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Two questions	



	

 -  How  to  propagate  information  backwards  in  time  ? 
(useful for reassimilation of past data)	



	

 - How to take into account possible dependence in time ?	



Kalman Filter, whether in its standard linear form or in its Ensemble form, 
does neither.	





	

 Kalman smoother 	



	

 Propagates information both forward and backward in time, as does 4DVar, 
but uses Kalman-type formulæ	



	

 Various possibilities 	



  Define new state vector  xT ≡ (x0
T, …, xK

T)	


	

 and use Kalman formula from a background xb

 and associated covariance 
matrix Πb.	



	

 Can take into account temporal correlations         

  Update sequentially vector (x0
T, …, xk

T) T for increasing k	


	

 Cannot take into account temporal correlations  

	

 Algorithms exist in ensemble form	





	

 E. Cosme (1995)	



	

 Ensemble  smoother  based  on  Singular  Evolutive 
Extended Kalman Filter (SEEK) 	



	

 Of  second  type  above.  Retropropagates  corrections  on 
fields backwards in time, but  without modifying relative 
weights given to previous data, i.e.  cannot be optimal in 
case of temporal dependence between errors.	





E. Cosme, 
HDR, 
2015, 
Lissage 
d’ensemble 
SEEK 

Données 
synthétiques 



E. Cosme, HDR, 2015, Lissage d’ensemble SEEK 
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Bayesian Estimation 	



Data of the form	



z = Γx + ζ, 	

 ζ ∼ N [0, S]	



Known data vector z belongs to data space D, dimD = m,	


Unknown state vector x belongs to state space X, dimX = n 	


Γ known (mxn)-matrix, ζ unknown ‘error’	



Probability that x = ξ given ?      x = ξ ⇒ ζ = z - Γξ	



P(ζ = z - Γξ) ∝ exp[ -(z - Γξ)T S-1 (z - Γξ)/2 ] ∝ exp[ -(ξ -xa )T (Pa)-1 (ξ -xa)/2 ]	



where	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 z	


	

 	

 	

       Pa = (Γ T S-1Γ)-1	



Then conditional  probability distribution is	



	

 	

 	

       P(x | z) = N [xa, Pa]	
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Bayesian Estimation (continuation 1) 	



z = Γx + ζ, 	

 ζ ∼ N [0, S]	


Then	



	

 	

 	

        P(x | z) = N [xa, Pa]	



with	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 z	


	

 	

 	

       Pa = (Γ T S-1Γ)-1	



Determinacy condition : rankΓ = n. Data contain information, directly or 
indirectly, on every component of state vector x. Requires m ≥ n.	
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Variational form	



P(x | z) ∝ exp[ -(z - Γξ)T S-1 (z - Γξ)/2 ] ∝ exp[ -(ξ -xa )T (Pa)-1 (ξ -xa)/2 ]	



Conditional expectation xa minimizes following scalar objective function, defined 
on state space X 

ξ ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - z)]T S-1 [Γξ - z]	



Pa = [∂2J /∂ξ2]-1  	
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If data still of the form	



z = Γx + ζ, 	

 	



but  ‘error’  ζ  , which still has expectation  0  and  covariance  S,  is  not 
Gaussian, expressions  	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 z	


	

 	

 	

      Pa = (Γ T S-1Γ)-1	



	

 do  not  achieve  Bayesian  estimation,  but  define  least-variance  linear 
estimate  of  x  from  z  (Best  Linear  Unbiased  Estimator,  BLUE),  and 
associated estimation error covariance matrix.    	



	

 	





From course 4	


Best Linear Unbiased Estimate (continuation 1)	



	

 xb  =  x  + ζb	

 	

 	

  (1)	


	

 y  =  Hx + ε	

 	

 	

  (2)	



	

 A  probability  distribution  being  known  for  the  couple  (ζb,  ε),  eqs  (1-2) 
define probability distribution for the couple (x, y), with 	



	

 E(x) = xb ,  x’ = x - E(x) = - ζb	



	

 E(y) = Hxb ,  y’ = y - E(y) = y - Hxb = ε - Hζb	



	

 d ≡ y - Hxb is called the innovation vector.	





From course 4	


Best Linear Unbiased Estimate (continuation 2)	



	

 Apply formulæ for Optimal Interpolation	



	

 	

 	

 xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	


	

 	

 	

 Pa = Pb

 - Pb
 HT

 [HPbHT 
 + R]-1 HPb	



 	

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.	


	

 	


	

 Equivalent set of formulæ 	


	

 	


	

 	

 	

 xa = xb + Pa

 HT
 R-1 (y - Hxb)	



	

 	

 	

 [Pa]-1 = [Pb]-1
 + HT

 R-1H	



 	

 Vector d ≡  y – Hxb is innovation vector	


	

 Matrix K ≡ Pb

 HT
 [HPbHT + R]-1 = Pa

 HT
 R-1 is gain matrix.	



	

 If  probability  distributions  are  globally  gaussian,  BLUE  achieves  bayesian 
estimation, in the sense that P(x | xb, y) = N [xa, Pa].	





Variational Assimilation	



	

 Variational form of the BLUE	



	

  BLUE xa minimizes following scalar objective function, defined on state space	



	

 ξ ∈  S  →	



•      J(ξ) ≡  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)	



  ≡ 	

         Jb                    + 	

                     Jo	



	

 	

 	

 	

 ‘3D-Var’ 	

	



	

 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	


	

 	


	

 Used operationally in USA, Australia, China, …	





	

 Case of data that are distributed over time	



	

 Suppose for instance available data consist of 	



	

 	

 - Background estimate at time 0	


	

 	

    x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

    yk = Hkxk + εk	

 E(εkεj

T) = Rk δkj	



	

 	

  - Model (supposed for the time being to be exact) 	


	

 	

    xk+1 = Mkxk  k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	



	

 Then objective function	


	

 	


ξ0 ∈  S  → 	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
 subject to ξk+1 = Mkξk ,	

 k = 0, …, K-1	



	

 	

 	





	

 	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
  Background  is  not  necessary,  if  observations are  in  sufficient  number  to 

overdetermine the problem. Nor is strict linearity. 

 How to  minimize  objective  function  with  respect  to  initial  state  u  = ξ0  (u  is 
called the control variable of the problem) ?	



	

 Use  iterative  minimization  algorithm,  each  step  of  which  requires  the 
explicit knowledge of the local gradient ∇u J ≡  (∂J/∂ui) of J with respect to u.	





	

 How to numerically compute the gradient ∇u J ?	



	

 Direct  perturbation,  in  order  to  obtain  partial  derivatives  ∂J/∂ui  by  finite 
differences  ?  That  would  require  as  many  explicit  computations  of  the 
objective function J as there are components in u. Practically impossible.	



	

 Gradient computed by adjoint method.	





Adjoint Method	



	

 Input vector u = (ui), dimu = n	


	

 Numerical  process,  implemented  on  computer  (e.  g.  integration  of 

numerical model)	



u → v = G(u)	


	

 v = (vj) is output vector , dimv = m	



	

 Perturbation δu = (δui) of input. Resulting first-order perturbation on v	



	

 δvj = Σi (∂vj/∂ui) δui 	



	

 or, in matrix form	


	

 δv  =  G’δu	



	

 where G’≡ (∂vj/∂ui) is local matrix of partial derivatives, or jacobian matrix, of G. 	





Adjoint Method (continued 1)	



	

 	

 	

 	

        δv  =  G’δu	

 	

 	

 (D)	



•  Scalar function of output 	


J(v)  =  J[G(u)]	



	

 Gradient ∇u J of J with respect to input u?	



	

 ‘Chain rule’	

 	

  	



∂J/∂ui = Σj ∂J/∂vj (∂vj/∂ui)	



 	

  or 	


	

          ∇u J  =  G’T ∇v J 	

 	

  	

 (A)	





Adjoint Method (continued 2)	



	

 G is the composition of a number of successive steps	



G = GN ° … ° G2 ° G1	


	

 	


	

 ‘Chain rule’	

 	

  	



G’ = GN’ … G2’ G1’	



 	

 Transpose	



G’T = G1’T G2’T … GN’T	



	

 Transpose, or adjoint, computations are performed in reversed order of direct computations.	



	

 If  G  is  nonlinear,  local  jacobian  G’ depends  on  local  value  of  input  u.  Any  quantity  which  is  an 
argument  of  a  nonlinear  operation  in  the  direct  computation  will  be  used  again  in  the  adjoint 
computation. It must be kept in memory from the direct computation (or else be recomputed again in 
the course of the adjoint computation).	



	

 If  everything  is  kept  in  memory,  total  operation  count  of  adjoint  computation  is  at  most  4  times 
operation count of direct computation (in practice about 2).	





Adjoint Approach	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
 subject to ξk+1 = Mkξk ,	

 k = 0, …, K-1	



Control variable 	

  ξ0 = u	



Adjoint equation	



 λK = 	

        HK
T RK

-1 [HK ξK - yK]	


 ….	


 λk =  Mk

Tλk+1 + Hk
T Rk

-1 [Hk ξk - yk]	

 	

  	

 k = K-1, …, 1	


 ….	


 λ0 =  M0

Tλ1    + H0
T R0

-1 [H0 ξ0 - y0]   +  [P0
b]-1 (ξ0 - x0

b) 	



	

 	

 	

 	

 ∇u J  = λ0 	

 	



Result of direct integration (ξk), which appears in quadratic terms in expression of	


objective function, must be kept in memory from direct integration.	





Adjoint Approach (continued 2)	



Nonlinearities ?	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]  
 subject to ξk+1 = Mk(ξk) ,	

 k = 0, …, K-1	



Control variable 	

  ξ0 = u	



Adjoint equation	



 λK = 	

        HK’T RK
-1 [HK(ξK) - yK]	



 ….	


 λk =  Mk’Tλk+1 + Hk’T Rk

-1 [Hk(ξk) - yk]	

 	

  	

 k = K-1, …, 1	


 ….	


λ0 =  M0’Tλ1      + H0’T R0

-1 [H0(ξ0) - y0]   +  [P0
b]-1 (ξ0 - x0

b) 	



	

 	

 	

 	

 ∇u J  = λ0 	

 	



Not approximate (it gives the exact gradient ∇uJ), and really used as described here.	





Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 

Same as before, but at the end of a 24-hr 4D-Var 



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



Same as before, but at the end of a 24-hr 4D-Var 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 



ECMWF, Results on one FASTEX case (1997) 



	

 Strong  Constraint  4D-Var  is  now  used  operationally  at 
several  meteorological  centres  (Météo-France,  UK 
Meteorological  Office,  Canadian  Meteorological  Centre, 
Japan Meteorological  Agency,  …) and,  until  recently,  at 
ECMWF.  The  latter  now  has  a  ‘weak  constraint’ 
component in its operational system. 	



	

 	





Persistence = 0 ; climatology = 50 at long range	





Ini$al	
  state	
  error	
  reduc$on	
  

4DVar EDA 

Reforecasts from 
reanalysis 

Operational 
forecasts 

Credit E. Källén, ECMWF 
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Time-correlated Errors (continuation 3)	



 Moral.  If  data  errors  are  correlated  in  time,  it  is  not  possible  to  discard  observations  as 
they are used. In particular, if model error is correlated in time, all observations are liable to 
be reweighted as assimilation proceeds.	



	

 Variational assimilation can take time-correlated errors into account.	



	

 	

 Example of time-correlated observation errors. Global covariance matrix	



	

 	

 	

 R = (Rkk’ = E(εkεk’
T))	



	

 	

 Objective function	



ξ0 ∈  S   → 	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σkk’[yk - Hkξk]T [R -1]kk’ [yk’ - Hk’ξk’]  

	

 	

 where [R -1]kk’ is the kk’-sub-block of global inverse matrix R -1.	



	

 Similar approach for time-correlated model error.	



€ 
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Time-correlated Errors (continuation 4)	



 Temporal  correlation  of  observational  error  has  been  introduced  by  ECMWF  (Järvinen 
et  al.,  1999) in variational  assimilation of high-frequency surface pressure observations 
(correlation originates in that case in representativeness error).	



	

 Identification and quantification of time correlation of errors, especially model errors ?	



€ 



	

 In  the  linear  case,  and  if  errors  are  uncorrelated  in  time,  Kalman 
Smoother and Variational Assimilation are algorithmically equivalent. 
They produce the BLUE of the state of the system from all available 
data, over the whole assimilation window (Kalman Filter produces the 
BLUE only at the end of the final time of the window). If in addition 
errors are Gaussian, both algorithms achieve Bayesian estimation.	



	

 If  errors  are  correlated  in  time,  one  some  Kalman  Smoothers  are 
equivalent with Variational Assimilation. 	



	

 	





	

 Buehner et al. (Mon. Wea. Rev., 2010)	


	

 	


	

 For  the  same  numerical  cost,  and  in  meteorologically  realistic 

situations,  Ensemble  Kalman  Filter  and  Variational  Assimilation 
produce results of similar quality.	





How to  write the adjoint of a code  ?	


	

 	


	

 Operation  a = b x c	



	

 Input  b, c	

  Output  a  but also b, c	



	

  For clarity, we write	



	

  a = b x c	


	

  b’ = b	


	

  c’ = c	



	

 ∂J/∂a,  ∂J/∂b’,  ∂J/∂c’ available. We want to determine ∂J/∂b,  ∂J/∂c 	



	

  Chain rule	



	

  ∂J/∂b = (∂J/∂a)(∂a/∂b) + (∂J/∂b’)(∂b’/∂b) + (∂J/∂c’)(∂c’/∂b) 	


	

 	

                c	

                     1	

 	

   0	


	

 	


	

  ∂J/∂b = (∂J/∂a) c + ∂J/∂b’	



	

  Similarly	



	

 ∂J/∂c = (∂J/∂a) b + ∂J/∂c’	


	

 	



	

 	


	

 	





M. Jardak 



	

 How  to  take  model  error  into  account  in 
variational assimilation ?	





Weak constraint variational assimilation 	



Allows for errors in the assimilating model	



•  Data	


	

 	

 - Background estimate at time 0	


	

 	

 	


	

 	

   x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

 	


	

 	

    yk = Hkxk + εk	

 E(εkεk

T) = Rk	



	

 	

  - Model	


	

 	

  	


	

 	

   xk+1 = Mkxk + ηk 	

  E(ηkηk

T) = Qk k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	





	

 Then objective function	


	

 	



	

 (ξ0, ξ1, ..., ξK) → 	



	

 J(ξ0, ξ1, ..., ξK)   

  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	



	

 	

     + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	



	

 	

     + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]  

  
  Can include nonlinear Mk and/or Hk.	



	

  Implemented operationally at ECMWF for the assimilation in the stratosphere.	



	

 Becomes singular in the strong constraint limit Qk → 0 

       
	

 	

 	





Cours à venir	



Jeudi 19 avril	


Jeudi 26 avril	


Jeudi 3 mai	


Lundi 14 mai	


Jeudi 17 mai 	


Jeudi 24 mai	


Jeudi 7 juin	


Jeudi 14 juin	



De 10h00 à 12h30, Salle E314, 3ième étage, Département de Géosciences, École 
Normale Supérieure, 24, rue Lhomond, Paris 5 	




