
École Doctorale des Sciences de l'Environnement d’Île-de-France���

Année Universitaire 2018-2019 ���

 Modélisation Numérique ���
de l’Écoulement Atmosphérique ���

et Assimilation de Données ���

Olivier Talagrand���
Cours 3���

28 Février 2019	












 	


-  Bayesian  estimation.  Continuation.  A simple 
example.	


-  Reminder  on  elementary  probability  theory. 
Random  vectors  and  covariance  matrices, 
random functions and covariance functions 	


	
  



 Purpose of assimilation : reconstruct as accurately as possible the state of the 
atmospheric or oceanic flow, using all available appropriate information. The latter 
essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, and 
are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in practice in 
the form of a discretized, and necessarily approximate, numerical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although 
they basically are necessary consequences of the physical laws which govern the flow, these 
properties can usefully be explicitly introduced in the assimilation process. 



 Assimilation  is  one  of  many  ‘inverse  problems’ encountered 
in many fields of science and technology	


•  solid Earth geophysics	


•  plasma physics	


•  ‘nondestructive’ probing	


•  navigation (spacecraft, aircraft, ….)	


•  …	


	
 Solution  most  often  (if  not  always)  based  on  Bayesian,  or 
probabilistic,  estimation.  ‘Equations’ are  fundamentally  the 
same. 



Difficulties specific to assimilation of meteorological observations :	


	
 -  Very  large  numerical  dimensions  (n  ≈  106-109  parameters  to  be 
estimated,  p  ≈  4-5.107  observations  per  24-hour  period).  Difficulty 
aggravated in Numerical Weather Prediction by the need for the forecast to 
be ready in time.	


	
 - Non-trivial, actually chaotic, underlying dynamics	
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Both observations and ‘model’ are affected with some uncertainty ⇒ 
uncertainty on the estimate. 

 For some reason, uncertainty is conveniently described by probability 
distributions (don’t know too well why, but it works; see, e.g. Jaynes, 
2007, Probability Theory: The Logic of Science, Cambridge University 
Press). 

 Assimilation is a problem in bayesian estimation. 

 Determine the conditional probability distribution for the state of the 
system, knowing everything we know (see Tarantola, A., 2005, Inverse 
Problem Theory and Methods for Model Parameter Estimation, SIAM). 



	
 Coût  des  différentes  composantes  de  la  chaîne  de  prévision 
opérationnelle du CEPMMT (septembre 2015, J.-N. Thépaut) :	


	
 4DVAR: 9.5% 
 HRES FC: 4.5% 
 EDA: 30% 
 ENS: 22% 
 ENS: hindcasts 14% 

 Other: 20% of which BC AN: 3.5% BC FC: 4% BC ENS: 9.5% 

	
 L'EDA fournit  à  la  fois  les  variances  d'erreur  d’ébauche  du  4D-Var,  et 
les  perturbations  initiales  (en  complément  des  vecteurs  singuliers)  de 
l'EPS.	




© Crown copyright   Met Office  	


ratio of supercomputer costs:   
1 day's  assimilation / 1 day forecast
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Computer power increased by 1M in 30 years. 
Only 0.04% of the Moore’s Law increase over 
this time went into improved DA algorithms, 
rather than improved resolution! 

Courtesy A. Lorenc 
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Bayesian Estimation   

 Determine  conditional  probability  distribution  of  the  state  of  the 
system, given the probability distribution of the uncertainty on the data	


  z1 = x + ζ1	
  ζ1 = N [0, s1] 	


	
 	
 	
 	
  density function 	
p1(ζ) ∝ exp[ - (ζ2)/2s1]	


  z2 = x + ζ2	
  ζ2 = N [0, s2] 	


	
 	
 	
 	
  density function 	
p2(ζ) ∝ exp[ - (ζ2)/2s2]	


•  ζ1 and ζ2 mutually independent	


What is the conditional probability P(x = ξ | z1, z2) that x be equal to some 
value ξ ?	




  z1 = x + ζ1	
 density function 	
 p1(ζ) ∝ exp[ - (ζ2)/2s1]	

  z2 = x + ζ2	
  density function 	
p2(ζ) ∝ exp[ - (ζ2)/2s2] 	


	
 	
 	
 ζ1 and ζ2 mutually independent	


x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ	


•  P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)	


	
 	
 	
         ∝  exp[ - (ξ -xa)2/2pa]  

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1
 + z2/s2)	


Conditional probability distribution of x, given z1 and z2 :N [xa, pa]	

pa < (s1, s2) independent of z1 and z2 	






  z1 = x + ζ1	
 	

  z2 = x + ζ2	
 	


	
 	
 Same as before, but ζ1 and ζ2 are now distributed according to exponential law 
	
 with parameter a, i. e.  	


	
 	
 	
 p (ζ) ∝ exp[-|ζ |/a]   ;    Var(ζ) = 2a2	


Conditional probability density function is now uniform over interval [z1, z2], 	

exponential with parameter a/2 outside that interval	


	
 E(x | z1, z2)  = (z1+z2)/2	


	
 Var(x | z1, z2) = a2 (2δ3/3 + δ2 + δ +1/2) / (1 + 2δ), with δ =  ⏐z1-z2⏐/(2a)	

	
 Increases from a2/2 to ∞ as δ increases from 0 to ∞. Can be larger than variance 2a2	


	
 of original errors (probability 0.08)	


	
 (Entropy -∫plnp always decreases in bayesian estimation)	




 We started from 

	
 	
  ξ →   J(ξ) ≡  (1/2) [(z1 - ξ)2 / s1 + (z2 - ξ)2 / s2 ]	


	
 	
 	
     =  (1/2) (ξ -xa)2/pa + …	


   	
 P(x = ξ | z1, z2) ∝  exp [ - J(ξ)]  

	
 Conditional  expectation  xa  minimizes  objective  function  J(ξ)  defined  on 
ξ-space ⇒ variational assimilation 

	
 In addition	


	
 	
  pa = 1/ J’’(xa)  

  



 Estimate	


	
 	
 	
 xa = pa (z1/s1
 + z2/s2)	


	
 with error pa such that	


	
 	
 	
  1/pa = 1/s1 + 1/s2  	


 can also be obtained, independently of any Gaussian hypothesis, as 
simply corresponding to the linear combination of z1 and z2 that minimizes 
the error Ε [(xa-x) 2]  

   Best Linear Unbiased Estimator (BLUE)	




Bayesian estimation   

State vector x, belonging to state space S (dimS = n), to be estimated.	


Data vector z, belonging to data space D (dimD = m), available.	


	
  z = F(x, ζ)     (1) 

where  ζ  is  a  random  element  representing  the  uncertainty  on  the  data  (or,  more 
precisely, on the link between the data and the unknown state vector).	


For example	


	
 z = Γx + ζ	




 Bayesian estimation (continued)	


	
 Probability that x = ξ for given ξ ?	


  x = ξ    ⇒   z = F(ξ, ζ) 

	
 	
 P(x = ξ | z) = P[z = F(ξ, ζ)] / ∫ξ’ P[z = F(ξ’, ζ)] 

	
 Unambiguously defined iff, for any ζ, there is at most one x such that (1) is verified.	


	
 ⇔    data  contain  information,  either  directly  or  indirectly,  on  any  component  of 
x. Determinacy condition.	




 Bayesian  estimation  is  however  impossible  in  its  general  theoretical 
form in meteorological or oceanographical practice because	


•  It is impossible to explicitly describe a probability distribution in a space 
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈ 
106-9 of  present  Numerical  Weather  Prediction  models  (the  curse  of 
dimensionality).	


•  Probability distribution of errors on data very poorly known (model errors 
in particular).	




One has to restrict oneself to a much more modest goal. Two	

approaches exist at present	


  Obtain  some  ‘central’  estimate  of  the  conditional  probability 
distribution  (expectation,  mode,  …),  plus  some  estimate  of  the  
corresponding  spread  (standard  deviations  and  a  number  of 
correlations). 

  Produce an ensemble of estimates which are meant to sample the 
conditional probability distribution (dimension N ≈ O(10-100)).	




	
 Random  vector  x  =  (x1,  x2,  …,  xn)T  =  (xi)  (e.  g.  pressure,  temperature,  abundance  of 
given chemical compound at n grid-points of a numerical model)	


  Expectation E(x) ≡ [E(xi)] 	
 ;    centred vector    x’  ≡ x - E(x) 	


  Covariance  matrix 	


	
 	
 	
 	
 E(x’x’T) = [E(xi’xj’)]	
  	

	
 	

	
 dimension  nxn,  symmetric  non-negative  (strictly  definite  positive  except  if  linear 

relationship holds between the xi’‘s with probability 1).	


  Two random vectors	

	
 x = (x1, x2, …, xn)T	

	
 y = (y1, y2, …, yp)T	

	
 	
 	
 	


	
 	
 	
 	
 E(x’y’T) = E(xi’yj’)	
  	


	
         dimension nxp	


	
 	


	
 	




	
     Covariance  matrices will be denoted	


	
 	
 	
 	
 Cxx  ≡  E(x’x’T) 	


	
 	
 	
 	
 Cxy  ≡  E(x’y’T) 	
  	

	
 	

	
 	


	
 	


	
 	




	
 Random  function  Φ(ξ)  (field  of  pressure,  temperature,  abundance  of 
given  chemical  compound,  …  ;  ξ  is  now  spatial  and/or  temporal 
coordinate)	


  Expectation E[Φ(ξ)]  ; 	
 Φ’(ξ) ≡ Φ(ξ) - E[Φ(ξ)]	

  Variance      Var[Φ(ξ)] = E{[Φ’(ξ)]2}	


  Covariance function	


	
 	
 	
 (ξ1, ξ2) →  CΦ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)]	


  Correlation function	


	
 	
 	
 CorΦ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)] / {Var[Φ(ξ1)] Var[Φ(ξ2)]}1/2	

	
 	


	
 	




After N. Gustafsson 



After N. Gustafsson 



After N. Gustafsson 



Cours à venir	


Jeudi 14 Février 
Jeudi 21 Février (**) 
Jeudi 28 Février 
Jeudi 7 Mars 
Vendredi 15 Mars 
Jeudi 21 Mars (**) 
Jeudi 28 Mars (*) 

De 10h00 à 12h30, Département de Géosciences, École Normale Supérieure, 24, 
rue Lhomond, Paris 5,  Salle de la Serre, 5ième étage, 	


(*) Salle E314, 3ième étage	

(**) Salle E350, 3ième étage      	



