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- Assimilation 1n the Unstable Subspace (AUS)
- Ensemble variational assimilation (EnsVAR)

- Particle Filters or History of Numerical
Weather Prediction



Return on a few basics

- Basic (nonlinear) model

Xpp1 = M(x)

- Perturbation 0x, at time 0. Resulting perturbation oOx, evolves in time
according to

Oy = Mi(x; + 0x;) - Mi(x)) f

=M, ’(x;) Ox,+ o(0x,)

where M, ’(x,) 1s jacobian of M, at point x,.

0541 = M’ (x}) 05,

is tangent linear model along solution x,.



Return on a few basics (continuation)

Tangent linear model

05141 = M, (x;) 65,

Adjoint model
A= M )T Ay

Describes evolution with respect to k£ of gradient of a scalar function /] with
respect to x,.



And a little more ...

Tangent linear model 0&,,, = M, (x;) 05,

How does 65, vary as k tends to infinity ? If system is unstable (globally
stable), one can expect 65, to increase to infinity (to decrease to 0).

If | 0§, | ~exp(Ak)  then lim(1/k) In | 0&, | =A

Theorem (Oseledec)

For a large class of systems which possess an asymptotic attractor, the
quantity (1/k) In | 6§, | tends to one of a finite number of values

A< .S A <A

(where n is the dimension of the system under consideration)

The A;’s are the Lyapunov exponents of the system



And still a little more ...

The Lyapunov exponents characterize the behaviour of infinitesimally small
perturbations imposed on the state of the system.

There exists a sequence of linear subsets of the whole state space S

D="T

n+l

CEfC..CECE=S
such that the quantity (1/k) In| 65, | tends to A, when 6§, belongs to E,— ., ,.

The presence of (at least) one positive Lyapunov exponent is a sign of
sensitivity to initial conditions, i. e. chaos.



If there 1s uncertainty on the state of the system, and dynamics of
the system 1s perfectly known, uncertainty on the state along
stable modes decreases over time, while uncertainty along

unstable modes increases.

Stable (unstable) modes : perturbations to the basic state

that decrease (increase) over time.
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Consequence : Consider 4D-Var assimilation, or any form of smoother,
which carries information both forward and backward in time, performed
over time interval [f, ¢;] over uniformly distributed noisy data. If
assimilating model is perfect, estimation error is concentrated in stable
modes at time #,, and in unstable modes at time ¢,. Error is smallest

somewhere within interval [7,, ¢,].

Similar result holds true for Kalman filter (or more generally any form
of sequential assimilation), in which estimation error is concentrated in

unstable modes at any time.



4DVar. =40, 6,=10"

4DVar-AUS. 1=40, 6,=10"
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Figure 3. Time average RMS error within 1, 3, 5 days assimilation windows as a function of t' = t — 7, with o, = .2, 10~° for the model
configuration I = 40. Left panel: 4DVar. Right panel: 4DVar-AUS with N = 15. Solid lines refer to total assimilation error, dashed lines

refer to the error component in the stable subspace eis, ...,

Trevisan et al., 2010, Q. J. R. Meteorol. Soc.
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Lorenz (1963)

dx/dt = o(y-x)
dyldt = px -y -xz
dz/dt = -z + xy

with parameter values o= 10, p =28, f=8/3 = chaos
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Twin (strong constraint) experiment. Observations Yy,
Hx, + ¢, at successive times k, and objective function of
form

5(50) = (1/2) Zk[yk - Hkgk]T Rk_1 [yk - Hkgk]

No ‘background’ term from the past, but observation y, at
time k£ = 0.
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Quasi-Static Variational Assimilation (QOSVA). Increase
progressively length of the assimilation window, starting each
new assimilation from the result of the previous one. This
should ensure, at least 1f observations are 1n a sense
sufficiently dense 1n time, that current estimation of the
system always lies 1n the attractive basin of the absolute
minimum of objective function (Pires et al., Swanson et al.,

Luong, Jarvinen et al.)

14



Cloud of points Linear tangent

u(C(z, x)) Cloud of points QSVA raw assimilation system Upper bound
=0 ] 1 1 1
=1 0.36 0.37 0.39 0.46
t=2 59x1072 5.74 45x1072 0.401
=3 33x10°7 294 29x10°7 0.397
=28 1.4x10°2 59.9 * 0.396

In the left column, the estimates are calculated from the ensemble of 100 assimilations (see also Fig. 7). The 2nd
column contains the values obtained from the raw assimilation. In the 3rd column, the estimates are obtained from
the tangent linear system and eqgs. (3.5-3.9) (the star indicates a computational overflow). The estimates in the right-

hand column are the upper bounds defined by eq. (3.13).

15



3 — 0018 — -
S =0 ajl o b)
e .o 0016 - 7!
.= < o | o " ° 0014 4 *
2 - - . O L 0012 — .
'_E; . ° ~' {o 2 e g 0.010 —
R S 0008 —
) . - ‘ .o, » o 0.006 = .
| -1 SO £ 0004 — " e
D ae . v 0.002 — ® y
0.000 Dy ™
e, o -0.002 —
| | [ l | | | } | 3 : | |
3 -2 -1 0 ] 2 3 -0.8 04 0.0 04 0.8
Unstable Manifold Unstable Manifold
0018 o _ _ o) 0018 4 _g d)
0016 *=3 0016 - *
= 0014 + = 0014 A
S 0012 — S 0012 —
£ 0.010 — £ 0010 —
s 0.008 A s  0.008 —
©  0.006 - o 0.006 —
= 0.004 - = 0004 -
2 0.002 - o v 0002 —
0.000 Il T 0.000 Mot
-0.002 4 4 -
0 002 I 1 I | 1 I T I (X)z I 1 I 1 ] ' ]
-0.8 0.4 0.0 04 0.8 -0.8 -0.4 0.0 04 0.8
Unstable Manifold Unstable Manifold

Pires et al., Tellus, 1996 ; Lorenz system (1963)

Fig. 7. Projection of the 100 minimizing solutions, at the end of the assimilation period, onto the plane spanned by
the stable and unstable directions, defined as in Fig. 3. Values of r are indicated on the panels. The projection is not
an orthogonal projection, but a projection parallel to the local velocity vector (dx/dr. dy/dr, dz/dr) (central manifold ).
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Since, after an assimilation has been performed over a period of time,
uncertainty is likely to be concentrated in modes that have been unstable,
it might be useful for the next assimilation, and at least in terms of cost

efficiency, to concentrate corrections on the background in those modes.

Actually, presence of residual noise in stable modes can be damageable for

analysis and subsequent forecast.

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for
the case of 3D-Var)

18



Four-dimensional variational assimilation in the wunstable subspace
(4DVar-AUS)

Trevisan et al., 2010, Four-dimensional variational assimilation in the unstable

subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136,
487-496.
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Experiments performed on the Lorenz (1996) model

d

pri i (j+1 —xj—2)rj—1 —x; + F

with 7 =1,..., 1.
with periodic conditions in j, and value F' = 8§, which gives rise to chaos.

Three values of I have been used, namely 7 =40, 60, 80, which correspond
to respectively N"= 13, 19 and 26 positive Lyapunov exponents.

In all three cases, the largest Lyapunov exponent corresponds to a doubling time
of about 2 days (with 1 ‘day’ = 1/5 model time unit).

Identical twin experiments (perfect model)

20



System produces wavelike chaotic motions, with properties similar to those of
midlatitude atmospheric waves

- generally westward phase velocity
- typical predictability time : 5 ‘days’
- in addition, quadratic terms conserve ‘energy’

ensembile oplmal control, referance and cbearvations ensamble opimal rajectordes and thedr respective referance solut

14 10

12 8 L

10

e days)
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4D-Var-AUS

Algorithmic implementation

Define N perturbations to the current state, and evolve them according to the tangent linear
model, with periodic reorthonormalization in order to avoid collapse onto the dominant

Lyapunov vector (same algorithm as for computation of Lyapunov exponents).

Cycle successive 4D-Var‘s, restricting at each cycle the modification to be made on the current
state to the space spanned by the N perturbations emanating from the previous cycle (if N is

the dimension of state space, that is identical with standard 4D-Var).

22



‘Observing system’ defined as in Fertig et al. (Tellus, 2007):

At each observation time, one observation every four grid points
(observation points shifted by one grid point at each observation time).

Observation frequency : 1.5 hour

Random gaussian observation errors with expectation 0 and standard
deviation 0, = 0.2 (‘climatological’ standard deviation 5.1).

Sequences of  variational assimilations have been cycled over
windows with length T =1, ... , 5 days. Results are averaged over 5000
successive windows.

23
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Figure 1. Time average RMS analysis error at ¢ = 7 as a function of the subspace dimension /N for three model configurations: =40, 60,

80. Different curves in the same panel refer to different assimilation windows from 1 to 5 days. The observation error standard deviation 1s
o, = 0.2.

No explicit background term (i. e., with error covariance matrix) in objective function :
information from past lies in the background to be updated, and in the N perturbations
which define the subspace in which updating is to be made.

Best performance for N slightly above number N' of positive Lyapunov exponents.
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Figure 2. Time average RMS analysis error at £ = 7 as a function of the length of the assimilation window for three model configurations:
I=40, 60, 80. Different curves in the same panel refer to a different subspace dimension /N of 4DVar-AUS and to standard 4DVar. o, = 0.2.

Different curves are almost identical on all three panels. Relative improvement obtained by decreasing
subspace dimension N to its optimal value is largest for smaller window length 7.
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configuration 7 = 40. Left panel: 4DVar. Right panel: 4DVar-AUS with N = 15. Solid lines refer to total assimilation error, dashed lines
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, €40.
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Experiments have been performed in which an explicit background term was present, the
associated error covariance matrix having been obtained as the average of a sequence of full
4D-Var’s.

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-AUS. But
they remain qualitatively similar, with best performance for 4D-Var-AUS with N slightly

above N'.
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Minimum of objective function cannot be made smaller by reducing control space. Numerical
tests show that minimum of objective function is smaller (by a few percent) for full 4D-Var
than for 4D-Var-AUS. Full 4D-Var is closer to the noisy observations, but farther away from
the truth. And tests also show that full 4D-Var performs best when observations are perfect

(no noise).

Results show that, if all degrees of freedom that are available to the model are used, the
minimization process introduces components along the stable modes of the system, in which
no error is present, in order to ensure a closer fit to the observations. This degrades the
closeness of the fit to reality. The optimal choice is to restrict the assimilation to the unstable

modes.

These results apply because no explicit background is available at the initial time of the
assimilation window (only the unstable subspace is known). A proper background (obtained
for instance from a properly implemented Kalman Filter, or from an Ensemble Variational
Assimilation) would not only say that the uncertainty is restricted to the unstable space, but
how it is distributed in that subspace. The ‘restriction’ to the unstable subspace would be

automatically made. -



Can have major practical algorithmic implications.

Questions.

- Degree of generality of results ?

- Impact of model errors ?

29
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Conclusions

Error concentrates in unstable modes at the end of assimilation
window. It must therefore be sufficient, at the beginning of new
assimilation cycle, to introduce increments only in the subspace
spanned by those unstable modes.

In the perfect model case, assimilation 1s most efficient when
increments are introduced in a space with dimension slightly above the
number of non-negative Lyapunov exponents.

In the case of imperfect model (and of strong constraint
assimilation), preliminary results lead to similar conclusions, with
larger optimal subspace dimension, and less well marked optimality.
Further work necessary.

In agreement with theoretical and experimental results obtained for

Kalman Filter assimilation (Trevisan and Palatella, McLaughlin). 3



- Ensemble Variational Assimilation (EnsVAR).
(work with M. Jardak, 2018)



Ensemble Variational Assimilation

Data of the form

z=Ix+§ &~ M10,S]
Conditional probability distribution is

P(x|z) = N[x4, P4
with

x& = (FT S-ln-l 'Ts-1 z
Pé = (FT S—ll')-l

33



Variational form
P(x | 2) < exp[ -(z - IE)T S (z- I'E)/2] = exp[ -(&-x)T (Po)y! (§-x9)/2 ]

Conditional expectation x* minimizes following scalar objective function, defined
on state space X~

EE€EX—= A5 = U2)[IE-)]" S [IE-7]

Pi=[9°7 /08"

34



Ready recipe for determining Monte-Carlo sample of
conditional pdf P(x | z) :

- Perturb data vector z according to its own error probability
distribution

z =>7'=z+6, 6~N|0,S]
and compute
x4 = (TSI TSz

x‘? 1s distributed according to N [x¢, P4

35



Ensemble Variational Assimilation (EnsVar) implements that
algorithm, the expectations x’¢ being computed by standard
variational assimilation.

36



Present purpose

Evaluate EnsVar as a probabilistic estimator when implemented in nonlinear
and/or non-Gaussian cases, i. e., through minimization of

EE€E X — A5 = (112D [I(&) -z']' STTE) - z°]

where I'may be nonlinear, and errors affecting data z may be non-Gaussian.

37



- Objectively compare with other existing ensemble assimilation
algorithms : Ensemble Kalman Filter (EnKF), Particle Filters (PF)

- Simulations performed on two small-dimensional chaotic systems, the
Lorenz’96 model and the Kuramoto-Sivashinsky equation

38



The Lorenz96 model

@ Forward model

d:
% = (wk-i-l —;’L‘k_z)wk_l —xzp+F for k=1,--- N

e Set-up parameters :

©Q the index k is cyclic so that zx—N = Tr+N = k.
©Q F = 8, external driving force.
© —x, a damping term.
Q@ N = 40, the system size.
© Nens = 30, number of ensemble members.

1
o A
Q At = 0.05 = 6hours, the time step.
@ frequency of observations : every 12 hours.
© number of realizations : 9000 realizations.

~ 2.5days, Amax the largest Lyapunov exponent.

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




System produces wavelike chaotic motions, with properties similar to those of
midlatitude atmospheric waves

- generally westward phase velocity
- typical predictability time : 5 ‘days’
- in addition, quadratic terms conserve ‘energy’

ensembile oplmal control, referance and cbearvations ensamble opimal rajectordes and thedr respective referance solut
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Experimental procedure (1)
0. Define a reference solution x,;” by integration of the numerical model
1. Produce ‘observations’ at successive times 7, of the form
Vo= Hx/ + g

where /1, is (usually, but not necessarily) the unit operator, and ¢, is a random (usually, but not
necessarily, Gaussian) ‘observation error’.

41



Experimental procedure (2)

2. For given observations y,, repeat V,,  times the following process

ens

- ‘Perturb’ the observations y, as follows

Vo™ =Yt O
where 6, is an independent realization of the probability distribution which has produced ¢,.
- Assimilate the ‘perturbed’ observations z, by variational assimilation

This produces N,  (=30) model solutions over the assimilation window, considered as making
up a tentative sample of the conditional probability distribution for the state of the observed system
over the assimilation window.

The process 1-2 is then repeated over N, successive assimilation windows. Validation is

performed on the set of V,, ,(=9000) ensemble assimilations thus obtained.

42
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How to objectively evaluate the performance of an ensemble (or more generally
probabilistic) estimation system ?

- There is no general objective criterion for Bayesianity

- We use instead the weaker property of reliability, i. e. statistical consistency
between predicted probabilities and observed frequencies of occurrence (it rains with
frequency 40% in the circonstances where I have predicted 40% probability for rain).

Denote Y the predicted probability distribution, and X the verifying reality. Consider
the probability distribution for the couples (X, Y) (that probability distribution can be
obtained empirically). Reliability is the property that

P(X |Y)=Y forany Y

Reliability can be objectively validated, provided a large enough sample of
realizations of the estimation system is available.

Bayesianity implies reliability, the converse not being true.
44



In addition, we evaluate resolution (also called sharpness), which bears no
direct relation to bayesianity, and is best defined as the degree of statistical
dependence between X and Y (J. Brocker). Total absence of resolution is
independence between X and Y, viz.

P(X | Y) =P(X) forany Y

Resolution, beyond reliability, measures the degree of usefulness of the
ensembles.

45
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Objective function

HE = (12)[IE-z]' ST[IE-7]
Tnin =Jx9) = (1/2) [ITx4- z]" S [Ix - 2]
= (1/2) d" [E(ddD)]' d

where d is innovation
= E(],..) = p/2 (p = dimy = dimd)

If p is large, a few realizations are sufficient for determining E(’/, ;)

Often called x? criterion.

Remark. If in addition errors are gaussian Var(7,.) = p/2
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4 ensemble optimal control, reference and observations enseqnoble optimal trajectories and their respective reference soluti
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EnsVar : the non-linear Lorenz96 model (10 days ~ 2 TU
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EnsVar : consistency
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Quasi-Static Variational Assimilation (QSVA)

o

Data Assimilation over [0 T]with T=N .dt = M. dt T
4D-Var over [0 1] starting from the observations

0 1
_—-—

4D-Var over [0 21] starting from the minimizer found above
—_—)
0 27

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T
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EnsVar : the non-linear Lorenz96 model 10 days with
QSVA
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EnsVar : the non-linear Lorenz96 model 18 days with

QSVA
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- Results are independent of the Gaussian character of the
observation errors (trials have been made with various

probability distributions)

- Ensembles produced by EnsVar are very close to Gaussian,

even in strongly nonlinear cases.

o7



- Comparison Ensemble Kalman Filter (EnKF) and Particle
Filters (PF)

Both of these algorithms being sequential, comparison is fair only at

end of assimilation window
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er}soemble optimal trajectories and respective reference solutions
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reliability diagram
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Nonlinear Lorenz’96. 5 days. Diagnostics at end of assimilation window
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5 EnKF trajectories and respective reference solutions
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Nonlinear Lorenz’96. EnKF. Diagnostics after 5 days of assimilation
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PF trajectories and respective reference solutions
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ensergble optimal trajectories and their respective reference solutions
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ense1r£\ble optimal trajectories and their respective reference solutions
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ense1r§|ble optimal trajectories and their respective reference solutions
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DA procedure o .
Assimilation | Forecasting
method

EnsVAR 0.2193510 | 1.49403506
EnKF 0.2449690 | 1.67176110
PF 0.7579790 | 2.62461295

RMS errors at the end of 5-day assimilations and 5-day forecasts
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From course 6

Weak constraint variational assimilation

Allows for errors in the assimilating model

. Data

- Background estimate at time 0

X = xy+ & E(& e = Pyt
- Observations at times k=0, ..., K
v, = Hx, + ¢ E(g.6,.T) =R, 0y
- Model
Xy = Mix, + 1, E(mme D) = 0o k=0, ...,K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear
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In the present case, objective function of the form

(& M5 s NMi1) =
J(Eos 115 > Mkc1)
= (1/2) 2/<=0,...,K[yk - Hkgk]T Rk'l [y, - H.]

+(1/2) Zisg k1M O 10k
subject to

Ei=MJ(E)+n,, k=0,..,K-1

‘Observations’ consist of

- sequence {y,} , k=0,...,K (with unitobservation operator H,)
- observations O fornp, , k=0,...,K-1
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i
=]

Weak constraint EnsVar 18 days assimilation, C=0.1 and 1200 realizations

Enzemble cptimal solutions and reference rank histogram
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Figure 11. Values of (half) the minima of the objective function
for all realizations of the weak-constraint assimilations over 18-day
windows.
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Kuramoto-Sivashinsky equation

ou O0*u 0O%*u  Ou
a+@+@+u£—0,me[O,L]

with periodicity in x, L = 327
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Linear case
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| Summary _

@ Under non-linearity and non-Gaussianity the EnsVar is a reliable and

consistent ensemble estimator (provided the QSVA is used for long
DA windows) .

@ EnsVar is at least as good an estimator as EnKF and PF.

@ Similar results have been obtained for the Kuramuto-Sivashinsky
model.

Ensembles obtained are Gaussian, even if errors in data are not

Produces Monte-Carlo sample of (probably not) bayesian pdf

UL
"
¢

O [ =
0. Talagrand & M. Jardak Optimization for Bayesian Estimation




EnsVar : Pros and cons _

e Easy to implement when having a 4D-Var code
e Highly parallelizable

@ No problems with algorithm stability (i.e. no ensemble collapse, no
need for localization and inflation, no need for weight resampling)

e Propagates information in both ways and takes into account
temporally correlated errors

@ Costly (Nens 4D-Var assimilations).
@ Empirical.
@ Cycling of the process (work in progress).

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




History of Numerical Weather Prediction

Wilhelm Bjerknes
Das Problem der Wettervorhersage, betrachtet von Standpunkt
der Mechanik und Physik, 1904, Meteorologische Zeitschrift

Ecole de Météorologie de Bergen
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From course 2

Physical laws governing the flow

= (Conservation of mass

Dp/Dt + pdivU = 0

= Conservation of energy
De/Dt - (p/p?) Dp/Dt = Q

=  Conservation of momentum
DU/Dt + (1/p) gradp - g +2 2 AU=F

= Equation of state
f(p9pve)=0 (p/,O=7‘T,e=CvT)

= Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, ...)

Dg/Dt + q divU =S

These physical laws must be expressed in practice in discretized (and necessarily 76
imperfect) form, both in space and time



History of Numerical Weather Prediction (continuation)

Lewis Fry Richardson
Weather Prediction by Numerical Process, 1922
Cambridge University Press

Forecast Factory

Richardson number, fractals, pacifism
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History of Numerical Weather Prediction (continuation 2)

John von Neumann

Institute for Advanced Studies, Princeton, 1946-1950
First electronic computers (ENIAC)

(J. Charney, N. A. Phillips, R. Fjgrtoft, C. G. Rossby,

J. Smagorinsky, ...)

Charney developed barotropic model

First operational numerical forecast around 1955 in Sweden

(C. G. Rossby)

Jule Gregory Charney en 1978.



History of Numerical Weather Prediction (continuation 3)

Numerical prediction has gradually been implemented in more and more

meteorological services around the world.

Extension to simulation of oceanic circulation and climate (early 1970’s, S. Manabe,
GFDL).

European Centre for Medium-Range Weather Forecasts (ECMWEF, 1975)

Ensemble prediction
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History of Numerical Weather Prediction (continuation 4)

A large variety of models covering different spatial and temporal scales and
phenomena (small-scale convection, monthly and seasonal prediction, atmospheric
chemistry, ...) have been developed over the years and are used for research and

operational applications.

Intergovernmental Panel on Climate Change (IPCC, 1988)

Publishes reports that describe the state of climate science and presents

‘projections’ largely based on numerical simulations
First report in 1990

Fifth report in 2014

Sixth report to be published in 2021-2022
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Cours a venir

Mardi 26 mai, 14h00
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