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-  Additional material on numerical modelling of the 

atmospheric circulation. Temporal discretization.	



-  Numerical  Weather  Prediction.  Present 
performance (mostly ECMWF)	



-  The meteorological observation system	



-   Assimilation. Basics of statistical estimation.	



	

  



 	


-  Discretization grid. Arakawa C-grid	



-  Convective adjusment	
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Physical laws governing the flow	


  Conservation of mass	


	

 Dρ/Dt + ρ divU  =  0	

 	



  Conservation of energy	


	

 De/Dt - (p/ρ2) Dρ/Dt =  Q	



  Conservation of momentum	


	

 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	



  Equation of state	


	

  f(p, ρ, e) =  0	

 	

 	

 (p/ρ = rT, e = CvT)	



  Conservation of mass of secondary components (water in  the atmosphere, salt 
in the ocean, chemical species, …)	



	

 Dq/Dt + q divU  = S	



These physical laws must be expressed in practice in discretized (and necessarily	


imperfect) form, both in space and time	





Parlance of the trade :	



  Adiabatic  and inviscid,  and therefore thermodynamically 
reversible, processes (everything except Q, F and S) make 
up ‘dynamics’	



  Processes described by terms Q, F and S make up ‘physics’ 	





	

 Integrate equation	



	

 	

 	

 dx / dt  =  F(x)	



	

 (x state vector of the model).	



	

 Timestep Δt. 	


	

 Computed solution at time nΔt  xn 	


	

 	


	

 	


	

 	

 	



	

 	





	

 Forward (Euler) scheme	


	

 	

 (xn+1 - xn)/Δt  = F(xn)	


	

 	

 xn+1 = xn + Δt F(xn) 	


	

 	

 	


 Implemented on equation	


	

 	

 dx / dt  =  iαx 	

 ,	

 α real	

 	

 	

 (1)     	


	

 Exact solution  x(t) = x(0) exp (iαt)	


	

 Modulus |x(t)| conserved in time  

	

 Discretized solution xn+1 = (1 +  iαΔt) xn	



	

 Modulus |xn+1| = √(1 +  α2Δt2) |xn|  
	

 increases exponentially with time.	


	

 Forward scheme is unconditionally unstable for Eq. (1)         	





	

 Leapfrog scheme	


	

 	

 	


	

 	

 (xn+1 – xn-1)/2Δt  = F(xn)	


	

 	

 xn+1 = xn-1 + 2Δt F(xn) 	


	

 	

 	


 Stable  for  equation  (1)  above  (i.e.  modulus  remains  constant 

in time) provided	



	

 	

 	

 αΔt < 1	


	

 	


	

 Courant-Friedrichs-Lewy (CFL) condition	





	

 In  a  multidimensional  system,  the  largest  α  will  be  the 
highest  frequency  that  is  present  in  the  system.  In  a 
discretized  system  of  travelling  waves,  the  highest 
frequency  will  correspond  to  the  fastest  wave  that  the 
discretization can explicitly resolve. It will proportional to 
c/Δx, where c is the phase velocity of the fastest waves in 
the system, and Δx the mesh-size of the discretization  	



	

 	

 	

 	

 α = (1/β) c/Δx	



	

 where  β  is  an  O(1)  numerical  coefficient  depending  on 
the particular discretization scheme  under consideration.      	





	

 CFL condition then becomes	



	

 	

 	

 Δt / Δx  < β / c 	



	

 Significance  :  numerical  propagation  of  signal  must  be  at 
least as fast as physical propagation.	



	

 CFL  condition  generally  applies  to  explicit  schemes  of 
temporal discretization  	



  

	

 	





	

 In  hydrostatic  atmosphere,  fastest  propagating  wave  : 
gravity wave with largest  scale  height,  c = √(rT)  ≈  300 
m.s-1.	



	

 	


	

 	

 	

 Δx = 30 km	

  ⇒  Δt = 100 s     	



 The use  of  semi-implicit  schemes allows to  get  rid  of  the 
CFL condition, and to use longer timesteps.    
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In the parlance of the trade, one distinguishes two different 
parts in models. The ‘dynamics’ deals with the physically 
reversible  processes  (pressure  forces,  Coriolis  force, 
advection,  …),  while the ‘physics’ deals  with physically 
irreversible  processes,  in  particular  the  diabatic  heating 
term  Q  in  the  energy  equation,  and  also  the 
parameterization of subgrid scales effects.	



Numerical  schemes  have  been  gradually  developed  and 
validated for the ‘dynamics’ component of models, which 
are  by  and  large  considered  now  to  work  satisfactorily 
(although  regular  improvements  are  still  being  made; 
project  DYNAMICO,  Dynamical  Core  on  Icosahedral 
Grid, Th. Dubos, IPSL). 	
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The situation is different as concerns ‘physics’, where many 
problems remain (as concerns for instance subgrid scales 
parameterization,  the  water  cycle  and  the  associated 
exchanges of energy, or the exchanges that take place in 
the  boundary  layer  between  the  atmosphere  and  the 
underlying  medium).  ‘Physics’ as  a  whole  remains  the 
weaker point  of  models,  and is  still  the object  of  active 
research.  	







Centre Européen pour les Prévisions Météorologiques à 
Moyen Terme (CEPMMT, Reading, GB) 

(European Centre for Medium-range Weather Forecasts, ECMWF) 

Depuis mars 2016 : 

Troncature triangulaire TCO1279 / O1280 (résolution 
horizontale ≈ 9 kilomètres) 

137 niveaux dans la direction verticale (0 - 80 km) 

Discrétisation en éléments finis dans la direction verticale 
(coordonnée hybride)  

Dimension du vecteur d’état correspondant > 109  

Pas de discrétisation temporelle (schéma semi-Lagrangien semi-
implicite):  450 secondes 

Intégré 2 fois par jour (00 et 12 UTC) à une échéance de 10 
jours 



Results extracted from :	



	

 T.  Haiden  et  al.,  2019,  Evaluation of ECMWF forecasts, 
including the 2019 upgrade, Technical Memorandum 853, 
ECMWF, Reading, UK.	



Available at the address :	


ht tps : / /www.ecmwf. int /s i tes /defaul t /files /e l ibrary/

2019/19277-evaluation-ecmwf-forecasts-including-2019-
upgrade.pdf	



(see also site of ECMWF)	





Spatial correlation between anomalies from 
climatology of forecast and verifying analysis 













Night time: blue 
curves 
Day time: red 
curves 









Magnusson and Källén, 2013, Mon. Wea. Rev., 141, 3142–3153 

ECMWF 



Remaining problems 

-  Water cycle (evaporation, condensation, influence on absorbed 
or emitted radiation) 

-  Exchanges with ocean or continental surface (heat, water, 
momentum, …) 
-  … 



2020 



2020 

















ECMWF 



 	


	

 Satellite  ADM-Aeolus was launched on August 22 2018. It 

carries a Lidar-Doppler instrument, called Aladin 
(Atmospheric LAser Doppler Instrument), that makes side 
measurements of wind in the volume of the atmosphere. 
Preliminary tests have shown that these new observations 
have a positive impact on the quality of the previsions, 
especially in the tropics and in the Southern Hemisphere. 	



	

  



  Synoptic  observations  (ground  observations,  radiosonde  observations), 
performed simultaneously,  by international  agreement,  in all  meteorological 
stations around the world (00:00, 06:00, 12:00, 18:00 UTC)	



  Asynoptic  observations  (satellites,  aircraft),  performed  more  or  less 
continuously in time.	



  Direct observations (temperature, pressure, horizontal components of the wind, 
moisture), which are local and bear on the variables used for describing the 
flow in numerical models.	



  Indirect observations (radiometric observations, …), which bear on some more 
or less complex combination (most often, a one-dimensional spatial integral) 
of variables used for for describing the flow 	



y = H(x)   	



	

  H : observation operator (for instance, radiative transfer equation)	







E. Rémy, Doctoral Dissertation, 1999 



 Purpose of assimilation : reconstruct as accurately as possible the state of the 
atmospheric or oceanic flow, using all available appropriate information. The latter 
essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, and 
are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in practice in 
the form of a discretized, and necessarily approximate, numerical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although 
they basically are necessary consequences of the physical laws which govern the flow, these 
properties can usefully be explicitly introduced in the assimilation process. 



 Assimilation  is  one  of  many  ‘inverse  problems’ encountered 
in many fields of science and technology	



•  solid Earth geophysics	



•  plasma physics	



•  ‘nondestructive’ probing	



•  navigation (spacecraft, aircraft, ….)	



•  …	



	

 Solution  most  often  (if  not  always)  based  on  Bayesian,  or 
probabilistic,  estimation.  ‘Equations’ are  fundamentally  the 
same. 



Difficulties specific to assimilation of meteorological observations :	



	

 -  Very  large  numerical  dimensions  (n  ≈  106-109  parameters  to  be 
estimated,  p  ≈  4-5.107  observations  per  24-hour  period).  Difficulty 
aggravated in Numerical Weather Prediction by the need for the forecast to 
be ready in time.	



	

 - Non-trivial, actually chaotic, underlying dynamics	
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Bayesian Estimation   

 Determine  conditional  probability  distribution  of  the  state  of  the 
system, given the probability distribution of the uncertainty on the data	



  z1 = x + ζ1	

  ζ1 = N [0, s1] 	



	

 	

 	

 	

  density function 	

p1(ζ) ∝ exp[ - (ζ2)/2s1]	



  z2 = x + ζ2	

  ζ2 = N [0, s2] 	



	

 	

 	

 	

  density function 	

p2(ζ) ∝ exp[ - (ζ2)/2s2]	



•  ζ1 and ζ2 mutually independent	



What is the conditional probability P(x = ξ | z1, z2) that x be equal to some 
value ξ ?	





  z1 = x + ζ1	

 density function 	

 p1(ζ) ∝ exp[ - (ζ2)/2s1]	


  z2 = x + ζ2	

  density function 	

p2(ζ) ∝ exp[ - (ζ2)/2s2] 	



	

 	

 	

 ζ1 and ζ2 mutually independent	



x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ	



•  P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)	



	

 	

 	

         ∝  exp[ - (ξ -xa)2/2pa]  

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1
 + z2/s2)	



Conditional probability distribution of x, given z1 and z2 :N [xa, pa]	


pa < (s1, s2) independent of z1 and z2 	







 Conditional  expectation  xa  minimizes  following  scalar  objective 
function, defined on ξ-space	



	

 	

  ξ →   J(ξ) ≡  (1/2) [(z1 - ξ)2 / s1 + (z2 - ξ)2 / s2 ] 

	

  In addition	



	

 	

  pa = 1/ J’’(xa)  

 Conditional probability distribution in Gaussian case 

   P(x = ξ | z1, z2) ∝ exp[ - (ξ -xa)2/2pa]  

	

 	

 	

 	

 	

 J(ξ) + Cst  



 Estimate	



	

 	

 	

 xa = pa (z1/s1
 + z2/s2)	



	

 with error pa such that	



	

 	

 	

  1/pa = 1/s1 + 1/s2  	



 can also be obtained, independently of any Gaussian hypothesis, as 
simply corresponding to the linear combination of z1 and z2 that minimizes 
the error Ε [(xa-x) 2]  

   Best Linear Unbiased Estimator (BLUE)  



  z1 = x + ζ1	

 	


  z2 = x + ζ2	

 	



	

 	

 Same as before, but ζ1 and ζ2 are now distributed according to exponential law 
with parameter a, i. e.  	



	

 	

 	

 p (ζ) ∝ exp[-|ζ |/a]   ;    Var(ζ) = 2a2	



Conditional probability density function is now uniform over interval [z1, z2], 	


exponential with parameter a/2 outside that interval	



	

 E(x | z1, z2)  = (z1+z2)/2	



	

 Var(x | z1, z2) = a2 (2δ3/3 + δ2 + δ +1/2) / (1 + 2δ), with δ =  ⏐z1-z2⏐/(2a)	


	

 Increases from a2/2 to ∞ as δ increases from 0 to ∞. Can be larger than variance 2a2	



	

 of original errors (probability 0.08)	



	

 	





Bayesian estimation   

State vector x, belonging to state space S (dimS = n), to be estimated.	



Data vector z, belonging to data space D (dimD = m), available.	



	

  z = F(x, ζ)     (1) 

where  ζ  is  a  random  element  representing  the  uncertainty  on  the  data  (or,  more 
precisely, on the link between the data and the unknown state vector).	



For example	



	

 z = Γx + ζ	





 Bayesian estimation (continued)	



	

 Probability that x = ξ for given ξ ?	



  x = ξ    ⇒   z = F(ξ, ζ) 

	

 	

 P(x = ξ | z) = P[z = F(ξ, ζ)] / ∫ξ’ P[z = F(ξ’, ζ)] 

	

 Unambiguously defined iff, for any ζ, there is at most one x such that (1) is verified.	



	

 ⇔    data  contain  information,  either  directly  or  indirectly,  on  any  component  of 
x. Determinacy condition.	





 Bayesian  estimation  is  however  impossible  in  its  general  theoretical 
form in meteorological or oceanographical practice because	



•  It is impossible to explicitly describe a probability distribution in a space 
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈ 
106-9 of  present  Numerical  Weather  Prediction  models  (the  curse  of 
dimensionality).	



•  Probability distribution of errors on data very poorly known (model errors 
in particular).	





One has to restrict oneself to a much more modest goal. Two	


approaches exist at present	



  Obtain  some  ‘central’  estimate  of  the  conditional  probability 
distribution  (expectation,  mode,  …),  plus  some  estimate  of  the  
corresponding  spread  (standard  deviations  and  a  number  of 
correlations). 

  Produce an ensemble of estimates which are meant to sample the 
conditional probability distribution (dimension N ≈ O(10-100)).	





Cours à venir	



Jeudi 19 Mars 
Jeudi 26 mars 
Jeudi 02 avril 
Jeudi 09 avril 
Jeudi 16 avril 
Jeudi 23 avril 
Jeudi 30 avril 
Jeudi 14 mai	




