École Doctorale des Sciences de l'Environnement d'Île-de-France

Année Universitaire 2018-2019

Modélisation Numérique de l'Écoulement Atmosphérique et Assimilation de Données

Olivier Talagrand Cours 7

28 Mars 2019

- 'Incremental approach' to variational assimilation
- Weak constraint variational assimilation. The dual algorithm.
- Ensemble variational assimilation (EnsVAR). A few results

Adjoint Method (continued 2) (from course 6)

G is the composition of a number of successive steps

 $\boldsymbol{G} = \boldsymbol{G}_N \circ \ldots \circ \boldsymbol{G}_2 \circ \boldsymbol{G}_1$

'Chain rule'

$$\boldsymbol{G}' = \boldsymbol{G}_N' \dots \boldsymbol{G}_2' \boldsymbol{G}_1'$$

Transpose

 $G'^{\mathrm{T}} = G_1'^{\mathrm{T}} G_2'^{\mathrm{T}} \dots G_N'^{\mathrm{T}}$

Transpose, or *adjoint*, computations are performed in reversed order of direct computations.

If G is nonlinear, local jacobian G' depends on local value of input u. Any quantity which is an argument of a nonlinear operation in the direct computation will be used again in the adjoint computation. It must be kept in memory from the direct computation (or else be recomputed again in the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times operation count of direct computation (in practice about 2).

Adjoint Approach (continued 2) (from course 6)

Nonlinearities ?

$$\mathcal{J}(\xi_0) = (1/2) (x_0^b - \xi_0)^T [P_0^b]^{-1} (x_0^b - \xi_0) + (1/2) \sum_k [y_k - H_k(\xi_k)]^T R_k^{-1} [y_k - H_k(\xi_k)]$$

subject to $\xi_{k+1} = M_k(\xi_k)$, $k = 0, \dots, K-1$

Control variable $\xi_0 = u$

Adjoint equation

$$\lambda_{K} = H_{K}^{T} R_{K}^{-1} [H_{K}(\xi_{K}) - y_{K}]$$
....
$$\lambda_{k} = M_{k}^{T} \lambda_{k+1} + H_{k}^{T} R_{k}^{-1} [H_{k}(\xi_{k}) - y_{k}]$$
k = K-1, ..., 1
....
$$\lambda_{0} = M_{0}^{T} \lambda_{1} + H_{0}^{T} R_{0}^{-1} [H_{0}(\xi_{0}) - y_{0}] + [P_{0}^{b}]^{-1} (\xi_{0} - x_{0}^{b})$$

$$\nabla_{u}\mathcal{J} = \lambda_{0}$$

Not approximate (it gives the exact gradient $\nabla_{u} \mathcal{J}$), and really used as described here.

Incremental Method for Variational Assimilation

Variational assimilation, as it has been described, requires the use of the adjoint of the full model.

Simplifying the adjoint as such can be very dangerous. The computed gradient would not be exact, and experience shows that optimization algorithms (and especially efficient ones) are very sensitive to even slight misspecification of the gradient.

Principle of *Incremental Method* (Courtier *et al.*, 1994, *Q. J. R. Meteorol. Soc.*) : simplify simultaneously the (local tangent linear) dynamics and the corresponding adjoint.

Incremental Method (continuation 1)

- Basic (nonlinear) model

 $\xi_{k+1} = M_k(\xi_k)$

- Tangent linear model $\delta \xi_{k+1} = M_k' \, \delta \xi_k$

where M_k ' is jacobian of M_k at point ξ_k .

- Adjoint model

 $\lambda_k = M_k$ '^T $\lambda_{k+1} + \dots$

Incremental Method. Simplify both M_k ' and M_k '^T consistently.

Incremental Method (continuation 2)

More precisely, for given solution $\xi_k^{(0)}$ of nonlinear model, replace tangent linear and adjoint models respectively by

 $\delta \xi_{k+1} = L_k \, \delta \xi_k \tag{2}$

and

 $\lambda_k = L_k^{\mathrm{T}} \lambda_{k+1} + \dots$

where L_k is an appropriate simplification of jacobian M_k '.

It is then necessary, in order to ensure that the result of the adjoint integration is the exact gradient of the objective function, to modify the basic model in such a way that the solution emanating from $\xi_0^{(0)} + \delta \xi_0$ is equal to $\xi_k^{(0)} + \delta \xi_k$, where $\delta \xi_k$ evolves according to (2). This makes the basic dynamics exactly linear.

Incremental Method (continuation 3)

As concerns the observation operators in the objective function, a similar procedure can be implemented if those operators are nonlinear. This leads to replacing $H_k(\xi_k)$ by $H_k(\xi_k^{(0)}) + N_k \delta \xi_k$, where N_k is an appropriate 'simple' linear operator (possibly, but not necessarily, the jacobian of H_k at point $\xi_k^{(0)}$). The objective function depends only on the initial $\delta \xi_0$ deviation from $\xi_0^{(0)}$, and reads

$$\begin{aligned} \mathcal{J}_{\mathrm{I}}(\delta\xi_{0}) &= (1/2) \left(x_{0}^{b} - \xi_{0}^{(0)} - \delta\xi_{0} \right)^{\mathrm{T}} [P_{0}^{b}]^{-1} \left(x_{0}^{b} - \xi_{0}^{(0)} - \delta\xi_{0} \right) \\ &+ (1/2) \sum_{k} [d_{k} - N_{k} \delta\xi_{k}]^{\mathrm{T}} R_{k}^{-1} [d_{k} - N_{k} \delta\xi_{k}] \end{aligned}$$

where $d_k = y_k - H_k(\xi_k^{(0)})$ is the innovation at time k, and the $\delta \xi_k$ evolve according to

$$\delta \xi_{k+1} = L_k \, \delta \xi_k \tag{2}$$

With the choices made here, $\mathcal{J}_{I}(\delta\xi_{0})$ is an exactly quadratic function of $\delta\xi_{0,m}$. The minimizing perturbation $\delta\xi_{0,m}$ defines a new initial state $\xi_{0}^{(1)} = \xi_{0}^{(0)} + \delta\xi_{0,m}$, from which a new solution $\xi_{k}^{(1)}$ of the basic nonlinear equation is determined. The process is restarted in the vicinity of that new solution.

Incremental Method (continuation 4)

This defines a system of two-level nested loops for minimization. Advantage is that many degrees of freedom are available for defining the simplified operators L_k and N_k , and for defining an appropriate trade-off between practical implementability and physical usefulness and accuracy. It is the incremental method which, together with the adjoint method, makes variational assimilation possible.

First-Guess-At-the-right-Time 3D-Var (*FGAT 3D-Var*). Corresponds to $L_k = I_n$. Assimilation is four-dimensional in that observations are compared to a first-guess which evolves in time, but is three-dimensional in that no dynamics other than the trivial dynamics expressed by the unit operator is present in the minimization.

Buehner et al. (Mon. Wea. Rev., 2010)

For the same numerical cost, and in meteorologically realistic situations, Ensemble Kalman Filter and Variational Assimilation produce results of similar quality.

How to take model error into account in variational assimilation ?

Weak constraint variational assimilation

Allows for errors in the assimilating model

- Data
- Background estimate at time 0
- $x_0^{\ b} = x_0 + \zeta_0^{\ b} \qquad E(\zeta_0^{\ b}\zeta_0^{\ bT}) = P_0^{\ b}$
- Observations at times k = 0, ..., K

$$y_k = H_k x_k + \varepsilon_k \qquad \qquad E(\varepsilon_k \varepsilon_k^{\mathrm{T}}) = R_k$$

- Model
- $x_{k+1} = M_k x_k + \eta_k$ $E(\eta_k \eta_k^{\mathrm{T}}) = Q_k$ k = 0, ..., K-1

Errors assumed to be unbiased and uncorrelated in time, H_k and M_k linear

Then objective function

 $\begin{aligned} (\xi_0, \xi_1, ..., \xi_K) &\to \\ \mathcal{J}(\xi_0, \xi_1, ..., \xi_K) \\ &= (1/2) \left(x_0^{\ b} - \xi_0 \right)^{\mathrm{T}} [P_0^{\ b}]^{-1} \left(x_0^{\ b} - \xi_0 \right) \\ &+ (1/2) \sum_{k=0,...,K} [y_k - H_k \xi_k]^{\mathrm{T}} R_k^{-1} [y_k - H_k \xi_k] \\ &+ (1/2) \sum_{k=0,...,K-1} [\xi_{k+1} - M_k \xi_k]^{\mathrm{T}} Q_k^{-1} [\xi_{k+1} - M_k \xi_k] \end{aligned}$

Can include nonlinear M_k and/or H_k .

Implemented operationally at ECMWF for the assimilation in the stratosphere.

Becomes singular in the strong constraint limit $Q_k \rightarrow 0$

Dual Algorithm for Variational Assimilation (aka *Physical Space Analysis System*, *PSAS*, pronounced '*pizzazz*'; see in particular book and papers by Bennett)

 $x^{a} = x^{b} + P^{b} H^{T} [HP^{b}H^{T} + R]^{-1} (y - Hx^{b})$

$$x^a = x^b + P^b H^T \Lambda^{-1} d = x^b + P^b H^T m$$

where $\Lambda = HP^{b}H^{T} + R$, $d = y - Hx^{b}$ and $m = \Lambda^{-1} d$ maximises

 $\mu \rightarrow \mathcal{K}(\mu) = -(1/2) \mu^{\mathrm{T}} \Lambda \mu + d^{\mathrm{T}} \mu$

Maximisation is performed in (dual of) observation space.

Dual Algorithm for Variational Assimilation (continuation 2)

Extends to time dimension, and to weak-constraint case, by defining state vector as

 $x = (x_0^{\mathrm{T}}, x_1^{\mathrm{T}}, \dots, x_K^{\mathrm{T}})^{\mathrm{T}}$

or, equivalently, but more conveniently, as

 $x = (x_0^{\mathrm{T}}, \eta_0^{\mathrm{T}}, \dots, \eta_{K-1}^{\mathrm{T}})^{\mathrm{T}}$

where, as before

$$\eta_k = x_{k+1} - M_k x_k \quad , \qquad k = 0, \dots, K-1$$

The background for x_0 is x_0^b , the background for η_k is 0. Complete background is

$$x^b = (x_0^{bT}, 0^T, \dots, 0^T)^T$$

It is associated with error covariance matrix

$$P^{b} = \text{diag}(P_{0}^{b}, Q_{0}, \dots, Q_{K-1})$$

Dual Algorithm for Variational Assimilation (continuation 3)

Define global observation vector as

$$y = (y_0^{T}, y_1^{T}, \dots, y_K^{T})^{T}$$

and global innovation vector as

 $d = (d_0^{\mathrm{T}}, d_1^{\mathrm{T}}, \dots, d_K^{\mathrm{T}})^{\mathrm{T}}$

where

$$d_k = y_k - H_k x_k^{\ b}$$
, with $x_{k+1}^{\ b} = M_k x_k^{\ b}$, $k = 0, ..., K-1$

Dual Algorithm for Variational Assimilation (continuation 4)

For any state vector $\boldsymbol{\xi} = (\boldsymbol{\xi}_0^{\mathrm{T}}, \boldsymbol{v}_0^{\mathrm{T}}, \dots, \boldsymbol{v}_{K-1}^{\mathrm{T}})^{\mathrm{T}}$, the observation operator \boldsymbol{H}

$$\xi \rightarrow H\xi = (u_0^{\mathrm{T}}, \dots, u_K^{\mathrm{T}})^{\mathrm{T}}$$

is defined by the sequence of operations

$$u_0 = H_0 \xi_0$$

then for k = 0, ..., K-1

$$\xi_{k+1} = M_k \xi_k + \upsilon_k$$

 $u_{k+1} = H_{k+1} \xi_{k+1}$

The observation error covariance matrix is equal to

 $R = \operatorname{diag}(R_0, \ldots, R_K)$

Dual Algorithm for Variational Assimilation (continuation 5)

Maximization of dual objective function

 $\mu \rightarrow \mathcal{K}(\mu) = -(1/2) \mu^{\mathrm{T}} \Lambda \mu + d^{\mathrm{T}} \mu$

requires explicit repeated computations of its gradient

$$\nabla_{\mu}\mathcal{K} = -\Lambda\mu + d = -(HP^{b}H^{T} + R)\mu + d$$

Starting from $\mu = (\mu_0^T, \dots, \mu_K^T)^T$ belonging to (dual) of observation space, this requires 5 successive steps

- Step 1. Multiplication by H^{T} . This is done by applying the transpose of the process defined above, *viz.*,

Set $\chi_K = 0$ Then, for $k = K-1, \dots, 0$

Finally

 $\boldsymbol{\nu}_{k} = \boldsymbol{\chi}_{k+1} + \boldsymbol{H}_{k+1}^{\mathrm{T}} \boldsymbol{\mu}_{k+1}$ $\boldsymbol{\chi}_{k} = \boldsymbol{M}_{k}^{\mathrm{T}} \boldsymbol{\nu}_{k}$ $\boldsymbol{\lambda}_{0} = \boldsymbol{\chi}_{0} + \boldsymbol{H}_{0}^{\mathrm{T}} \boldsymbol{\mu}_{0}$

The output of this step, which includes a backward integration of the adjoint model, is the vector $(\lambda_0^T, \nu_0^T, ..., \nu_{K-1}^T)^T$

Dual Algorithm for Variational Assimilation (continuation 6)

- Step 2. Multiplication by P^b . This reduces to

$$\xi_0 = P_0^b \lambda_0$$

$$\upsilon_k = Q_k \upsilon_k , \ k = 0, \dots, K-1$$

- Step 3. Multiplication by H. Apply the process defined above on the vector $(\xi_0^T, \upsilon_0^T, \ldots, \upsilon_{K-1}^T)^T$, thereby producing vector $(u_0^T, \ldots, u_K^T)^T$.

- Step 4. Add vector $R\mu$, *i. e.* compute

$$\varphi_0 = \xi_0 + R_0 \mu_0$$

$$\varphi_k = \upsilon_{k-1} + R_k \mu_k \qquad , \ k = 1, \dots,$$

- Step 5. Change sign of vector $\varphi = (\varphi_0^T, \dots, \varphi_K^T)^T$, and add vector $d = y - Hx^b$,

Dual Algorithm for Variational Assimilation (continuation 7)

Temporal correlations can be introduced.

Dual algorithm remains regular in the limit of vanishing model error. Can be used for both strong- and weak-constraint assimilation.

No significant increase of computing cost in comparison with standard strong constraint variational assimilation (Courtier, Louvel)

FIG. 9.11 - Ecarts normalisés prévision/observations sur l'ensemble de la période étudiée

Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999

more permee a esserver les performances des differences recumiques à assimilation.

FIG. 9.15 – Description des écarts flotteurs/modèle en terme de vitesse (à 150 m de profondeur) pour les différents algorithmes d'assimilation

Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999

Dual Algorithm for Variational Assimilation (continuation)

Requires

- Explicit background (not much of a problem)
- Exact linearity (much more of a problem). Definition of iterative nonlinear procedures is being studied (Auroux, ...)

FIG. 6.13 – Normes RMS des erreurs d'assimilation obtenues pour les deux méthodes en fonction de l'erreur introduite dans le modèle au cours de la période d'assimilation.

Auroux, Doctoral Dissertation, Université de Nice-Sophia Antipolis, Nice, 2003

 Dual Algorithm for Variational Assimilation is now used, in the weak-constraint form, at *Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique* (*CERFACS*) in Toulouse (A. Weaver, S. Gürol) for assimilation of oceanographical observations.

Conclusion on Sequential Assimilation

Pros

'Natural', and well adapted to many practical situations Provides, at least relatively easily, explicit estimate of estimation error

Cons

Carries information only forward in time (of no importance if one is interested only in doing forecast)

In a strictly sequential assimilation (*i.e.*, any individual piece of information is discarded once it has been used), optimality is possible only if errors are uncorrelated in time.

Conclusion on Variational Assimilation

Pros

Carries information both forward and backward in time (important for reassimilation of past data).

Can easily take into account temporal statistical dependence (Järvinen *et al.*) Does not require explicit computation of temporal evolution of estimation error Very well adapted to some specific problems (*e. g.*, identification of tracer sources)

Cons

Does not readily provide estimate of estimation error

Requires development and maintenance of adjoint codes. But the latter can have other uses (sensitivity studies).

- Dual approach seems most promising. But still needs further development for application in non exactly linear cases.
- Is ensemble variational assimilation possible ? Probably yes. But also needs development.

Variational assimilation has been extended to non Gaussian probability distributions (lognormal distributions), the unknown being the mode of the conditional distribution (M. Zupanski, Fletcher).

Bayesian character of variational assimilation ?

- If everything is linear and gaussian, ready recipe for obtaining bayesian sample

Perturb data (background, observations and model) according to their error probability distributions, do variational assimilation, and repeat process

Sample of system orbits thus obtained is bayesian

- If not, very little can be said at present

The Lorenz96 model

Forward model

$$\frac{dx_k}{dt} = (x_{k+1} - x_{k-2})x_{k-1} - x_k + F \quad \text{for} \ k = 1, \cdots, N$$

- Set-up parameters :
 - **(**) the index k is cyclic so that $x_{k-N} = x_{k+N} = x_k$.
 - \bigcirc F = 8, external driving force.
 - $\bigcirc -x_k$, a damping term.
 - \bigcirc N = 40, the system size.
 - \bigcirc Nens = 30, number of ensemble members.
 - $\frac{1}{\lambda_{max}} \simeq 2.5 days, \lambda_{max}$ the largest Lyapunov exponent.
 - **(**) $\Delta t = 0.05 = 6hours$, the time step.
 - If frequency of observations : every 12 hours.
 - number of realizations : 9000 realizations.

System produces wavelike chaotic motions, with properties similar to those of midlatitude atmospheric waves

- generally westward phase velocity
- typical predictability time : 5 'days'
- in addition, quadratic terms conserve 'energy'

Experimental procedure (1)

0. Define a *reference solution* x_t^r by integration of the numerical model

1. Produce 'observations' at successive times t_k of the form

$$y_k = H_k x_k^r + \varepsilon_k$$

where H_k is (usually, but not necessarily) the unit operator, and ε_k is a random (usually, but not necessarily, Gaussian) 'observation error'.

Experimental procedure (2)

2. For given observations y_k , repeat N_{ens} times the following process

- 'Perturb' the observations y_k as follows

 $y_k \rightarrow z_k = y_k + \delta_k$

where δ_k is an independent realization of the probability distribution which has produced ε_k .

- Assimilate the 'perturbed' observations z_k by variational assimilation

This produces N_{ens} (=30) model solutions over the assimilation window, considered as making up a tentative sample of the conditional probability distribution for the state of the observed system over the assimilation window.

The process 1-2 is then repeated over N_{real} successive assimilation windows. Validation is performed on the set of N_{real} (=9000) ensemble assimilations thus obtained.

Linearized Lorenz'96. 5 days

How to objectively evaluate the performance of an ensemble (or more generally probabilistic) estimation system ?

- There is no general objective criterion for Bayesianity

- We use instead the weaker property of *reliability*, *i*. *e*. statistical consistency between predicted probabilities and observed frequencies of occurrence (it rains with frequency 40% in the circumstances where I have predicted 40% probability for rain).

Reliability can be objectively validated, provided a large enough sample of realizations of the estimation system is available.

Bayesianity implies reliability, the converse not being true.

- We also evaluate *resolution*, which bears no direct relation to bayesianity, and is best defined as the degree of statistical dependence between the predicted probability distribution and the verifying observation (J. Bröcker). Resolution, beyond reliability, measures the degree of practical accuracy of the ensembles.

Linearized Lorenz'96. 5 days

Linearized Lorenz'96. 5 days. Histogram of \mathcal{J}_{min} E(\mathcal{J}_{min}) = p/2 (=200) ; $\sigma(\mathcal{J}_{min}) = \sqrt{(p/2)}$ (≈ 14.14)

Nonlinear Lorenz'96. 5 days

Nonlinear Lorenz'96. 5 days

Nonlinear Lorenz'96. 5 days. Histogram of \mathcal{J}_{min}

39

EnsVar : the non-linear Lorenz96 model (10 days \simeq 2 TU)

- ◆ □ ▶ ◆ 圖 ▶ ◆ 圖 ▶ ◆ 圖 ● の Q @

EnsVar : consistency

Nonlinear Lorenz'96. 10 days. Histogram of \mathcal{J}_{min}

O. Talagrand & M. Jardak Optimization for Bayesian Estimation

Quasi-Static Variational Assimilation (QSVA)

EnsVar : the non-linear Lorenz96 model 18 days with QSVA

10

5

threshold

10

Optimization for Bayesian Estimation

Weak constraint EnsVar 18 days assimilation, Q=0.1 and 1200 realisations

- Results are independent of the Gaussian character of the observation errors (trials have been made with various probability distributions)

- Ensembles produced by EnsVar are very close to Gaussian, even in strongly nonlinear cases.

Exact bayesian estimation ?

Particle filters

Predicted ensemble at time $t : \{x_l^b, l = 1, ..., L\}$, each element with its own weight (probability) $P(x_l^b)$

Observation vector at same time : $y = Hx + \varepsilon$

Bayes' formula

 $P(x^{b}_{l}|y) \sim P(y|x^{b}_{l}) P(x^{b}_{l})$

Defines updating of weights

Bayes' formula

$P(x^{b}_{l}|y) \sim P(y|x^{b}_{l}) P(x^{b}_{l})$

Defines updating of weights; particles are not modified. Asymptotically converges to bayesian pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.

Behavior of $\max w^i$

 \triangleright $N_e = 10^3$; $N_x = 10, 30, 100$; 10^3 realizations

C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/ Snyder.pdf

Cours à venir

Jeudi 14 Février Jeudi 21 Février (**) Jeudi 28 Février Jeudi 7 Mars Vendredi 15 Mars Jeudi 21 Mars (9h30, **) Jeudi 28 Mars (*) Jeudi 4 Avril (*)

De 10h00 à 12h30, Département de Géosciences, École Normale Supérieure, 24, rue Lhomond, Paris 5, Salle de la Serre, 5ième étage,

(*) Salle E314, 3ième étage(**) Salle E350, 3ième étage