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 From course 5	

	
 	

	
 Case of data that are distributed over time	


	
 Suppose for instance available data consist of 	


	
 	
 - Background estimate at time 0	

	
 	
    x0

b  =  x0
  + ζ0

b 	
  E(ζ0
bζ0

bT) = P0
b	


	
 	
 - Observations at times k = 0, …, K	

	
 	
    yk = Hkxk + εk	
 E(εkεj

T) = Rk δkj	


	
 	
  - Model (supposed for the time being to be exact) 	

	
 	
    xk+1 = Mkxk  k = 0, …, K-1	
 	
 	
 	


	
 	
 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	


	
 Then objective function	

	
 	

ξ0 ∈  S  → 	


J(ξ0) ≡  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk] 	


	
 	
              ≡ 	
                         Jb                    + 	
                     Jo	


	
 subject to ξk+1 = Mkξk ,	
 k = 0, …, K-1	
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 From course 5	

	
 	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hkξk]T Rk

-1 [yk - Hkξk]  
  
  Background  is  not  necessary,  if  observations are  in  sufficient  number  to 

overdetermine the problem. Nor is strict linearity.	


Four-Dimensional Variational Assimilation	


	
 	
 	
 	
   	

	
 	
 	
 	
  ‘4D-Var’ 	
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 From course 5	

	
  
 How to  minimize  objective  function  with  respect  to  initial  state  u  = ξ0  (u  is 

called the control variable of the problem) ?	


	
 Use  iterative  minimization  algorithm,  each  step  of  which  requires  the 
explicit knowledge of the local gradient ∇u J ≡  (∂J/∂ui) of J with respect to u.	
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 From course 5	

	
 How to numerically compute the gradient ∇u J ?	


	
 Direct  perturbation,  in  order  to  obtain  partial  derivatives  ∂J/∂ui  by  finite 
differences  ?  That  would  require  as  many  explicit  computations  of  the 
objective function J as there are components in u. Practically impossible.	


	
 Gradient computed by adjoint method.	
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 
1000-hPa pressure level (no temporal evolution of background error covariance matrix) 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 
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Same as before, but at the end of a 24-hr 4D-Var 

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414 
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-  Variational  assimilation.  Complements.  A  few 
practical tips for adjoint modeling. 	


-  The  ‘Incremental  approach’  to  variational 
assimilation 	


-  Weak  constraint  variational  assimilation.  Principle. 
The  dual  algorithm  for  variational  assimilation. 
Examples.	


-  Assimilation  and  (In)stabilities.  Quasi-Static 
Variational Assimilation (QSVA).    	
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Persistence = 0 ; climatology = 50 at long range	
 9 



Ini$al	  state	  error	  reduc$on	  

4DVar EDA 

Reforecasts from 
reanalysis 

Operational 
forecasts 

Credit E. Källén, ECMWF 10 
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Time-correlated Errors (continuation 3)	


 Moral.  If  data  errors  are  correlated  in  time,  it  is  not  possible  to  discard  observations  as 
they are used. In particular, if model error is correlated in time, all observations are liable to 
be reweighted as assimilation proceeds.	


	
 Variational assimilation can take time-correlated errors into account.	


	
 	
 Example of time-correlated observation errors. Global covariance matrix	


	
 	
 	
 R = (Rkk’ = E(εkεk’
T))	


	
 	
 Objective function	


ξ0 ∈  S   → 	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σkk’[yk - Hkξk]T [R -1]kk’ [yk’ - Hk’ξk’]  

	
 	
 where [R -1]kk’ is the kk’-sub-block of global inverse matrix R -1.	


	
 Similar approach for time-correlated model error.	


€ 
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Time-correlated Errors (continuation 4)	


 Temporal  correlation  of  observational  error  has  been  introduced  by  ECMWF  (Järvinen 
et  al.,  1999) in variational  assimilation of high-frequency surface pressure observations 
(correlation originates in that case in representativeness error).	


	
 Identification and quantification of time correlation of errors, especially model errors ?	


€ 



	
 In  the  linear  case,  Kalman  Smoother  and  Variational  Assimilation  are 
algorithmically  equivalent.  If  errors  are  uncorrelated  in  time,  they 
produce the BLUE of the state of the system from all available data, 
over the whole assimilation window (Kalman Filter produces the BLUE 
only at the end of the final time of the window). If in addition errors are 
globally Gaussian, both algorithms achieve Bayesian estimation.	


	
 If  errors  are  correlated  in  time,  only  some  Kalman  Smoothers  are 
equivalent with Variational Assimilation. 	
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From course 5	


Adjoint Method (continued 3)	


Nonlinearities ?	


J(ξ0)  =  (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0) + (1/2) Σk[yk - Hk(ξk)]T Rk

-1 [yk - Hk(ξk)]  
 subject to ξk+1 = Mk(ξk) ,	
 k = 0, …, K-1	


Control variable 	
  ξ0 = u	


Adjoint equation	


 λK = 	
        HK’T RK
-1 [HK(ξK) - yK]	


 ….	

 λk =  Mk’Tλk+1 + Hk’T Rk

-1 [Hk(ξk) - yk]	
 	
  	
 k = K-1, …, 1	

 ….	

λ0 =  M0’Tλ1      + H0’T R0

-1 [H0(ξ0) - y0]   +  [P0
b]-1 (ξ0 - x0

b) 	


	
 	
 	
 	
 ∇u J  = λ0 	
 	


Not approximate (it gives the exact gradient ∇uJ), and really used as described here.	
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How to  write the adjoint of a code  ?	

	
 	

	
 Operation  a = b x c	


	
 Input  b, c	
  Output  a  but also b, c	


	
  For clarity, we write	


	
  a = b x c	

	
  b’ = b	

	
  c’ = c	


	
 ∂J/∂a,  ∂J/∂b’,  ∂J/∂c’ available. We want to determine ∂J/∂b,  ∂J/∂c 	


	
  Chain rule	


	
  ∂J/∂b = (∂J/∂a)(∂a/∂b) + (∂J/∂b’)(∂b’/∂b) + (∂J/∂c’)(∂c’/∂b) 	

	
 	
                c	
                     1	
 	
   0	

	
 	

	
  ∂J/∂b = (∂J/∂a) c + ∂J/∂b’	


	
  Similarly	


	
 ∂J/∂c = (∂J/∂a) b + ∂J/∂c’	
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M. Jardak 16 



Incremental Method for Variational Assimilation	


	
 Variational  assimilation,  as  it  has  been  described,  requires  the  use  of 
the adjoint of the full model.	


	
 Simplifying  the  adjoint  as  such  can  be  very  dangerous.  The 
computed  gradient  would  not  be  exact,  and  experience  shows  that 
optimization  algorithms  (and  especially  efficient  ones)  are  very 
sensitive to even slight misspecification of the gradient.	


	
 Principle  of  Incremental  Method  (Courtier  et  al.,  1994,  Q.  J.  R. 
Meteorol.  Soc.)  :  simplify  simultaneously  the  (local  tangent  linear) 
dynamics and the corresponding adjoint.	
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Incremental Method (continuation 1)	


	
 - Basic (nonlinear) model	

	
  ξk+1 = Mk(ξk) 	


	
 - Tangent linear model	

	
  δξk+1 = Mk’ δξk 	

	
 	

	
 where Mk’ is jacobian of Mk at point ξk.	


	
 - Adjoint model	


	
  λk = Mk’T λk+1 + …	


	
  Incremental Method. Simplify both Mk’ and Mk’T consistently.	
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Incremental Method (continuation 2)	


	
 More  precisely,  for  given  solution  ξk
(0) of  nonlinear  model,  replace  tangent 

linear and adjoint models respectively by 	

	
 	

	
  δξk+1 = Lk δξk 	
 	
  (2) 	

	
 	

	
 and	

	
 	

	
 λk = Lk

T λk+1 + …	


	
 where Lk is an appropriate simplification of jacobian Mk’.	


	
 It  is  then  necessary,  in  order  to  ensure  that  the  result  of  the  adjoint 
integration is the exact gradient of the objective function, to modify the basic 
model in such a way that the solution emanating from ξ0

(0) + δξ0 is equal to 
ξk

(0) + δξk, where δξk evolves according to (2). This makes the basic dynamics 
exactly linear.	
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Incremental Method (continuation 3)	


	
 As  concerns  the  observation  operators  in  the  objective  function,  a  similar  procedure 
can be implemented if those operators are nonlinear. This leads to replacing Hk(ξk) by 
Hk(ξk

(0)) + Nkδξk,  where  Nk is  an appropriate ‘simple’ linear operator (possibly, but not 
necessarily, the jacobian of Hk at point ξk

(0)). The objective function depends only on the 
initial δξ0 deviation from ξ0

(0), and reads  

	
 JI(δξ0)  =  (1/2) (x0
b - ξ0

(0) - δξ0)T [P0
b]-1 (x0

b - ξ0
(0) - δξ0) 	


	
 	
 	
 	
 	
 + (1/2) Σk[dk - Nkδξk]T Rk
-1 [dk - Nkδξk]  

 where dk ≡ yk - Hk(ξk
(0)) is the innovation at time k, and the δξk evolve according to  

	
 	

	
  δξk+1 = Lk δξk 	
 	
  (2) 	

	
 	

	
 With  the  choices  made  here,  JI(δξ0) is  an  exactly  quadratic  function  of  δξ0.  The 

minimizing perturbation δξ0,m defines a new initial state ξ0
(1) ≡ ξ0

(0) + δξ0,m, from which a 
new solution ξk

(1) of the basic nonlinear equation is determined. The process is restarted 
in the vicinity of that new solution.	
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Incremental Method (continuation 4)	


	
 This  defines  a  system  of  two-level  nested  loops  for  minimization. 
Advantage  is  that  many  degrees  of  freedom are  available  for  defining  the 
simplified  operators  Lk  and  Nk,  and  for  defining  an  appropriate  trade-off 
between practical implementability and physical usefulness and accuracy. It is 
the  incremental  method  which,  together  with  the  adjoint  method,  makes 
variational assimilation possible.	


	
 First-Guess-At-the-right-Time  3D-Var  (FGAT  3D-Var).  Corresponds  to  Lk  = 
In.  Assimilation is  four-dimensional  in  that  observations are  compared to  a 
first-guess which evolves in time, but is three-dimensional in that no dynamics 
other than the trivial dynamics expressed by the unit operator is present in the 
minimization. 	
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 Buehner et al. (Mon. Wea. Rev., 2010)	

	
 	

	
 For  the  same  numerical  cost,  and  in  meteorologically  realistic 

situations,  Ensemble  Kalman  Filter  and  Variational  Assimilation 
produce results of similar quality.	
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 How  to  take  model  error  into  account  in 
variational assimilation ?	


23 



Weak constraint variational assimilation 	


Allows for errors in the assimilating model	


•  Data	

	
 	
 - Background estimate at time 0	

	
 	
 	

	
 	
   x0

b  =  x0
  + ζ0

b 	
  E(ζ0
bζ0

bT) = P0
b	


	
 	
 - Observations at times k = 0, …, K	

	
 	
 	

	
 	
    yk = Hkxk + εk	
 E(εkεk’

T) = Rkδkk’	


	
 	
  - Model	

	
 	
  	

	
 	
   xk+1 = Mkxk + ηk 	
  E(ηkηk’

T) = Qkδkk’ k = 0, …, K-1	
 	
 	
 	


	
 	
 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	
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 Then objective function	

	
 	


	
 (ξ0, ξ1, ..., ξK) → 	


	
 J(ξ0, ξ1, ..., ξK)   

  = (1/2) (x0
b - ξ0)T [P0

b]-1 (x0
b - ξ0)	


	
 	
     + (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	


	
 	
     + (1/2) Σk=0,…,K-1[ξk+1 - Mkξk]T Qk
-1 [ξk+1 - Mkξk]  

  
  Can include nonlinear Mk and/or Hk.	


	
  Implemented operationally at ECMWF for the assimilation in the stratosphere.	


	
 Becomes singular in the strong constraint limit Qk → 0 
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Dual  Algorithm  for  Variational  Assimilation  (aka  Physical  Space 
Analysis  System,  PSAS,  pronounced ‘pizzazz’;  see  in  particular  book 
and papers by Bennett)	


xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	


xa = xb + Pb
 HT

 Λ-1 d = xb + Pb
 HT

 m	


where Λ ≡ HPbHT + R, d ≡ y - Hxb and m ≡ Λ-1 d maximises	


µ  →  K(µ) = -(1/2) µT Λ µ + dTµ 	


Maximisation is performed in (dual of) observation space.	
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Dual Algorithm for Variational Assimilation (continuation 2)	


Extends to time dimension, and to weak-constraint case, by defining state vector as	


	
 	
 	
 	
 x ≡ (x0
T, x1

T
 , …, xK

T)T	


or, equivalently, but more conveniently, as	


x ≡ (x0
T, η0

T
 , …, ηK-1

T)T	


where, as before	


	
 	
 ηk =  xk+1 - Mkxk   ,	
 k = 0, …, K-1 

The background for x0 is x0
b, the background for ηk is 0. Complete background is	


	
 	
 	
 	
 xb = (x0
bT, 0T

 , …,  0T)T	


It is associated with error covariance matrix 	

	
 	
 	
 	
 	

	
 	
 	
 	
  Pb = diag(P0

b, Q0 , …, QK-1)	
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Dual Algorithm for Variational Assimilation (continuation 3)	


Define global observation vector as	


y ≡ (y0
T, y1

T
 , …, yK

T)T	


and global innovation vector as	


d ≡ (d0
T, d1

T
 , …, dK

T)T	


where 	
 	
 dk ≡ yk – Hk xk
b, with xk+1

b ≡ Mkxk
b ,	
 k = 0, …, K-1 	
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Dual Algorithm for Variational Assimilation (continuation 4)	


For any state vector ξ = (ξ0
T, υ0

T
 , …, υK-1

T)T, the observation operator H 	


ξ  → Hξ = (u0
T, …, uK

T)T 	


is defined by the sequence of operations 	


u0 = H0ξ0	


then for k = 0, …, K-1 	


ξk+1 = Mkξk + υk 	

uk+1  = Hk+1 ξk+1 	


The observation error covariance matrix is equal to	

	
 	
 	
 	
 	

	
 	
 	
 	
  R = diag(R0, …,  RK)	
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Dual Algorithm for Variational Assimilation (continuation 5)	


Maximization of dual objective function 	

µ  →  K(µ) = -(1/2) µT Λ µ + dTµ 	


requires explicit repeated computations of its gradient 	


∇µ K  = - Λµ + d = - (HPbHT + R)µ + d	


Starting from µ = (µ0
T, …, µΚ

T)T belonging to (dual) of observation space, this requires 5 successive steps 	


	
 - Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above, viz.,	


	
 	
 Set 	
 χΚ = 0	

	
 	
 Then, for k = K-1, …, 0	

	
 	
 	
 	
    	


	
  νk  = χk+1  +  Hk+1
T

 µk+1	

χk  =  Mk

T
 νk	


	
 	
  Finally	
 	
           λ0  = χ0  +  H0
T

 µ0	


	
 The output of this step, which includes a backward integration of the adjoint model, is the vector 	

	
 (λ0

T, ν0
T

 , …, νK-1
T)T	
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Dual Algorithm for Variational Assimilation (continuation 6)	


	
 - Step 2. Multiplication by Pb. This reduces to	


	
 	
 	
 ξ0 = P0
b λ0	


	
 	
 	
 υk = Qkνk 	
 ,  k = 0, …, K-1 	


	
 - Step 3. Multiplication by H. Apply the process defined above on the vector (ξ0
T, 

υ0
T

 , …, υK-1
T)T, thereby producing vector (u0

T, …, uK
T)T.	


	
 - Step 4. Add vector Rµ, i. e. compute 	

	
 	
 	
 	
  ϕ0  = ξ0 + R0 µ0	

	
 	
 	
 	
 ϕk  = υk-1 + Rk µk	
  ,  k = 1, …,  	


	
 - Step 5. Change sign of vector ϕ = (ϕ0
T, …, ϕΚT)T, and add vector d = y - Hxb,	
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Dual Algorithm for Variational Assimilation (continuation 7)	


Temporal correlations can be introduced.	


Dual algorithm remains regular in the limit of vanishing model error. Can be used	

for both strong- and weak-constraint assimilation.	


No significant increase of computing cost in comparison with standard strong 	

constraint variational assimilation (Courtier, Louvel)	
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Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999 
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Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999 
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Dual Algorithm for Variational Assimilation (continuation)	


Requires	


  Explicit background (not much of a problem)	


  Exact linearity (much more of a problem). Definition of iterative nonlinear 
procedures is being studied (Auroux, …)	
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Auroux, Doctoral Dissertation, Université de Nice-Sophia Antipolis, Nice, 2003 
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Dual Algorithm for Variational Assimilation is now used, in 
the weak-constraint form, at Centre Européen de Recherche 
et de Formation Avancée en Calcul Scientifique 
(CERFACS) in Toulouse (A. Weaver, S. Gürol) for 
assimilation of oceanographical observations.  
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Conclusion on Sequential Assimilation	


	
 Pros 	

	
      	
 ‘Natural’, and well adapted to many practical situations	

           Provides, at least relatively easily, explicit estimate of estimation 

error	


	
 Cons 	

	
 	
 Carries information only forward in time (of no importance 	

	
 if one is interested only in doing forecast)	

	
 	
 In a strictly sequential assimilation (i.e., any individual piece 	

	
 of  information  is  discarded  once  it  has  been  used),  optimality  is 

possible only if errors are uncorrelated in time.	

	
 	
 	

	
 	
 	


	
 	




Conclusion on Variational Assimilation	


	
 Pros 	

	
  	
 Carries  information  both  forward  and  backward  in  time  (important  for 

reassimilation of past data).	

	
 	
 Can easily take into account temporal statistical dependence (Järvinen et al.)	

	
 	
 Does not require explicit computation of temporal evolution of estimation error	

	
 	
 Very well adapted to some specific problems (e. g., identification of tracer sources)	


	
 Cons 	

	
  	
 Does not readily provide estimate of estimation error 	

	
 	
 Requires  development  and  maintenance  of  adjoint  codes.  But  the  latter  can 

have other uses (sensitivity studies).	

	
  	

•  Dual approach seems most promising. But still needs further development for application 

in non exactly linear cases. 	


•  Is ensemble variational assimilation possible ? Probably yes. But also needs development.	




 Variational  assimilation  has  been  extended  to  non  Gaussian  probability  distributions 
(lognormal distributions), the unknown being the mode of the conditional distribution 
(M. Zupanski, Fletcher).	


	
 Bayesian character of variational assimilation ?	


	
 - If everything is linear and gaussian, ready recipe for obtaining bayesian sample	

	
 	

	
 Perturb  data  (background,  observations  and  model)  according  to  their  error 

probability distributions, do variational assimilation, and repeat process	


	
  Sample of system orbits thus obtained is bayesian	


	
 - If not, very little can be said at present 



If there is uncertainty on the state of the system, and dynamics of 
the system is perfectly known, uncertainty on the state along 
stable modes decreases over time, while uncertainty along 
unstable modes increases. 

  

 Stable (unstable) modes : perturbations to the basic state 
that decrease (increase) over time. 

  

  

  

  





 Consequence : Consider 4D-Var assimilation, or any form of smoother, 
which carries information both forward and backward in time, performed 
over time interval [t0, t1] over uniformly distributed noisy data. If 
assimilating model is perfect, estimation error is concentrated in stable 
modes at time t0, and in unstable modes at time t1. Error is smallest 
somewhere within interval [t0, t1]. 

 Similar result holds true for Kalman filter (or more generally any form 
of sequential assimilation), in which estimation error is concentrated in 
unstable modes at any time. 
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Linearized Lorenz’96. 5 days	


Jardak and Talagrand 



45 Nonlinear Lorenz’96. 5 days	
 Jardak and Talagrand 



Trevisan et al., 2010, Q. J. R. Meteorol. Soc.	






Lorenz (1963)	


 dx/dt = σ(y-x)	

	
 dy/dt = ρx - y - xz	

	
 dz/dt = -βz + xy	


	
 with parameter values σ = 10, ρ = 28, β = 8/3  ⇒  chaos	








	
 Twin  (strong  constraint)  experiment.  Observations  yk  = 
Hkxk + εk at successive times k,  and objective function of 
form     	


	
 	


J(ξ0)  = (1/2) Σk[yk - Hkξk]T Rk
-1 [yk - Hkξk]	


	
 xk  denotes  here  the  complete  state  vector,  and  Hk  is  the 
unit operator (all three components of xk are observed)  

   No ‘background’ term from the past, but observation y0 at 
time k = 0.	




Pires et al., Tellus, 1996 ; Lorenz system (1963) 



Minima in the variations of objective function correspond to solutions that have bifurcated 
from the observed solution, and to different folds in state space. 



 Quasi-Static Variational Assimilation (QSVA). Increase 
progressively length of the assimilation window, starting each 
new assimilation from the result of the previous one. This 
should ensure, at least if observations are in a sense 
sufficiently dense in time, that current estimation of the 
system always lies in the attractive basin of the absolute 
minimum of objective function (Pires et al., Swanson et al., 
Luong, Järvinen et al.) 

. 
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Pires et al., Tellus, 1996 ; Lorenz system (1963) 



Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390 



Cours à venir	


Jeudi 19 Mars 
Jeudi 26 mars 
Jeudi 02 avril 
Jeudi 09 avril 
Mardi 21 avril, 14h00 
Mardi 28 avril, 14h00 
Mardi 12 mai, 14h00 
Mardi 26 mai, 14h00 

59 


