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Exact bayesian estimation ?	


Particle filters	


Predicted ensemble at time t : {xb
n, n = 1, …, N},  each element with its own 

weight (probability) P(xb
n) 	


Observation vector at same time : y = Hx + ε	


Bayes’ formula	

P(xb

n|y) ∼ P(y|xb
n) P(xb

n) 	


Defines updating of weights	




Bayes’ formula	

P(xb

n|y) ∼ P(y|xb
n) P(xb

n) 	


Defines  updating  of  weights;  particles  are  not  modified.  Asymptotically 
converges to bayesian pdf. Very easy to implement.	


Observed fact. For large state dimension, ensemble tends to collapse.	




C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/
Snyder.pdf 



Problem originates  in  the  ‘curse  of  dimensionality’.  Large  dimension 
pdf’s are very diffuse, so that very few particles (if any) are present in 
areas where conditional probability  (‘likelihood’) P(y|x) is large.	


Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of 
filter  requires the size of ensembles to increase exponentially with 
space dimension.	




Curse of dimensionality	


Standard  one-dimensional  gaussian  random 
variable X	


	
 P[ ⎜X ⎜ < σ ] ≈ 0.84	


In dimension n = 100,  0.84100 = 3.10-8     

.	




Alternative possibilities (review in van Leeuwen, 2009, Mon. Wea. Rev., 4089-4114)	


Resampling. Define new ensemble.	


Simplest way. Draw new ensemble according to probability distribution defined by the updated 
weights. Give same weight to all particles. Particles are not modified, but particles with low 
weights are likely to be eliminated, while particles with large weights are likely to be drawn 
repeatedly. For multiple particles, add noise, either from the start, or in the form of ‘model 
noise’ in ensuing temporal integration. 	


Random  character  of  the  sampling  introduces  noise.  Alternatives  exist,  such  as  residual 
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights wn are multiplied by 
ensemble dimension N. Then p copies of each particle n are taken, where p is the integer 
part  of  Nwn.  Remaining  particles,  if  needed,  are  taken  randomly  from  the  resulting 
distribution.	




Importance Sampling. 	


Use a proposal density that is closer to the new observations than the density 
defined by the predicted particles (for instance the density defined by 
EnKF, after the latter has used the new observations). This however leads 
to using twice the same observations.	


In particular, Guided Sequential Importance Sampling (van Leeuwen, 2002). 
Idea  :  use  observations  performed at  time k  to  resample  ensemble  at 
some timestep anterior to k, or ‘nudge’ integration between times k-1 and 
k towards observation at time k.	




van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084	




Particle filters are actively studied (van Leeuwen, 
Morzfeld, …)  

  

  

  

  



If there is uncertainty on the state of the system, and dynamics of 
the system is perfectly known, uncertainty on the state along 
stable modes decreases over time, while uncertainty along 
unstable modes increases. 

  

 Stable (unstable) modes : perturbations to the basic state 
that decrease (increase) over time. 

  

  

  

  





 Consequence : Consider 4D-Var assimilation, or any form of smoother, 
which carries information both forward and backward in time, performed 
over time interval [t0, t1] over uniformly distributed noisy data. If 
assimilating model is perfect, estimation error is concentrated in stable 
modes at time t0, and in unstable modes at time t1. Error is smallest 
somewhere within interval [t0, t1]. 

 Similar result holds true for Kalman filter (or more generally any form 
of sequential assimilation), in which estimation error is concentrated in 
unstable modes at any time. 
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Linearized Lorenz’96. 5 days	


Jardak and Talagrand 



15 Nonlinear Lorenz’96. 5 days	
 Jardak and Talagrand 



Trevisan et al., 2010, Q. J. R. Meteorol. Soc.	






Lorenz (1963)	


 dx/dt = σ(y-x)	

	
 dy/dt = ρx - y - xz	

	
 dz/dt = -βz + xy	


	
 with parameter values σ = 10, ρ = 28, β = 8/3  ⇒  chaos	








	
 Twin  (strong  constraint)  experiment.  Observations  yk  = 
Hkxk + εk at successive times k,  and objective function of 
form     	


	
 	


J(ξ0)  = (1/2) Σk[yk - Hkξk]T Rk
-1 [yk - Hkξk]  

  
  No ‘background’ term from the past, but observation y0 at 

time k = 0.	




Pires et al., Tellus, 1996 ; Lorenz system (1963) 



Minima in the variations of objective function correspond to solutions that have bifurcated 
from the observed solution, and to different folds in state space. 



 Quasi-Static Variational Assimilation (QSVA). Increase 
progressively length of the assimilation window, starting each 
new assimilation from the result of the previous one. This 
should ensure, at least if observations are in a sense 
sufficiently dense in time, that current estimation of the 
system always lies in the attractive basin of the absolute 
minimum of objective function (Pires et al., Swanson et al., 
Luong, Järvinen et al.) 

. 

  

  

  

  





Pires et al., Tellus, 1996 ; Lorenz system (1963) 



Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390 



Since, after an assimilation has been performed over a period of time, uncertainty is likely to be 
concentrated in modes that have been unstable, it might be useful for the next assimilation, 
and at least in terms of cost efficiency, to concentrate corrections on the background in those 
modes. 

Actually, presence of residual noise in stable modes can be damageable for analysis and 
subsequent forecast. 

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for the case of 3D-Var) 

  



  

Four-dimensional  variational  assimilation  in  the  unstable  subspace 
(4DVar-AUS)	


Trevisan et al.,  2010, Four-dimensional variational assimilation in the unstable 
subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136, 
487-496.	




4D-Var-AUS 

Algorithmic implementation 

Define N perturbations to the current state, and evolve them according to the tangent linear 
model, with periodic reorthonormalization in order to avoid collapse onto the dominant 
Lyapunov vector (same algorithm as for computation of Lyapunov exponents). 

Cycle successive 4D-Var‘s, restricting at each cycle the modification to be made on the current 
state to the space spanned by the N perturbations emanating from the previous cycle (if N is 
the dimension of state space, that is identical with standard 4D-Var). 

  



Experiments performed on the Lorenz (1996) model 

  

  

with periodic conditions in j, and value F = 8, which gives rise to chaos. 

Three values of I have been used, namely I = 40, 60, 80, which correspond  
to respectively N+ = 13, 19 and 26 positive Lyapunov exponents. 

In all three cases, the largest Lyapunov exponent corresponds to a doubling time  
of about 2 days (with 1 ‘day’ = 1/5 model time unit). 

Identical twin experiments (perfect model) 



Lorenz’96 model (M. Jardak) 



	
 ‘Observing system’ defined as in Fertig et al. (Tellus, 2007):	


	
 At  each  observation  time,  one  observation  every  four  grid  points 
(observation points shifted by one grid point at each observation time).	


	
 Observation frequency : 1.5 hour	


	
 Random  gaussian  observation  errors  with  expectation  0  and  standard 
deviation σ0 = 0.2 (‘climatological’ standard deviation 5.1).	


	
 Sequences  of  variational  assimilations  have  been  cycled  over 
windows with length τ  = 1, … , 5 days. Results are averaged over 5000 
successive windows.	




No explicit  background term (i.  e.,  with  error  covariance  matrix)  in  objective  function  : 
information from past lies in the background to be updated, and in the N perturbations 
which define the subspace in which updating is to be made.	


Best performance for N slightly above number  N+ of positive Lyapunov exponents.	




Different curves are almost identical on all three panels. Relative improvement obtained by decreasing 
subspace dimension N to its optimal value is largest for smaller window length τ.	






Experiments have been performed in which an explicit background term was present, the 
associated error covariance matrix having been obtained as the average of a sequence of full 
4D-Var’s. 

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-AUS. But 
they remain qualitatively similar, with best performance for 4D-Var-AUS with N slightly 
above N+.   



Minimum of objective function cannot be made smaller by reducing control space. Numerical 
tests show that minimum of objective function is smaller (by a few percent) for full 4D-Var 
than for 4D-Var-AUS. Full 4D-Var is closer to the noisy observations, but farther away from 
the truth. And tests also show that full 4D-Var performs best when observations are perfect 
(no noise). 

Results show that, if all degrees of freedom that are available to the model are used, the 
minimization process introduces components along the stable modes of the system, in which 
no error is present, in order to ensure a closer fit to the observations. This degrades the 
closeness of the fit to reality. The optimal choice is to restrict the assimilation to the unstable 
modes. 

These results apply because no explicit background is available at the initial time of the 
assimilation window (only the unstable subspace is known). A proper  background (obtained 
for instance from a properly implemented Kalman Filter, or from an Ensemble Variational 
Assimilation) would not only say the the uncertainty is restricted to the unstable space, but 
how it is distributed in that subspace. The ‘restriction’ to the unstable subspace would be 
automatically made.        



Can have major practical algorithmic implications. 

Questions. 

- Degree of generality of results ? 

- Impact of model errors ? 
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Time averaged rms analysis error at the end  of the assimilation window (with length τ) as a function of increment  
subspace dimension (I = 60, N+=19), for different amplitudes of white model noise. 

(W. Ohayon and O. Pannekoucke, 2011). 

τ = 1 day τ = 2 days 
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Conclusions	


	
 Error  concentrates  in  unstable  modes  at  the  end  of  assimilation 
window.  It  must  therefore  be  sufficient,  at  the  beginning  of  new 
assimilation  cycle,  to  introduce  increments  only  in  the  subspace 
spanned by those unstable modes.	


	
 In  the  perfect  model  case,  assimilation  is  most  efficient  when 
increments are introduced in a space with dimension slightly above the 
number of non-negative Lyapunov exponents.	


	
 In  the  case  of  imperfect  model  (and  of  strong  constraint 
assimilation),  preliminary  results  lead  to  similar  conclusions,  with 
larger optimal subspace dimension,  and less well  marked optimality. 
Further work necessary.	


	
 In  agreement  with  theoretical  and  experimental  results  obtained  for 
Kalman Filter assimilation (Trevisan and Palatella, McLaughlin). 



A few basics about Dynamical Systems	


-  The Baker’s Transform, in its conservative and dissipative 
forms	


-   Lyapunov exponents	
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Assimilation, which originated from the need of defining initial conditions for numerical weather forecasts, has gradually 
extended to many diverse applications	


•  Oceanography	

•  Atmospheric chemistry (both troposphere and stratosphere)	

•  Oceanic biogeochemistry	

•  Ground hydrology	

•  Terrestrial biosphere and vegetation cover	

•  Glaciology	

•  Magnetism (both planetary and stellar)	

•  Plate tectonics	

•  Planetary atmospheres (Mars, …)	

•  Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)	

•  Identification of source of tracers	

•  Parameter identification	

•  A priori evaluation of anticipated new instruments	

•  Definition of observing systems (Observing Systems Simulation Experiments)	

•  Validation of models	

•  Sensitivity studies (adjoints)	

•  …	


It has now become a major tool of numerical environmental science 



A few of the (many) remaining problems : 

  Observability (what to observe in order to know what we want to know ? Data are noisy, system 
is chaotic !)  

  More accurate identification and quantification of errors affecting data particularly the 
assimilating model (will always require independent hypotheses) 

  Assimilation of images 

  … 





 The End 
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