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-  ‘Incremental  approach’  to  variational 
assimilation	



-  Weak constraint variational assimilation. The 
dual algorithm. 	



-  Ensemble variational  assimilation (EnsVAR). 
A few results	



	

  



Adjoint Method (continued 2) (from course 6)	



	

 G is the composition of a number of successive steps	



G = GN ° … ° G2 ° G1	


	

 	


	

 ‘Chain rule’	

 	

  	



G’ = GN’ … G2’ G1’	



 	

 Transpose	



G’T = G1’T G2’T … GN’T	



	

 Transpose, or adjoint, computations are performed in reversed order of direct computations.	



	

 If  G  is  nonlinear,  local  jacobian  G’ depends  on  local  value  of  input  u.  Any  quantity  which  is  an 
argument  of  a  nonlinear  operation  in  the  direct  computation  will  be  used  again  in  the  adjoint 
computation. It must be kept in memory from the direct computation (or else be recomputed again in 
the course of the adjoint computation).	



	

 If  everything  is  kept  in  memory,  total  operation  count  of  adjoint  computation  is  at  most  4  times 
operation count of direct computation (in practice about 2).	





Adjoint Approach (continued 2) (from course 6)	



Nonlinearities ?	



J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]  
 subject to ξk+1 = Mk(ξk) ,	

 k = 0, …, K-1	



Control variable 	

  ξ0 = u	



Adjoint equation	



 λK = 	

        HK’T RK
-1 [HK(ξK) - yK]	



 ….	


 λk =  Mk’Tλk+1 + Hk’T Rk

-1 [Hk(ξk) - yk]	

 	

  	

 k = K-1, …, 1	


 ….	


λ0 =  M0’Tλ1      + H0’T R0

-1 [H0(ξ0) - y0]   +  [P0
b]-1 (ξ0 - x0

b) 	



	

 	

 	

 	

 ∇u J  = λ0 	

 	



Not approximate (it gives the exact gradient ∇uJ), and really used as described here.	





Incremental Method for Variational Assimilation	



	

 Variational  assimilation,  as  it  has  been  described,  requires  the  use  of 
the adjoint of the full model.	



	

 Simplifying  the  adjoint  as  such  can  be  very  dangerous.  The 
computed  gradient  would  not  be  exact,  and  experience  shows  that 
optimization  algorithms  (and  especially  efficient  ones)  are  very 
sensitive to even slight misspecification of the gradient.	



	

 Principle  of  Incremental  Method  (Courtier  et  al.,  1994,  Q.  J.  R. 
Meteorol.  Soc.)  :  simplify  simultaneously  the  (local  tangent  linear) 
dynamics and the corresponding adjoint.	



	

 	





Incremental Method (continuation 1)	



	

 - Basic (nonlinear) model	


	

  ξk+1 = Mk(ξk) 	



	

 - Tangent linear model	


	

  δξk+1 = Mk’ δξk 	


	

 	


	

 where Mk’ is jacobian of Mk at point ξk.	



	

 - Adjoint model	



	

  λk = Mk’T λk+1 + …	



	

  Incremental Method. Simplify both Mk’ and Mk’T consistently.	





Incremental Method (continuation 2)	



	

 More  precisely,  for  given  solution  ξk
(0) of  nonlinear  model,  replace  tangent 

linear and adjoint models respectively by 	


	

 	


	

  δξk+1 = Lk δξk 	

 	

  (2) 	


	

 	


	

 and	


	

 	


	

 λk = Lk

T λk+1 + …	



	

 where Lk is an appropriate simplification of jacobian Mk’.	



	

 It  is  then  necessary,  in  order  to  ensure  that  the  result  of  the  adjoint 
integration is the exact gradient of the objective function, to modify the basic 
model in such a way that the solution emanating from ξ0

(0) + δξ0 is equal to 
ξk

(0) + δξk, where δξk evolves according to (2). This makes the basic dynamics 
exactly linear.	





Incremental Method (continuation 3)	



	

 As  concerns  the  observation  operators  in  the  objective  function,  a  similar  procedure 
can be implemented if those operators are nonlinear. This leads to replacing Hk(ξk) by 
Hk(ξk

(0)) + Nkδξk,  where  Nk is  an appropriate ‘simple’ linear operator (possibly, but not 
necessarily, the jacobian of Hk at point ξk

(0)). The objective function depends only on the 
initial δξ0 deviation from ξ0

(0), and reads  

	

 JI(δξ0)  =  (1/2) (x0
b - ξ0

(0) - δξ0)T [P0
b]-1 (x0

b - ξ0
(0) - δξ0) 	



	

 	

 	

 	

 	

 + (1/2) Σk[dk - Nkδξk]T Rk
-1 [dk - Nkδξk]  

 where dk ≡ yk - Hk(ξk
(0)) is the innovation at time k, and the δξk evolve according to  

	

 	


	

  δξk+1 = Lk δξk 	

 	

  (2) 	


	

 	


	

 With  the  choices  made  here,  JI(δξ0) is  an  exactly  quadratic  function  of  δξ0.  The 

minimizing perturbation δξ0,m defines a new initial state ξ0
(1) ≡ ξ0

(0) + δξ0,m, from which a 
new solution ξk

(1) of the basic nonlinear equation is determined. The process is restarted 
in the vicinity of that new solution.	



	

 	


	

 	





Incremental Method (continuation 4)	



	

 This  defines  a  system  of  two-level  nested  loops  for  minimization. 
Advantage  is  that  many  degrees  of  freedom are  available  for  defining  the 
simplified  operators  Lk  and  Nk,  and  for  defining  an  appropriate  trade-off 
between practical implementability and physical usefulness and accuracy. It is 
the  incremental  method  which,  together  with  the  adjoint  method,  makes 
variational assimilation possible.	



	

 First-Guess-At-the-right-Time  3D-Var  (FGAT  3D-Var).  Corresponds  to  Lk  = 
In.  Assimilation is  four-dimensional  in  that  observations are  compared to  a 
first-guess which evolves in time, but is three-dimensional in that no dynamics 
other than the trivial dynamics expressed by the unit operator is present in the 
minimization. 	





	

 Buehner et al. (Mon. Wea. Rev., 2010)	


	

 	


	

 For  the  same  numerical  cost,  and  in  meteorologically  realistic 

situations,  Ensemble  Kalman  Filter  and  Variational  Assimilation 
produce results of similar quality.	





	

 How  to  take  model  error  into  account  in 
variational assimilation ?	





Weak constraint variational assimilation 	



Allows for errors in the assimilating model	



•  Data	


	

 	

 - Background estimate at time 0	


	

 	

 	


	

 	

   x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

 	


	

 	

    yk = Hkxk + εk	

 E(εkεk

T) = Rk	



	

 	

  - Model	


	

 	

  	


	

 	

   xk+1 = Mkxk + ηk 	

  E(ηkηk

T) = Qk k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	





	

 Then objective function	


	

 	



	

 (ξ0, ξ1, ..., ξK) → 	



	

 J(ξ0, ξ1, ..., ξK)   

  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	



	

 	

     + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	



	

 	

     + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]  

  
  Can include nonlinear Mk and/or Hk.	



	

  Implemented operationally at ECMWF for the assimilation in the stratosphere.	



	

 Becomes singular in the strong constraint limit Qk → 0 

       
	

 	

 	





Dual  Algorithm  for  Variational  Assimilation  (aka  Physical  Space 
Analysis  System,  PSAS,  pronounced ‘pizzazz’;  see  in  particular  book 
and papers by Bennett)	



xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	



xa = xb + Pb
 HT

 Λ-1 d = xb + Pb
 HT

 m	



where Λ ≡ HPbHT + R, d ≡ y - Hxb and m ≡ Λ-1 d maximises	



µ  →  K(µ) = -(1/2) µT Λ µ + dTµ 	



Maximisation is performed in (dual of) observation space.	





Dual Algorithm for Variational Assimilation (continuation 2)	



Extends to time dimension, and to weak-constraint case, by defining state vector as	



	

 	

 	

 	

 x ≡ (x0
T, x1

T
 , …, xK

T)T	



or, equivalently, but more conveniently, as	



x ≡ (x0
T, η0

T
 , …, ηK-1

T)T	



where, as before	



	

 	

 ηk =  xk+1 - Mkxk   ,	

 k = 0, …, K-1 

The background for x0 is x0
b, the background for ηk is 0. Complete background is	



	

 	

 	

 	

 xb = (x0
bT, 0T

 , …,  0T)T	



It is associated with error covariance matrix 	


	

 	

 	

 	

 	


	

 	

 	

 	

  Pb = diag(P0

b, Q0 , …, QK-1)	





Dual Algorithm for Variational Assimilation (continuation 3)	



Define global observation vector as	



y ≡ (y0
T, y1

T
 , …, yK

T)T	



and global innovation vector as	



d ≡ (d0
T, d1

T
 , …, dK

T)T	



where 	

 	

 dk ≡ yk – Hk xk
b, with xk+1

b ≡ Mkxk
b ,	

 k = 0, …, K-1 	





Dual Algorithm for Variational Assimilation (continuation 4)	



For any state vector ξ = (ξ0
T, υ0

T
 , …, υK-1

T)T, the observation operator H 	



ξ  → Hξ = (u0
T, …, uK

T)T 	



is defined by the sequence of operations 	



u0 = H0ξ0	



then for k = 0, …, K-1 	



ξk+1 = Mkξk + υk 	


uk+1  = Hk+1 ξk+1 	



The observation error covariance matrix is equal to	


	

 	

 	

 	

 	


	

 	

 	

 	

  R = diag(R0, …,  RK)	





Dual Algorithm for Variational Assimilation (continuation 5)	



Maximization of dual objective function 	


µ  →  K(µ) = -(1/2) µT Λ µ + dTµ 	



requires explicit repeated computations of its gradient 	



∇µ K  = - Λµ + d = - (HPbHT + R)µ + d	



Starting from µ = (µ0
T, …, µΚ

T)T belonging to (dual) of observation space, this requires 5 successive steps 	



	

 - Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above, viz.,	



	

 	

 Set 	

 χΚ = 0	


	

 	

 Then, for k = K-1, …, 0	


	

 	

 	

 	

    	



	

  νk  = χk+1  +  Hk+1
T

 µk+1	


χk  =  Mk

T
 νk	



	

 	

  Finally	

 	

           λ0  = χ0  +  H0
T

 µ0	



	

 The output of this step, which includes a backward integration of the adjoint model, is the vector 	


	

 (λ0

T, ν0
T

 , …, νK-1
T)T	





Dual Algorithm for Variational Assimilation (continuation 6)	



	

 - Step 2. Multiplication by Pb. This reduces to	



	

 	

 	

 ξ0 = P0
b λ0	



	

 	

 	

 υk = Qkνk 	

 ,  k = 0, …, K-1 	



	

 - Step 3. Multiplication by H. Apply the process defined above on the vector (ξ0
T, 

υ0
T

 , …, υK-1
T)T, thereby producing vector (u0

T, …, uK
T)T.	



	

 - Step 4. Add vector Rµ, i. e. compute 	


	

 	

 	

 	

  ϕ0  = ξ0 + R0 µ0	


	

 	

 	

 	

 ϕk  = υk-1 + Rk µk	

  ,  k = 1, …,  	



	

 - Step 5. Change sign of vector ϕ = (ϕ0
T, …, ϕΚT)T, and add vector d = y - Hxb,	





Dual Algorithm for Variational Assimilation (continuation 7)	



Temporal correlations can be introduced.	



Dual algorithm remains regular in the limit of vanishing model error. Can be used	


for both strong- and weak-constraint assimilation.	



No significant increase of computing cost in comparison with standard strong 	


constraint variational assimilation (Courtier, Louvel)	





Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999 



Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999 



Dual Algorithm for Variational Assimilation (continuation)	



Requires	



  Explicit background (not much of a problem)	



  Exact linearity (much more of a problem). Definition of iterative nonlinear 
procedures is being studied (Auroux, …)	





Auroux, Doctoral Dissertation, Université de Nice-Sophia Antipolis, Nice, 2003 



Dual Algorithm for Variational Assimilation is now used, in 
the weak-constraint form, at Centre Européen de Recherche 
et de Formation Avancée en Calcul Scientifique 
(CERFACS) in Toulouse (A. Weaver, S. Gürol) for 
assimilation of oceanographical observations.  



Conclusion on Sequential Assimilation	



	

 Pros 	


	

      	

 ‘Natural’, and well adapted to many practical situations	


           Provides, at least relatively easily, explicit estimate of estimation 

error	



	

 Cons 	


	

 	

 Carries information only forward in time (of no importance 	


	

 if one is interested only in doing forecast)	


	

 	

 In a strictly sequential assimilation (i.e., any individual piece 	


	

 of  information  is  discarded  once  it  has  been  used),  optimality  is 

possible only if errors are uncorrelated in time.	


	

 	

 	


	

 	

 	



	

 	





Conclusion on Variational Assimilation	



	

 Pros 	


	

  	

 Carries  information  both  forward  and  backward  in  time  (important  for 

reassimilation of past data).	


	

 	

 Can easily take into account temporal statistical dependence (Järvinen et al.)	


	

 	

 Does not require explicit computation of temporal evolution of estimation error	


	

 	

 Very well adapted to some specific problems (e. g., identification of tracer sources)	



	

 Cons 	


	

  	

 Does not readily provide estimate of estimation error 	


	

 	

 Requires  development  and  maintenance  of  adjoint  codes.  But  the  latter  can 

have other uses (sensitivity studies).	


	

  	


•  Dual approach seems most promising. But still needs further development for application 

in non exactly linear cases. 	



•  Is ensemble variational assimilation possible ? Probably yes. But also needs development.	





 Variational  assimilation  has  been  extended  to  non  Gaussian  probability  distributions 
(lognormal distributions), the unknown being the mode of the conditional distribution 
(M. Zupanski, Fletcher).	



	

 Bayesian character of variational assimilation ?	



	

 - If everything is linear and gaussian, ready recipe for obtaining bayesian sample	


	

 	


	

 Perturb  data  (background,  observations  and  model)  according  to  their  error 

probability distributions, do variational assimilation, and repeat process	



	

  Sample of system orbits thus obtained is bayesian	



	

 - If not, very little can be said at present 



29 



System produces wavelike chaotic motions, with properties similar to those of 
midlatitude atmospheric waves	



	

 - generally westward phase velocity	


	

 - typical predictability time : 5 ‘days’	


	

 - in addition, quadratic terms conserve ‘energy’  

30 



31 

Experimental procedure (1)	



	

 0. Define a reference solution xt
r by integration of the numerical model	



	

 1. Produce ‘observations’ at successive times tk of the form	



	

 	

 	

 	

 yk = Hkxk
r
 + εk 	



	

 where  Hk is  (usually,  but  not  necessarily)  the  unit  operator,  and  εk  is  a  random (usually,  but  not 
necessarily, Gaussian) ‘observation error’.	



	

 	


	

 	





32 

Experimental procedure (2)	



	

 2. For given observations yk, repeat Nens times the following process	



	

 	

 - ‘Perturb’ the observations yk as follows	



	

 	

 	

 	

 yk →  zk = yk + δk 	



 	

 	

 where δk is an independent realization of the probability distribution which has produced εk.	



	

 	

 - Assimilate the ‘perturbed’ observations zk by variational assimilation	



	

 This  produces  Nens  (=30)  model  solutions  over  the  assimilation  window,  considered  as  making 
up a tentative sample of the conditional probability distribution for the state of the observed system 
over the assimilation window.	



	

 The  process  1-2  is  then  repeated  over  Nreal  successive  assimilation  windows.  Validation  is 
performed on the set of Nreal (=9000) ensemble assimilations thus obtained.       	



	

 	





33 

Linearized Lorenz’96. 5 days	





34 

How to objectively evaluate the performance of an ensemble (or more generally probabilistic) 
estimation system ?	



	

 - There is no general objective criterion for Bayesianity	



	

 -  We  use  instead  the  weaker  property  of  reliability,  i.  e.  statistical  consistency  between 
predicted probabilities and observed frequencies of occurrence (it rains with frequency 40% in the 
circumstances where I have predicted 40% probability for rain).	



	

 Reliability  can  be  objectively  validated,  provided  a  large  enough  sample  of  realizations  of  the 
estimation system is available.	



	

 Bayesianity implies reliability, the converse not being true.	



	

 -  We  also  evaluate  resolution,  which  bears  no  direct  relation  to  bayesianity,  and  is  best  defined 
as  the  degree  of  statistical  dependence  between  the  predicted  probability  distribution  and  the 
verifying observation (J. Bröcker).  Resolution, beyond reliability, measures the degree of practical 
accuracy of the ensembles.  	





aaaaa 

35 Linearized Lorenz’96. 5 days	





36 

Linearized Lorenz’96. 5 days. Histogram of Jmin 	


E(Jmin) = p/2 (=200) ; σ(Jmin) = √(p/2) (≈14.14)    	





37 Nonlinear Lorenz’96. 5 days	





38 Nonlinear Lorenz’96. 5 days	





39 Nonlinear Lorenz’96. 5 days. Histogram of Jmin 	





40 



41 
Nonlinear Lorenz’96. 10 days. Histogram of Jmin 	





42 



43 





45 

- Results are independent of the Gaussian character of the 
observation errors (trials have been made with various 
probability distributions)  

- Ensembles produced by EnsVar are very close to Gaussian, 
even in strongly nonlinear cases. 



Exact bayesian estimation ?	



Particle filters	



Predicted ensemble at time t : {xb
l, l = 1, …, L},  each element with its own 

weight (probability) P(xb
l) 	



Observation vector at same time : y = Hx + ε	



Bayes’ formula	


P(xb

l|y) ∼ P(y|xb
l) P(xb

l) 	



Defines updating of weights	





Bayes’ formula	


P(xb

l|y) ∼ P(y|xb
l) P(xb

l) 	



Defines  updating  of  weights;  particles  are  not  modified.  Asymptotically 
converges to bayesian pdf. Very easy to implement.	



Observed fact. For large state dimension, ensemble tends to collapse.	





C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/
Snyder.pdf 



Cours à venir	



Jeudi 14 Février	


Jeudi 21 Février (**)	


Jeudi 28 Février	


Jeudi 7 Mars	


Vendredi 15 Mars	


Jeudi 21 Mars (9h30, **)	


Jeudi 28 Mars (*)	


Jeudi 4 Avril (*) 	



De 10h00 à 12h30, Département de Géosciences, École Normale Supérieure, 24, 
rue Lhomond, Paris 5,  Salle de la Serre, 5ième étage, 	



(*) Salle E314, 3ième étage	


(**) Salle E350, 3ième étage      	




