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- ‘Incremental  approach’ to  variational
assimilation

- Weak constraint variational assimilation. The
dual algorithm.

- Ensemble variational assimilation (EnsVAR).
A few results



Adjoint Method (continued 2) (from course 6)

G is the composition of a number of successive steps

G=Gy.....G,.G,
‘Chain rule’

G =Gy ...G,’G/
Transpose

GT=G/'TG,"...G"

Transpose, or adjoint, computations are performed in reversed order of direct computations.
If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an
argument of a nonlinear operation in the direct computation will be used again in the adjoint
computation. It must be kept in memory from the direct computation (or else be recomputed again in

the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).



Adjoint Approach (continued 2) (from course 6)

Nonlinearities ?

J(&) = (1/2) (xy” - E)TIPT" (" - &) + (1/2) 2Ly, - Hi(EQIT R [y - H(E))]
subjectto &, = M (&), k=0,...,K-1

Control variable E=u
Adjoint equation
Ag= Hi "Rt [H(Eg) - ygl

M= M Xy + HT R TH(E) - vy k=K-1,...,1

A= MyTA + Hy PRy [HY(E) - vol + [P (& - xoP)

Vg =%

Not approximate (it gives the exact gradient V ), and really used as described here.



Incremental Method for Variational Assimilation

Variational assimilation, as it has been described, requires the use of
the adjoint of the full model.

Simplifying the adjoint as such can be very dangerous. The
computed gradient would not be exact, and experience shows that
optimization algorithms (and especially efficient ones) are very
sensitive to even slight misspecification of the gradient.

Principle of Incremental Method (Courtier et al., 1994, Q. J. R.
Meteorol. Soc.) : simplify simultaneously the (local tangent linear)
dynamics and the corresponding adjoint.



Incremental Method (continuation 1)

- Basic (nonlinear) model

§/<+1 = M(&)

- Tangent linear model
081 = M, 05,

where M, is jacobian of M, at point &,.
- Adjoint model
A=MTA.  +..

Incremental Method. Simplify both M,” and M,’" consistently.



Incremental Method (continuation 2)

More precisely, for given solution & of nonlinear model, replace tangent
linear and adjoint models respectively by

5§k+1 =L, 5§k (2)
and
A=LTA  +...

where L, 1s an appropriate simplification of jacobian M.

It is then necessary, in order to ensure that the result of the adjoint
integration is the exact gradient of the objective function, to modify the basic
model in such a way that the solution emanating from 5,9+ 9, is equal to
£+ 85, where 95, evolves according to (2). This makes the basic dynamics
exactly linear.



Incremental Method (continuation 3)

As concerns the observation operators in the objective function, a similar procedure

can be implemented if those operators are nonlinear. This leads to replacing H,(&,) by
H/(§")+ N,65,, where N, is an appropriate ‘simple’ linear operator (possibly, but not
necessarily, the jacobian of H, at point §(%). The objective function depends only on the
initial 65, deviation from &, and reads

Ji(65) = (1/2) (x()b - 50(0) - 5&0)T [P ob]_l (xob - 50(0) - 05))
+ (1/2) 2,14, - Nkégk]TRk'l [d, - N, O&,]

where d, = y, - H,(§,") is the innovation at time k, and the &, evolve according to
0841 = Ly 05, (2)

With the choices made here, 7,(05,) is an exactly quadratic function of 0&,. The
minimizing perturbation 6&,,, defines a new initial state §) = §© + 6§, ,,, from which a
new solution &V of the basic nonlinear equation is determined. The process is restarted

in the vicinity of that new solution.



Incremental Method (continuation 4)

This defines a system of two-level nested loops for minimization.
Advantage is that many degrees of freedom are available for defining the
simplified operators L, and N,, and for defining an appropriate trade-off
between practical implementability and physical usefulness and accuracy. It is
the incremental method which, together with the adjoint method, makes
variational assimilation possible.

First-Guess-At-the-right-Time 3D-Var (FGAT 3D-Var). Corresponds to L, =
I,. Assimilation 1s four-dimensional in that observations are compared to a
first-guess which evolves in time, but is three-dimensional in that no dynamics
other than the trivial dynamics expressed by the unit operator is present in the
minimization.



Buehner et al. (Mon. Wea. Rev., 2010)

For the same numerical cost, and in meteorologically realistic
situations, Ensemble Kalman Filter and Variational Assimilation
produce results of similar quality.



How to take model error into account in
variational assimilation ?



Weak constraint variational assimilation

Allows for errors in the assimilating model

e Data
- Background estimate at time 0

X = xy+ &P E(ELELT) = PP
- Observations at times k=0, ..., K

Vi = Hix + &, E(gg) =Ry
- Model

X1 = Mix, + 1 E(nnY) =0, k=0,...,K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear



Then objective function

(o> E15 s Ek) —
J(&» &15 -5 Ek)
= (1/2) (xg" - &) [P"1" (%" - &)
+(1/2) Zin, . klyi - HES R g - Hi&(l

+(172) 2, xil&eer - MUELT O 8y - ML

Can include nonlinear M, and/or H,.
Implemented operationally at ECMWF for the assimilation in the stratosphere.

Becomes singular in the strong constraint limit Q, — 0



Dual Algorithm for Variational Assimilation (aka Physical Space
Analysis System, PSAS, pronounced ‘pizzazz’; see in particular book
and papers by Bennett)

x4 =xP+ PPHT[HP’HT + R]! (y - Hx?)
xX=xX+PPH"A'd=x>+ PPH"m
where A = HPPH'+ R, d =y - Hx* and m = A"! d maximises
w— K(u)=-1/2) u" A u+d"u

Maximisation is performed in (dual of) observation space.



Dual Algorithm for Variational Assimilation (continuation 2)

Extends to time dimension, and to weak-constraint case, by defining state vector as

x=0x0 T, L x DT
or, equivalently, but more conveniently, as
x=0x0 0", M DT
where, as before
M= X - Mix, k=0,...,K-1

The background for x, is x,”, the background for 1, is 0. Complete background is
xb = (x,T, 07T, ..., 00T
It is associated with error covariance matrix

PP =diag(P, Qy, ..., Ox.1)



Dual Algorithm for Variational Assimilation (continuation 3)
Define global observation vector as

y=0ohyts syt
and global innovation vector as

d=(d,",d",....d""

where d,=y,—H x}/ withx,=Mx/', k=0,..

L K-1



Dual Algorithm for Variational Assimilation (continuation 4)
For any state vector § = (&%, v, , ..., U DT, the observation operator H
§ = HE=(u,", ...,u; )T
is defined by the sequence of operations
uy = Hy&

thenfork =0, ..., K-1

Sie1 = M5 + v,
Uy = Hiyy S

The observation error covariance matrix is equal to

R =diag(R,, ..., Ry)



Dual Algorithm for Variational Assimilation (continuation 5)

Maximization of dual objective function
w— Ku)=-(1/2) i Au+du

requires explicit repeated computations of its gradient

V, K =-Au+d=-(HP'"H" + R)u + d

Starting from u = (u,", ..., ug")" belonging to (dual) of observation space, this requires 5 successive steps
- Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above, viz.,

Set xXk=0
Then, for k=K-1,...,0

— T
Vk - Xk+lT+ Hk+1 :uk+1
X = M v,

Finally Ay =X + Hy™ 1y

The output of this step, which includes a backward integration of the adjoint model, is the vector

()LOT, V()T 9 sy V[(_]T)T



Dual Algorithm for Variational Assimilation (continuation 6)

- Step 2. Multiplication by P”. This reduces to

& =Py A
v,=0,v, , k=0,...,K-1

- Step 3. Multiplication by H. Apply the process defined above on the vector (&,",

Uy, ..., U DT, thereby producing vector (i4,", ..., u.0)T.

- Step 4. Add vector Ru, i. e. compute

@ = o+ Ry 1y
(Pk=Uk_1+RkMk ,kzl,...,

- Step 5. Change sign of vector @ = (@, ..., x")T, and add vectord = y - Hx?,



Dual Algorithm for Variational Assimilation (continuation 7)

Temporal correlations can be introduced.

Dual algorithm remains regular in the limit of vanishing model error. Can be used

for both strong- and weak-constraint assimilation.

No significant increase of computing cost in comparison with standard strong

constraint variational assimilation (Courtier, Louvel)
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Dual Algorithm for Variational Assimilation (continuation)

Requires

= Explicit background (not much of a problem)

= Exact linearity (much more of a problem). Definition of iterative nonlinear
procedures is being studied (Auroux, ...)
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Dual Algorithm for Variational Assimilation is now used, in
the weak-constraint form, at Centre Européen de Recherche

et de Formation Avancée en Calcul Scientifique
(CERFACS) 1in Toulouse (A. Weaver, S. Giirol) for
assimilation of oceanographical observations.



Conclusion on Sequential Assimilation

Pros

‘Natural’, and well adapted to many practical situations

Provides, at least relatively easily, explicit estimate of estimation
error

Cons

Carries information only forward in time (of no importance
if one is interested only in doing forecast)

In a strictly sequential assimilation (i.e., any individual piece

of information is discarded once it has been wused), optimality is
possible only if errors are uncorrelated in time.



Conclusion on Variational Assimilation

Pros

Carries information both forward and backward in time (important for
reassimilation of past data).

Can easily take into account temporal statistical dependence (Jarvinen et al.)
Does not require explicit computation of temporal evolution of estimation error
Very well adapted to some specific problems (e. g., identification of tracer sources)

Cons
Does not readily provide estimate of estimation error

Requires development and maintenance of adjoint codes. But the latter can
have other uses (sensitivity studies).

e  Dual approach seems most promising. But still needs further development for application
in non exactly linear cases.

* Is ensemble variational assimilation possible ? Probably yes. But also needs development.



Variational assimilation has been extended to non Gaussian probability distributions
(lognormal distributions), the unknown being the mode of the conditional distribution
(M. Zupanski, Fletcher).

Bayesian character of variational assimilation ?

- If everything is linear and gaussian, ready recipe for obtaining bayesian sample

Perturb data (background, observations and model) according to their error
probability distributions, do variational assimilation, and repeat process

Sample of system orbits thus obtained is bayesian

- If not, very little can be said at present



The Lorenz96 model

@ Forward model

d:
% = (wk-i-l —;’L‘k_z)wk_l —xzp+F for k=1,--- N

e Set-up parameters :

©Q the index k is cyclic so that zx—N = Tr+N = k.
©Q F = 8, external driving force.
© —x, a damping term.
Q@ N = 40, the system size.
© Nens = 30, number of ensemble members.

1
o A
Q At = 0.05 = 6hours, the time step.
@ frequency of observations : every 12 hours.
© number of realizations : 9000 realizations.

~ 2.5days, Amax the largest Lyapunov exponent.

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




System produces wavelike chaotic motions, with properties similar to those of
midlatitude atmospheric waves

- generally westward phase velocity
- typical predictability time : 5 ‘days’
- in addition, quadratic terms conserve ‘energy’

ensembile oplmal control, referance and cbearvations ensamble opimal rajectordes and thedr respective referance solut

14 10

12 8 L

10

e days)

30



Experimental procedure (1)
0. Define a reference solution x,;” by integration of the numerical model
1. Produce ‘observations’ at successive times 7, of the form
Vo= Hx/ + g

where /1, is (usually, but not necessarily) the unit operator, and ¢, is a random (usually, but not
necessarily, Gaussian) ‘observation error’.

31



Experimental procedure (2)

2. For given observations y,, repeat V,,  times the following process

ens

- ‘Perturb’ the observations y, as follows

Vo™ =Yt O
where 6, is an independent realization of the probability distribution which has produced ¢,.
- Assimilate the ‘perturbed’ observations z, by variational assimilation

This produces N,  (=30) model solutions over the assimilation window, considered as making
up a tentative sample of the conditional probability distribution for the state of the observed system
over the assimilation window.

The process 1-2 is then repeated over N, successive assimilation windows. Validation is

performed on the set of V,, ,(=9000) ensemble assimilations thus obtained.

32
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How to objectively evaluate the performance of an ensemble (or more generally probabilistic)
estimation system ?

- There is no general objective criterion for Bayesianity

- We use instead the weaker property of reliability, i. e. statistical consistency between
predicted probabilities and observed frequencies of occurrence (it rains with frequency 40% in the
circumstances where I have predicted 40% probability for rain).

Reliability can be objectively validated, provided a large enough sample of realizations of the
estimation system is available.

Bayesianity implies reliability, the converse not being true.

- We also evaluate resolution, which bears no direct relation to bayesianity, and is best defined
as the degree of statistical dependence between the predicted probability distribution and the
verifying observation (J. Brocker). Resolution, beyond reliability, measures the degree of practical
accuracy of the ensembles.

34
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4 ensemble optimal control, reference and observations enseqnoble optimal trajectories and their respective reference soluti
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EnsVar : the non-linear Lorenz96 model (10 days ~ 2 TU

frequency
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EnsVar : consistency

Y
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Quasi-Static Variational Assimilation (QSVA)

o

Data Assimilation over [0 T]with T=N .dt = M. dt T
4D-Var over [0 1] starting from the observations

0 1
_—-—

4D-Var over [0 21] starting from the minimizer found above
—_—)
0 27

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




EnsVar : the non-linear Lorenz96 model 18 days with

QSVA
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Weak constraint EnsVar 18 days assimilation, C=0.1 and 1200 realizations

Enzemble cptimal solutions and reference rank histogram
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- Results are independent of the Gaussian character of the
observation errors (trials have been made with various

probability distributions)

- Ensembles produced by EnsVar are very close to Gaussian,

even in strongly nonlinear cases.
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Exact bayesian estimation ?
Particle filters

Predicted ensemble at time 7 : {x*, /=1, ..., L}, each element with its own
weight (probability) P(x?)

Observation vector at same time : y = Hx + ¢

Bayes’ formula
P(x? |y) ~ P(y|x?) P(x")

Defines updating of weights



Bayes’ formula
P(x? |y) ~ P(y|x?) P(x")

Defines updating of weights; particles are not modified. Asymptotically
converges to bayesian pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.



Behavior of max w*
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C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/
Snyder.pdf



Cours a venir

Rk
Jeudi 28 Mars )
Jeudi 4 Avril (*)

De 10h00 a 12h30, Département de Géosciences, Ecole Normale Supérieure, 24,
rue Lhomond, Paris 5, Salle de la Serre, Sieme étage,

(*) Salle E314, 3icme €tage
(**) Salle E350, 3ieme étage



