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From course 5

Case of data that are distributed over time
Suppose for instance available data consist of

- Background estimate at time O

X" =x+& E(&°&") = Py’
- Observations at times k=0, ..., K
i = Hx, + ¢ E(gkg =R, 6 .

- Model (supposed for the time being to be exact)
Xy = Mix, k=0,...,K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear

Then objective function

§5€ S —
J(&) = (1/2) O - )T IPT! (" - &) + (172) Zylyy - HiG(T Ry [y - Hi &l
= jb + jo
subject to &, = M,§,, k=0,...,K-1



From course 5
ﬂ(go) = (1/2) (xob - go)T [Pob]_l (xob - Eo) + (172) Z [y, - Hkgk]TRk'l [V - Hkgk]

Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

Four-Dimensional Variational Assimilation

‘4D-Var’



From course 5

How to minimize objective function with respect to initial state u = &, (u is
called the control variable of the problem) ?

Use iterative minimization algorithm, each step of which requires the
explicit knowledge of the local gradient V /] = (9/]/0u;) of /] with respect to u.



From course 5

How to numerically compute the gradient V] ?

Direct perturbation, in order to obtain partial derivatives 0//du; by finite
differences ? That would require as many explicit computations of the
objective function /] as there are components in u. Practically impossible.

Gradient computed by adjoint method.



Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

6
Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414




Variational assimilation. Complements. A few
practical tips for adjoint modeling.

The  ‘Incremental approach’ to  variational
assimilation

Weak constraint variational assimilation. Principle.
The dual algorithm for wvariational assimilation.
Examples.

Assimilation and  (In)stabilities.  Quasi-Static
Variational Assimilation (OSVA).
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Figure 3: 500 hPa geopotential height mean square error skill score for Europe (top) and the northern hemisphere
extratropics (bottom). showing 12-month moving averages for forecast ranges from 24 to 192 hours. The last point
on each curve 1s for the 12-month period August 2013—July 2014.

Persistence = 0 ; climatology = 50 at long range ’



Initial state error reduction
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Time-correlated Errors (continuation 3)

Moral. If data errors are correlated in time, it is not possible to discard observations as
they are used. In particular, if model error is correlated in time, all observations are liable to
be reweighted as assimilation proceeds.

Variational assimilation can take time-correlated errors into account.
Example of time-correlated observation errors. Global covariance matrix
R= (R, = E(g¢,h))
Objective function

fES -
j(go) = (172) (x()]7 - go)T [Pob]_1 (x()b - 50) + (1/2) Zkk’[yk - Hkgk]T [R_l]kk’ Ve~ Hk’gk’]

where [ R];,; is the kk’-sub-block of global inverse matrix &'

Similar approach for time-correlated model error.

11



Time-correlated Errors (continuation 4)

Temporal correlation of observational error has been introduced by ECMWF (Jiarvinen

et al., 1999) in variational assimilation of high-frequency surface pressure observations
(correlation originates in that case in representativeness error).

Identification and quantification of time correlation of errors, especially model errors ?

12



In the linear case, Kalman Smoother and Variational Assimilation are
algorithmically equivalent. If errors are uncorrelated in time, they
produce the BLUE of the state of the system from all available data,
over the whole assimilation window (Kalman Filter produces the BLUE
only at the end of the final time of the window). If in addition errors are
globally Gaussian, both algorithms achieve Bayesian estimation.

If errors are correlated in time, only some Kalman Smoothers are
equivalent with Variational Assimilation.

13



From course 5

Adjoint Method (continued 3)

Nonlinearities ?

J&) = (1/2) (xg” - E)TIPT" (" - &) + (1/2) 2Ly, - Hi(EQIT R [y - H(E))]

subjectto &, = M (&), k=0,...,K-1
Control variable S=u
Adjoint equation
Ay = Hi " Ry [H(Eg) - vl

M= M Xy + HUT R TH(E - vy

Ao= My TA, + Hy PRy VIHY(E) -yl + [PPT (5 - %P

V.J =%

Not approximate (it gives the exact gradient V), and really used as described here.

k=K-1,...,1

14



How to write the adjoint of a code ?

Operation a =b x ¢
Input b, ¢ Output a but also b, ¢

For clarity, we write

a=bxc
b’=b
c’'=c¢

dJ/da, AJ/db’, JJ/dc’ available. We want to determine dJ/db, JJ/dc

Chain rule

a1 db = (8J/3a)(dal db) + (3J/db")(db’1db) + (3/dc’)(dc’ 1 Ib)
c 1 0

aJ/9b = (dJ/da) ¢ + aJldb’

Similarly

aJlde = (3J/da) b + dJ/dc’

15



Gradient test

Positive gradient test Negative gradient test
10 10
10 ; ! ; 10 ! ! '

Gradient test

= (Gradient test

In(residue(c))
In(residue(c))

e - J(optimal control variable)

e = 27°° zero machine
residue(a) = (J(X + adx) — J(x)) — aVI(x)dx

M. Jardak 16



Incremental Method for Variational Assimilation

Variational assimilation, as it has been described, requires the use of
the adjoint of the full model.

Simplifying the adjoint as such can be very dangerous. The
computed gradient would not be exact, and experience shows that
optimization algorithms (and especially efficient ones) are very
sensitive to even slight misspecification of the gradient.

Principle of Incremental Method (Courtier et al., 1994, Q. J. R.
Meteorol. Soc.) : simplify simultaneously the (local tangent linear)
dynamics and the corresponding adjoint.

17



Incremental Method (continuation 1)

- Basic (nonlinear) model

§/<+1 = M(&)

- Tangent linear model
081 = M, 05,

where M, is jacobian of M, at point &,.
- Adjoint model
A=MTA.  +..

Incremental Method. Simplify both M,” and M,’" consistently.

18



Incremental Method (continuation 2)

More precisely, for given solution & of nonlinear model, replace tangent
linear and adjoint models respectively by

5§k+1 =L, ‘5§k (2)
and
A=LTA  +...

where L, 1s an appropriate simplification of jacobian M.

It is then necessary, in order to ensure that the result of the adjoint
integration is the exact gradient of the objective function, to modify the basic
model in such a way that the solution emanating from 5,9+ 9, is equal to
£+ 85, where 95, evolves according to (2). This makes the basic dynamics

exactly linear. "



Incremental Method (continuation 3)

As concerns the observation operators in the objective function, a similar procedure

can be implemented if those operators are nonlinear. This leads to replacing H,(&,) by
H/(§")+ N,65,, where N, is an appropriate ‘simple’ linear operator (possibly, but not
necessarily, the jacobian of H, at point §(%). The objective function depends only on the
initial 65, deviation from &, and reads

Ji(65) = (1/2) (x()b - 50(0) - 5&0)T [P ob]_l (xob - 50(0) - 05))
+ (1/2) 2,14, - Nkégk]TRk'l [d, - N, O&,]

where d, = y, - H,(§,") is the innovation at time k, and the &, evolve according to
0841 = Ly 05, (2)

With the choices made here, 7,(05,) is an exactly quadratic function of 0&,. The
minimizing perturbation 6&,,, defines a new initial state §) = §© + 6§, ,,, from which a
new solution &V of the basic nonlinear equation is determined. The process is restarted

in the vicinity of that new solution.

20



Incremental Method (continuation 4)

This defines a system of two-level nested loops for minimization.
Advantage is that many degrees of freedom are available for defining the
simplified operators L, and N,, and for defining an appropriate trade-off
between practical implementability and physical usefulness and accuracy. It is
the incremental method which, together with the adjoint method, makes
variational assimilation possible.

First-Guess-At-the-right-Time 3D-Var (FGAT 3D-Var). Corresponds to L, =
I,. Assimilation 1s four-dimensional in that observations are compared to a
first-guess which evolves in time, but is three-dimensional in that no dynamics
other than the trivial dynamics expressed by the unit operator is present in the
minimization.

21



Buehner et al. (Mon. Wea. Rev., 2010)

For the same numerical cost, and in meteorologically realistic
situations, Ensemble Kalman Filter and Variational Assimilation
produce results of similar quality.

22



How to take model error into account in
variational assimilation ?

23



Weak constraint variational assimilation

Allows for errors in the assimilating model

e Data
- Background estimate at time 0

X = xy+ &P E(ELELT) = PP
- Observations at times k=0, ..., K

v, = Hx, + ¢ E(g.6,.T) =R, 0y
- Model

Xy = Mix + 1, E(mme D) = 0o k=0, ...,K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear



Then objective function

(o> E15 s Ek) —
J(&» &15 -5 Ek)
= (1/2) (xg" - &) [P"1" (%" - &)
+(1/2) Zin, . klyi - HES R g - Hi&(l

+(172) 2, xil&eer - MUELT O 8y - ML

Can include nonlinear M, and/or H,.

Implemented operationally at ECMWF for the assimilation in the stratosphere.

Becomes singular in the strong constraint limit Q, — 0

25



Dual Algorithm for Variational Assimilation (aka Physical Space
Analysis System, PSAS, pronounced ‘pizzazz’; see in particular book
and papers by Bennett)

x4 =xP+ PPHT[HP’HT + R]! (y - Hx?)
xX=xX+PPH"A'd=x>+ PPH"m
where A = HPPH'+ R, d =y - Hx* and m = A"! d maximises
w— K(u)=-1/2) u" A u+d"u

Maximisation is performed in (dual of) observation space.

26



Dual Algorithm for Variational Assimilation (continuation 2)

Extends to time dimension, and to weak-constraint case, by defining state vector as

x=0x0 T, L x DT
or, equivalently, but more conveniently, as
x=0x0 0", M DT
where, as before
M= X - Mix, k=0,...,K-1

The background for x, is x,”, the background for 1, is 0. Complete background is
xb = (x,T, 07T, ..., 00T
It is associated with error covariance matrix

PP =diag(P, Qy, ..., Ox.1)

27



Dual Algorithm for Variational Assimilation (continuation 3)
Define global observation vector as

y=0ohyts syt
and global innovation vector as

d=(d,",d",....d""

where d.=y,—H x/ withx, =Mx’, k=0,...

28



Dual Algorithm for Variational Assimilation (continuation 4)
For any state vector § = (&%, v, , ..., U DT, the observation operator H
§ = HE=(u,", ...,u; )T
is defined by the sequence of operations
uy = Hy&

thenfork =0, ..., K-1

Sie1 = M5 + v,
Uy = Hiyy S

The observation error covariance matrix is equal to

R =diag(R,, ..., Ry)

29



Dual Algorithm for Variational Assimilation (continuation 5)

Maximization of dual objective function
w— Ku)=-(1/2) i Au+du

requires explicit repeated computations of its gradient

V, K =-Au+d=-(HP'"H" + R)u + d

Starting from u = (u,", ..., ug")" belonging to (dual) of observation space, this requires 5 successive steps
- Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above, viz.,

Set xXk=0
Then, for k=K-1,...,0

— T
Vk - Xk+lT+ Hk+1 :uk+1
X = M v,

Finally Ay =X + Hy™ 1y

The output of this step, which includes a backward integration of the adjoint model, is the vector

()LOT, V()T 9 sy V[(_]T)T

30



Dual Algorithm for Variational Assimilation (continuation 6)

- Step 2. Multiplication by P”. This reduces to

& =Py A
v,=0,v, , k=0,...,K-1

- Step 3. Multiplication by H. Apply the process defined above on the vector (&,",

Uy, ..., U DT, thereby producing vector (i4,", ..., u.0)T.

- Step 4. Add vector Ru, i. e. compute

@ = o+ Ry 1y
(Pk=Uk_1+RkMk ,kzl,...,

- Step 5. Change sign of vector @ = (@, ..., x")T, and add vectord = y - Hx?,

31



Dual Algorithm for Variational Assimilation (continuation 7)

Temporal correlations can be introduced.

Dual algorithm remains regular in the limit of vanishing model error. Can be used

for both strong- and weak-constraint assimilation.

No significant increase of computing cost in comparison with standard strong

constraint variational assimilation (Courtier, Louvel)

32
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Dual Algorithm for Variational Assimilation (continuation)

Requires

= Explicit background (not much of a problem)

= Exact linearity (much more of a problem). Definition of iterative nonlinear
procedures is being studied (Auroux, ...)

35
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Dual Algorithm for Variational Assimilation is now used, in
the weak-constraint form, at Centre Européen de Recherche

et de Formation Avancée en Calcul Scientifique
(CERFACS) 1in Toulouse (A. Weaver, S. Giirol) for
assimilation of oceanographical observations.

37



Conclusion on Sequential Assimilation

Pros

‘Natural’, and well adapted to many practical situations

Provides, at least relatively easily, explicit estimate of estimation
error

Cons

Carries information only forward in time (of no importance
if one is interested only in doing forecast)

In a strictly sequential assimilation (i.e., any individual piece

of information is discarded once it has been wused), optimality is
possible only if errors are uncorrelated in time.



Conclusion on Variational Assimilation

Pros

Carries information both forward and backward in time (important for
reassimilation of past data).

Can easily take into account temporal statistical dependence (Jarvinen et al.)
Does not require explicit computation of temporal evolution of estimation error
Very well adapted to some specific problems (e. g., identification of tracer sources)

Cons
Does not readily provide estimate of estimation error

Requires development and maintenance of adjoint codes. But the latter can
have other uses (sensitivity studies).

e  Dual approach seems most promising. But still needs further development for application
in non exactly linear cases.

* Is ensemble variational assimilation possible ? Probably yes. But also needs development.



Variational assimilation has been extended to non Gaussian probability distributions
(lognormal distributions), the unknown being the mode of the conditional distribution
(M. Zupanski, Fletcher).

Bayesian character of variational assimilation ?

- If everything is linear and gaussian, ready recipe for obtaining bayesian sample

Perturb data (background, observations and model) according to their error
probability distributions, do variational assimilation, and repeat process

Sample of system orbits thus obtained is bayesian

- If not, very little can be said at present



If there 1s uncertainty on the state of the system, and dynamics of
the system 1s perfectly known, uncertainty on the state along
stable modes decreases over time, while uncertainty along

unstable modes increases.

Stable (unstable) modes : perturbations to the basic state

that decrease (increase) over time.
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Consequence : Consider 4D-Var assimilation, or any form of smoother,
which carries information both forward and backward in time, performed
over time interval [f, ¢;] over uniformly distributed noisy data. If
assimilating model is perfect, estimation error is concentrated in stable
modes at time #,, and in unstable modes at time ¢,. Error is smallest

somewhere within interval [7,, ¢,].

Similar result holds true for Kalman filter (or more generally any form
of sequential assimilation), in which estimation error is concentrated in

unstable modes at any time.
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4DVar. =40, 6,=10"

4DVar-AUS. 1=40, 6,=10"
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Lorenz (1963)

dx/dt = o(y-x)
dyldt = px -y -xz
dz/dt = -z + xy

with parameter values o= 10, p =28, f=8/3 = chaos






15 —
o 1 il |
5 —
= 0 —
»
-5
-15
IllllIlllllllIlllllllIIII]TllllllITIIIII]
-15 -10 -5 0 5 10 15 20 25
Time

Fig. 2. Time variations, along the reference solution, of
the variable x(z) of the Lorenz system.



Twin (strong constraint) experiment. Observations y, =
Hx, + ¢, at successive times k, and objective function of
form

j(&o) = (1/2) Ek[yk - Hkgk]TRk_l b’k - Hkgk]

x, denotes here the complete state vector, and H, 1s the
unit operator (all three components of x, are observed)

No ‘background’ term from the past, but observation y, at
time k= 0.
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Pires et al., Tellus, 1996 ; Lorenz system (1963)
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Quasi-Static Variational Assimilation (QOSVA). Increase
progressively length of the assimilation window, starting each
new assimilation from the result of the previous one. This
should ensure, at least 1f observations are 1n a sense
sufficiently dense 1n time, that current estimation of the
system always lies 1n the attractive basin of the absolute
minimum of objective function (Pires et al., Swanson et al.,

Luong, Jarvinen et al.)



Quasi-Static Variational Assimilation (QSVA)

o

Data Assimilation over [0 T]with T=N .dt = M. dt T
4D-Var over [0 1] starting from the observations

0 1
_—-—

4D-Var over [0 21] starting from the minimizer found above
—_—)
0 27

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




Cloud of points Linear tangent

u(C(z, x)) Cloud of points QSVA raw assimilation system Upper bound
=0 ] 1 1 1
=1 0.36 0.37 0.39 0.46
t=2 59x1072 5.74 45x1072 0.401
=3 33x10°7 294 29x10°7 0.397
=28 1.4x10°2 59.9 * 0.396

In the left column, the estimates are calculated from the ensemble of 100 assimilations (see also Fig. 7). The 2nd
column contains the values obtained from the raw assimilation. In the 3rd column, the estimates are obtained from
the tangent linear system and eqgs. (3.5-3.9) (the star indicates a computational overflow). The estimates in the right-

hand column are the upper bounds defined by eq. (3.13).
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Fig. 7. Projection of the 100 minimizing solutions, at the end of the assimilation period, onto the plane spanned by
the stable and unstable directions, defined as in Fig. 3. Values of r are indicated on the panels. The projection is not
an orthogonal projection, but a projection parallel to the local velocity vector (dx/dr. dy/dr, dz/dr) (central manifold ).

Pires et al., Tellus, 1996 ; Lorenz system (1963)
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Cours a venir

Mardi 12 mai, 14h00
Mardi 26 mai, 14h00
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