2 2002 [18h10 Hurricane Hernan {(Baja Cali
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Cours a venir

Contrdle le mardi 12 juillet, de 14h00 a 16h00, Salle de la

Serre, Sieme €tage, Département de Géosciences, Ecole
Normale Supérieure, 24, rue Lhomond, Paris 5



The End



