École Doctorale des Sciences de l'Environnement d'Île-de-France
Année Universitaire 2017-2018

Modélisation Numérique de l'Écoulement Atmosphérique et Assimilation de Données

Olivier Talagrand
Cours 3

3 Mai 2018

Bayesian Estimation

Determine conditional probability distribution of the state of the system, given the probability distribution of the uncertainty on the data

$$
\begin{array}{ll}
z_{1}=x+\zeta_{1} \quad & \zeta_{1}=\mathcal{N}\left[0, s_{1}\right] \\
& \text { density function } p_{1}(\zeta) \propto \exp \left[-\left(\zeta^{2}\right) / 2 s_{1}\right] \\
z_{2}=x+\zeta_{2} \quad & \zeta_{2}=\mathcal{N}\left[0, s_{2}\right] \\
& \text { density function } p_{2}(\zeta) \propto \exp \left[-\left(\zeta^{2}\right) / 2 s_{2}\right]
\end{array}
$$

- ζ_{1} and ζ_{2} mutually independent

What is the conditional probability $P\left(x=\xi \mid z_{1}, z_{2}\right)$ that x be equal to some value ξ ?

$$
\begin{array}{ll}
z_{1}=x+\zeta_{1} & \text { density function } p_{1}(\zeta) \propto \exp \left[-\left(\zeta^{2}\right) / 2 s_{1}\right] \\
z_{2}=x+\zeta_{2} & \text { density function } p_{2}(\zeta) \propto \exp \left[-\left(\zeta^{2}\right) / 2 s_{2}\right] \\
& \zeta_{1} \text { and } \zeta_{2} \text { mutually independent }
\end{array}
$$

$$
x=\xi \Leftrightarrow \zeta_{1}=z_{1}-\xi \text { and } \zeta_{2}=z_{2}-\xi
$$

- $P\left(x=\xi \mid z_{1}, z_{2}\right) \propto p_{1}\left(z_{1}-\xi\right) p_{2}\left(z_{2}-\xi\right)$

$$
\propto \exp \left[-\left(\xi-x^{a}\right)^{2} / 2 p^{a}\right]
$$

where $1 / p^{a}=1 / s_{1}+1 / s_{2}, x^{a}=p^{a}\left(z_{1} / s_{1}+z_{2} / s_{2}\right)$
Conditional probability distribution of x, given z_{1} and $z_{2}: \mathcal{N}\left[x^{a}, p^{a}\right]$ $p^{a}<\left(s_{1}, s_{2}\right)$ independent of z_{1} and z_{2}

Fig. 1.1: Prior pdf $p(x)$ (dashed line), posterior $\operatorname{pdf} p\left(x \mid y^{o}\right)$ (solid line), and Gaussian likelihood of observation $p\left(y^{\circ} \mid x\right)$ (dotted line), plotted against x for various values of y^{o}. (Adapted from Lorenc and Hammon 1988.)

Conditional expectation x^{a} minimizes following scalar objective function, defined on ξ-space

$$
\xi \rightarrow \mathcal{J}(\xi) \equiv(1 / 2)\left[\left(z_{1}-\xi\right)^{2} / s_{1}+\left(z_{2}-\xi\right)^{2} / s_{2}\right]
$$

In addition

$$
p^{a}=1 / \mathcal{I}^{\prime \prime}\left(x^{a}\right)
$$

Conditional probability distribution in Gaussian case

$$
P\left(x=\xi \mid z_{1}, z_{2}\right) \propto \exp [-\underbrace{\left.\left(\xi-x^{a}\right)^{2} / 2 p^{a}\right]}_{\mathcal{J}(\xi)+C s t}
$$

Estimate

$$
x^{a}=p^{a}\left(z_{1} / s_{1}+z_{2} / s_{2}\right)
$$

with error p^{a} such that

$$
1 / p^{a}=1 / s_{1}+1 / s_{2}
$$

can also be obtained, independently of any Gaussian hypothesis, as simply corresponding to the linear combination of z_{1} and z_{2} that minimizes the error $E\left[\left(x^{a}-x\right)^{2}\right]$

Best Linear Unbiased Estimator (BLUE)

Bayesian estimation

State vector x, belonging to state space $S(\operatorname{dim} S=n)$, to be estimated.

Data vector z, belonging to data space $\mathcal{D}(\operatorname{dim} \mathcal{D}=m)$, available .

$$
\begin{equation*}
z=F(x, \zeta) \tag{1}
\end{equation*}
$$

where ζ is a random element representing the uncertainty on the data (or, more precisely, on the link between the data and the unknown state vector).

For example

$$
z=\Gamma x+\zeta
$$

Bayesian estimation (continued)

Probability that $x=\xi$ for given ξ ?

$$
\begin{aligned}
& x=\xi \Rightarrow z=F(\xi, \zeta) \\
& P(x=\xi \mid z)=P[z=F(\xi, \zeta)] / \int_{\xi} P\left[z=F\left(\xi^{\prime}, \zeta\right)\right]
\end{aligned}
$$

Unambiguously defined iff, for any ζ, there is at most one x such that (1) is verified.
\Leftrightarrow data contain information, either directly or indirectly, on any component of x. Determinacy condition.

Bayesian estimation is however impossible in its general theoretical form in meteorological or oceanographical practice because

- It is impossible to explicitly describe a probability distribution in a space with dimension even as low as $n \approx 10^{3}$, not to speak of the dimension $n \approx$ 10^{6-9} of present Numerical Weather Prediction models (the curse of dimensionality).
- Probability distribution of errors on data very poorly known (model errors in particular).

One has to restrict oneself to a much more modest goal. Two approaches exist at present

- Obtain some 'central' estimate of the conditional probability distribution (expectation, mode, ...), plus some estimate of the corresponding spread (standard deviations and a number of correlations).
- Produce an ensemble of estimates which are meant to sample the conditional probability distribution (dimension $N \approx O(10-100)$).

Random vector $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}=\left(x_{i}\right)(e . g$. pressure, temperature, abundance of given chemical compound at n grid-points of a numerical model)

- Expectation $E(\boldsymbol{x}) \equiv\left[E\left(x_{i}\right)\right] \quad ; \quad$ centred vector $\quad \boldsymbol{x}^{\prime} \equiv \boldsymbol{x}-E(\boldsymbol{x})$
- Covariance matrix

$$
E\left(\boldsymbol{x}^{\prime} \boldsymbol{x}^{\prime} \mathrm{T}\right)=\left[E\left(x_{i}^{\prime} x_{j}^{\prime}\right)\right]
$$

dimension $n \mathrm{x} n$, symmetric non-negative (strictly definite positive except if linear relationship holds between the x_{i} ''s with probability 1).

- Two random vectors

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}} \\
& \boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{p}\right)^{\mathrm{T}}
\end{aligned}
$$

$$
E\left(\boldsymbol{x}^{\prime} \boldsymbol{y}^{\prime}{ }^{\mathrm{T}}\right)=E\left(x_{i}^{\prime} y_{j}^{\prime}\right)
$$

dimension $n \times p$

Covariance matrices will be denoted

$$
\begin{aligned}
& C_{x x} \equiv E\left(\boldsymbol{x}^{\prime} \boldsymbol{x}^{\mathrm{T}}\right) \\
& C_{x y} \equiv E\left(\boldsymbol{x}^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)
\end{aligned}
$$

Random function $\Phi(\xi)$ (field of pressure, temperature, abundance of given chemical compound, ...; ξ is now spatial and/or temporal coordinate)

- Expectation $E[\Phi(\xi)] ; \quad \Phi^{\prime}(\xi) \equiv \Phi(\xi)-E[\Phi(\xi)]$
- Variance $\operatorname{Var}[\Phi(\xi)]=E\left\{\left[\Phi^{\prime}(\xi)\right]^{2}\right\}$
- Covariance function

$$
\left(\xi_{1}, \xi_{2}\right) \rightarrow C_{\Phi}\left(\xi_{1}, \xi_{2}\right) \equiv E\left[\Phi^{\prime}\left(\xi_{1}\right) \Phi^{\prime}\left(\xi_{2}\right)\right]
$$

- Correlation function

$$
\operatorname{Cor}_{\Phi}\left(\xi_{1}, \xi_{2}\right) \equiv E\left[\Phi^{\prime}\left(\xi_{1}\right) \Phi^{\prime}\left(\xi_{2}\right)\right] /\left\{\operatorname{Var}\left[\Phi\left(\xi_{1}\right)\right] \operatorname{Var}\left[\Phi\left(\xi_{2}\right)\right]\right\}^{1 / 2}
$$

.: Isolines, for the auto-correlations of the 500 mb geopotential between the station in Hannover and surrounding stations.
From Bertoni and Lund (1963)

Isolines of the cross-correlation between the 500 mb geopotential in station $01384(R)$ and the surface pressure in surrounding stations.

After N. Gustafsson

After N. Gustafsson

Optimal Interpolation

Random field $\Phi(\xi)$
Observation network $\boldsymbol{\xi}_{1}, \boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{p}$
For one particular realization of the field, observations
$y_{j}=\Phi\left(\boldsymbol{\xi}_{j}\right)+\varepsilon_{j}, j=1, \ldots, p \quad$ making up vector $\boldsymbol{y}=\left(y_{j}\right)$
Estimate $x=\Phi(\xi)$ at given point ξ, in the form

$$
x^{a}=\alpha+\Sigma_{j} \beta_{j} y_{j}=\alpha+\beta^{\mathrm{T}} \boldsymbol{y}
$$

where $\beta=\left(\beta_{j}\right)$
α and the β_{j} 's being determined so as to minimize the expected quadratic estimation error $E\left[\left(x-x^{a}\right)^{2}\right]$

Optimal Interpolation (continued 1)

Solution

$$
\begin{aligned}
& x^{a} \\
&=E(x)+E\left(x^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\left[E\left(y^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\right]^{-1}[y-E(\boldsymbol{y})] \\
&=E(x)+\boldsymbol{C}_{x y}\left[\boldsymbol{C}_{y y}\right]^{-1}[\boldsymbol{y}-E(\boldsymbol{y})] \\
& \text { i.e., } \quad \boldsymbol{\beta}^{\mathrm{T}}= C_{x y}\left[C_{y y}\right]^{-1} \\
& \alpha=E(x)-\boldsymbol{\beta}^{\mathrm{T}} E(\boldsymbol{y})
\end{aligned}
$$

Estimate is unbiased $\quad E\left(x-x^{a}\right)=0$

Minimized quadratic estimation error

$$
\begin{aligned}
E\left[\left(x-x^{a}\right)^{2}\right] & \left.=E\left(x^{\prime 2}\right)-E\left[\left(x^{\prime a}\right)^{2}\right]\right) \\
& =\boldsymbol{C}_{x x}-\boldsymbol{C}_{x y}\left[\boldsymbol{C}_{y y}\right]^{-1} \boldsymbol{C}_{y x}
\end{aligned}
$$

Estimation made in terms of deviations x ' and y^{\prime} from expectations $E(x)$ and $E(y)$.

Optimal Interpolation (continued 2)

$$
\begin{aligned}
& x^{a}=E(x)+E\left(x^{\prime} \boldsymbol{y}^{\mathrm{T}}\right)\left[E\left(\boldsymbol{y}^{\prime} \boldsymbol{y}^{\prime \mathrm{T}}\right)\right]^{-1}[\boldsymbol{y}-E(\boldsymbol{y})] \\
& y_{j}=\Phi\left(\boldsymbol{\xi}_{j}\right)+\varepsilon_{j} \\
& E\left(y_{j}^{\prime} y_{k}^{\prime}\right)=E\left[\Phi^{\prime}\left(\boldsymbol{\xi}_{j}\right)+\varepsilon_{j}^{\prime}\right]\left[\Phi^{\prime}\left(\xi_{k}\right)+\varepsilon_{k}^{\prime}\right]
\end{aligned}
$$

If observation errors ε_{j} are mutually uncorrelated, have common variance r, and are uncorrelated with field Φ, then

$$
E\left(y_{j}^{\prime} y_{k}{ }^{\prime}\right)=C_{\Phi}\left(\xi_{j}, \xi_{k}\right)+r \delta_{j k}
$$

and

$$
E\left(x^{\prime} y_{j}^{\prime}\right)=C_{\Phi}\left(\xi_{,}, \xi_{j}\right)
$$

Cours à venir

Jeudi 19 avril
Jeudi 26 avril
Jeudi 3 mai
Lundi 14 mai
Jeudi 17 mai
Jeudi 24 mai
Jeudi 7 juin
Jeudi 14 juin

De 10 h 00 à 12h30, Salle E314, 3ième étage, Département de Géosciences, École Normale Supérieure, 24, rue Lhomond, Paris 5

