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Programme of the course 

1. Numerical modeling of the atmospheric flow. The primitive equations. 
Discretization methods. Numerical Weather Prediction. Present performance. 

2. The meteorological observation system. The problem of  'assimilation’. 
Bayesian estimation. Random variables and random functions. Meteorological 
examples. 

3. ‘Optimal Interpolation'. Basic properties. Meteorological applications. The 
theory of  Best Linear Unbiased Estimator. 

4.  Advanced assimilation methods. 
 - Kalman Filter. Ensemble Kalman Filter. Present performance and perspectives.         
 - Variational Assimilation. Adjoint Equations. Present performance and 

perspectives. 
5.  Advanced assimilation methods (continuation). 
 - Bayesian Filters. Theory, present performance and perspectives. 





Bilan radiatif de la Terre, moyenné sur un an 



	
 	
 	
 	
 	
 Particle moves on sphere with radius R 	

	
 	
 	
 	
 	
 under the action of a force lying 	

	
 	
 	
 	
 	
 in meridian plane of the particle 	


	
 	

	
 	
 	
 	
            → Angular momentum wrt axis of rotation conserved.	


	
 	
 	
 	
 	
 (u + Ω R cosϕ) R cosϕ = Cst	


On Earth, Ω ≈ 2π 10-5 s-1, R ≈ 6.4 106 m.	

If u = 0 at equator, u = 329 ms-1 at latitude ϕ = 45°. If u = 0 at 45°, u = -232 ms-1 

at equator. 	


Hadley, G., 1735, Concerning the cause of the general trade winds, Philosophical Transactions of 
the Royal Society  







26/04/1984, 00/00 TU 



Vent zonal; moyenne longitudinale annuelle (m.s-1)  
http://paoc.mit.edu/labweb/notes/chap5.pdf,  
Atmosphere, Ocean and Climate Dynamics, by J. Marshall and R. A. Plumb, 
International Geophysics, Elsevier) 



Peixoto and Oort, 1992, The Physics of Climate, Springer-Verlag  



D’après K. Trenberth 









ECMWF, Technical Report 499, 2006  
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   Why  have  meteorologists  such  difficulties  in  predicting  the 
weather with any certainty ? Why is it that showers and even 
storms seem to come by chance, so that many people think it 
is quite natural to pray for them, though they would consider 
it ridiculous to ask for an eclipse by prayer ? […] a tenth of a 
degree more or less at any given point, and the cyclone will 
burst here and not there, and extend its ravages over districts 
that it would otherwise have spared. If they had been aware of 
this tenth of a degree, they could have known it beforehand, 
but the observations were neither sufficiently comprehensive 
nor sufficiently precise, and that is the reason why it all seems 
due to the intervention of chance.	


	
 	
 	
 H. Poincaré, Science et Méthode, Paris, 1908	

	
 	
 	
 	
 (translated Dover Publ., 1952) 
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Physical laws governing the flow	

  Conservation of mass	

	
 Dρ/Dt + ρ divU  =  0	
 	


  Conservation of energy	

	
 De/Dt - (p/ρ2) Dρ/Dt =  Q	


  Conservation of momentum	

	
 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	


  Equation of state	

	
  f(p, ρ, e) =  0	
 	
 	
 (p/ρ = rT, e = CvT)	


  Conservation of mass of secondary components (water in  the atmosphere, salt 
in the ocean, chemical species, …)	


	
 Dq/Dt + q divU  = S	


These physical laws must be expressed in practice in discretized (and necessarily	

imperfect) form, both in space and time	




Physical laws must in practice be discretized in both space and time	

⇒ numerical models, which are necessarily imperfect.	


Models  that  are  used for  large scale  weather  prediction and for  climatological 
simulation  cover  the  whole  volume  of  the  atmosphere.  These  models  are 
based, at least so far, on the hydrostatic hypothesis	


	
 in the vertical direction :	


	
 ∂p/∂z + ρg =  0	


	
 Eliminates  momentum  equation  for  vertical  direction.  In  addition,  flow  is 
incompressible in coordinates (x, y, p) ⇒ number of equations decreased by 
two units.	


	
 	

	
 Hydrostatic approximation valid, to accuracy ≈ 10-4, for horizontal scales 	

	
 > 20-30 km	


	
 More costly nonhydrostatic models are used for small scale meteorology.	




	
 Hydrostatic  approximation  allows  to  take  pressure  p  as  
independent vertical coordinate	


	
 - Flow is incompressible	


	
 - Pressure gradient term (1/ρ) gradz p becomes gradp Φ,	

	
 where Φ ≡ gz is geopotential   	
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There exist at present two forms of spatial discretization	


-  Gridpoint discretization	


-  (Semi-)spectral  discretization  (mostly  for  global  models, 
and most often only in the horizontal direction)	


Finite  element  discretization,  which is  very  common in  many forms of 
numerical modelling, is rarely used for modelling of the atmosphere, 
except for discretization in the vertical direction. It is more frequently 
used for oceanic modelling, where it allows to take into account the 
complicated geometry of coast-lines.	
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In  gridpoint  models,  meteorological  fields  are  defined  by 
values at the nodes of a grid covering the physical domain 
under consideration. Spatial and temporal derivatives are 
expressed by finite differences.	


In spectral  models,  fields are defined by the coefficients of 
their expansion along a prescribed set of basic functions. In 
the  case  of  global  meteorological  models,  those  basic 
functions  are  the  spherical  harmonics  (eigenfunctions  of 
the laplacian at the surface of the sphere).   	




A schematic of an Atmospheric General Circulation Model (L. 
Fairhead /LMD-CNRS) 



Grilles de modèles de Météo-France (La Météorologie) 



Modèles (semi-)spectraux	


	
 	
 T(µ=sin(latitude), λ=longitude) =  	


	
 où les	
            sont les harmoniques sphériques	


	
 	
 	
	
          est la fonction de Legendre de deuxième espèce.	


	
 	


	
  n et m sont respectivement le degré et l'ordre de l’harmonique	


	
 n =  0, 1, …  	
 - n ≤ m ≤ n     	
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Modèles (semi-)spectraux	


	
 	
 	


	
 Les  harmoniques  sphériques  définissent  une  base  complète  orthonormée  de  l’espace 
L2 à la surface S de la sphère. 	


	
 Relation de Parseval	
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Les harmoniques sphériques sont fonctions propres du laplacien 
à la surface de la sphère 

Troncature ‘triangulaire’ TN (n ≤ N, -n ≤ m ≤ n) indépendante du 
choix d’un axe polaire. Représentation est parfaitement 
homogène à la surface de la sphère 

Calculs non linéaires effectués dans l’espace physique (sur grille 
appropriée, souvent latitude-longitude ‘gaussienne’). Les 
transformations requises sont possibles à un coût non prohibitif 
grâce à l’utilisation de Transformées de Fourier Rapides (Fast 
Fourier Transforms, FFT, en anglais). Il existe aussi une version 
rapide des Transformées de Legendre, relatives à la variable µ.  

€ 

ΔYn
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 In  addition  to  hydrostatic  approximation,  the  following  approximations  are 
(almost) systematically made in global modeling :	


 - Atmospheric fluid is contained in a spherical shell with negligible 
thickness. This does not forbid the existence within the shell of a vertical 
coordinate which, in view of the hydrostatic equation, can be chosen as the 
pressure p. 

 - The horizontal component of the Coriolis acceleration due to the vertical 
motion is neglected (this approximation, sometimes called the traditional 
approximation, is actually a consequence of the previous one). 

 - Tidal forces are neglected. 

	
 These approximations lead to the so-called (and ill-named) primitive equations 	


	
 	




	
 Pressure  p,  although  convenient  for  writing  down  the 
equations,  is  in  fact  rather  inconvenient  because  lower 
boundary is not fixed in (x, y, p)-space.	


	
 So-called  σ-coordinate.  σ  ≡ p/pS,  where  pS  is  pressure  at 
ground level.	


	
 ‘Hybrid’ coordinate.    	


	
 	

  

	
 	




	
 Temporal  discretization.  Courant-Friedrichs-Lewy 
(CFL) condition for stability of explicit schemes	


	
 	
 	
 Δt / Δx  < α / c 	


	
 where  c  is  phase  velocity  of  fastest  propagating  (wave) 
in  the  system,  and  α  is  an  O(1)  numerical  coefficient 
depending on particular scheme  under consideration.	


	
 Significance  :  numerical  propagation  of  signal  must  be  at 
least as fast as physical propagation. 	


  

	
 	




	
 In  hydrostatic  atmosphere,  fastest  propagating  wave  : 
gravity wave with largest  scale  height,  c = √(rT)  ≈  300 
m.s-1.	


	
 	

	
 	
 	
 Δx = 30 km	
  ⇒  Δt = 100 s     	


 The use  of  semi-implicit  schemes allows to  get  rid  of  the 
CFL condition, and to use longer timesteps.    
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In the parlance of the trade, one distinguishes two different 
parts in models. The ‘dynamics’ deals with the physically 
reversible  processes  (pressure  forces,  Coriolis  force, 
advection,  …),  while the ‘physics’ deals  with physically 
irreversible  processes,  in  particular  the  diabatic  heating 
term  Q  in  the  energy  equation,  and  also  the 
parameterization of subgrid scales effects.	


Numerical  schemes  have  been  gradually  developed  and 
validated for the ‘dynamics’ component of models, which 
are  by  and  large  considered  now  to  work  satisfactorily 
(although  regular  improvements  are  still  being  made; 
project  DYNAMICO,  Dynamical  Core  on  Icosahedral 
Grid, Th. Dubos, IPSL). 	
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The situation is different as concerns ‘physics’, where many 
problems remain (as concerns for instance subgrid scales 
parameterization,  the  water  cycle  and  the  associated 
exchanges of energy, or the exchanges that take place in 
the  boundary  layer  between  the  atmosphere  and  the 
underlying  medium).  ‘Physics’ as  a  whole  remains  the 
weaker point  of  models,  and is  still  the object  of  active 
research.  	






Cours à venir	


Jeudi 19 avril	

Jeudi 26 avril	

Jeudi 3 mai	

Lundi 14 mai	

Jeudi 17 mai (*)	

Jeudi 24 mai	

Jeudi 7 juin	

Jeudi 14 juin	


De 10h00 à 12h30, Département de Géosciences, École Normale Supérieure, 24, 
rue Lhomond, Paris 5,  Salle de la Serre, 5ième étage, 	


(*) Salle E314, 3ième étage     	



