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-  Assimilation in the Unstable Subspace (AUS)  

-  Ensemble variational assimilation (EnsVAR)	



-  Particle  Filters  or  History  of  Numerical 
Weather Prediction 	



	

  



Return on a few basics	



	

 - Basic (nonlinear) model	


	

  xk+1 = Mk(xk) 	



	

 -  Perturbation  δx0  at  time  0.  Resulting  perturbation  δxk  evolves  in  time 
according to      	



	

 δxk+1 = Mk(xk + δxk) - Mk(xk)	


	

     	


	

          = Mk’(xk) δxk + o(δx0)	



	

 where Mk’(xk) is jacobian of Mk at point xk.	



 	

  δξk+1 = Mk’(xk) δξk 	



	

  is tangent linear model along solution xk. 	


	

 	





Return on a few basics (continuation)	



	

 	


 	

 Tangent linear model 	



	

 δξk+1 = Mk’(xk) δξk	


	

 	



	

 Adjoint model	


	

  	


	

 λk = [Mk’(xk)]T λk+1	



	

 Describes  evolution  with  respect  to  k  of  gradient  of  a  scalar  function  J with 
respect to xk.   	





And a little more …	



	

 	


	

 Tangent linear model  δξk+1 = Mk’(xk) δξk	


	

 	


	

 How  does  δξk  vary  as  k  tends  to  infinity  ?  If  system  is  unstable  (globally 

stable), one can expect δξk to increase to infinity (to decrease to 0).    	



	

 If ⏐δξk⏐∼ exp(λk)      then  	

 lim(1/k) ln⏐δξk⏐= λ	


	

 	

 	

 	

 	

 	



	

 Theorem (Oseledec)	


	

 For  a  large  class  of  systems  which  possess  an  asymptotic  attractor,  the 

quantity (1/k) ln⏐δξk⏐tends to one of a finite number of values	



	

 	

 	

 λn ≤  … ≤ λ2 ≤ λ1	


	

 (where n is the dimension of the system under consideration)	


	

 	



	

 The λi’s are the Lyapunov exponents of the system      	





And still a little more …	



	

 	


	

 	

 	

 	

 λn ≤  … ≤ λ2 ≤ λ1	


	

 	


	

 The  Lyapunov  exponents  characterize  the  behaviour  of  infinitesimally  small 

perturbations imposed on the state of the system. 	



	

 There exists a sequence of linear subsets of the whole state space S 

    ∅ = En+1 ⊂ En ⊂ … ⊂ E2 ⊂ E1 = S 

 such that the quantity (1/k) ln⏐δξk⏐ tends to λi when δξ0 belongs to Ei – Ei+1.	



	

 The  presence  of  (at  least)  one  positive  Lyapunov  exponent  is  a  sign  of 
sensitivity to initial conditions, i. e. chaos.          	





If there is uncertainty on the state of the system, and dynamics of 
the system is perfectly known, uncertainty on the state along 
stable modes decreases over time, while uncertainty along 
unstable modes increases. 

  

 Stable (unstable) modes : perturbations to the basic state 
that decrease (increase) over time. 
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 Consequence : Consider 4D-Var assimilation, or any form of smoother, 
which carries information both forward and backward in time, performed 
over time interval [t0, t1] over uniformly distributed noisy data. If 
assimilating model is perfect, estimation error is concentrated in stable 
modes at time t0, and in unstable modes at time t1. Error is smallest 
somewhere within interval [t0, t1]. 

 Similar result holds true for Kalman filter (or more generally any form 
of sequential assimilation), in which estimation error is concentrated in 
unstable modes at any time. 
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Trevisan et al., 2010, Q. J. R. Meteorol. Soc.	
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Lorenz (1963)	



 dx/dt = σ(y-x)	


	

 dy/dt = ρx - y - xz	


	

 dz/dt = -βz + xy	



	

 with parameter values σ = 10, ρ = 28, β = 8/3  ⇒  chaos	
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 Twin  (strong  constraint)  experiment.  Observations  yk  = 
Hkxk + εk at successive times k,  and objective function of 
form     	



	

 	



J(ξ0)  = (1/2) Σk[yk - Hkξk]T Rk
-1 [yk - Hkξk]  

  
  No ‘background’ term from the past, but observation y0 at 

time k = 0.	
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 Quasi-Static Variational Assimilation (QSVA). Increase 
progressively length of the assimilation window, starting each 
new assimilation from the result of the previous one. This 
should ensure, at least if observations are in a sense 
sufficiently dense in time, that current estimation of the 
system always lies in the attractive basin of the absolute 
minimum of objective function (Pires et al., Swanson et al., 
Luong, Järvinen et al.) 

. 
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Pires et al., Tellus, 1996 ; Lorenz system (1963) 16 



Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390 
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Since, after an assimilation has been performed over a period of time, 
uncertainty is likely to be concentrated in modes that have been unstable, 
it might be useful for the next assimilation, and at least in terms of cost 
efficiency, to concentrate corrections on the background in those modes. 

Actually, presence of residual noise in stable modes can be damageable for 
analysis and subsequent forecast. 

Assimilation in the Unstable Subspace (AUS) (Carrassi et al., 2007, 2008, for 
the case of 3D-Var) 
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Four-dimensional  variational  assimilation  in  the  unstable  subspace 
(4DVar-AUS)	



Trevisan et al.,  2010, Four-dimensional variational assimilation in the unstable 
subspace and the optimal subspace dimension, Q. J. R. Meteorol. Soc., 136, 
487-496.	
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Experiments performed on the Lorenz (1996) model 

  

  

with periodic conditions in j, and value F = 8, which gives rise to chaos. 

Three values of I have been used, namely I = 40, 60, 80, which correspond  
to respectively N+ = 13, 19 and 26 positive Lyapunov exponents. 

In all three cases, the largest Lyapunov exponent corresponds to a doubling time  
of about 2 days (with 1 ‘day’ = 1/5 model time unit). 

Identical twin experiments (perfect model) 
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System produces wavelike chaotic motions, with properties similar to those of 
midlatitude atmospheric waves	



	

 - generally westward phase velocity	


	

 - typical predictability time : 5 ‘days’	


	

 - in addition, quadratic terms conserve ‘energy’  
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4D-Var-AUS 

Algorithmic implementation 

Define N perturbations to the current state, and evolve them according to the tangent linear 
model, with periodic reorthonormalization in order to avoid collapse onto the dominant 
Lyapunov vector (same algorithm as for computation of Lyapunov exponents). 

Cycle successive 4D-Var‘s, restricting at each cycle the modification to be made on the current 
state to the space spanned by the N perturbations emanating from the previous cycle (if N is 
the dimension of state space, that is identical with standard 4D-Var). 
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 ‘Observing system’ defined as in Fertig et al. (Tellus, 2007):	



	

 At  each  observation  time,  one  observation  every  four  grid  points 
(observation points shifted by one grid point at each observation time).	



	

 Observation frequency : 1.5 hour	



	

 Random  gaussian  observation  errors  with  expectation  0  and  standard 
deviation σ0 = 0.2 (‘climatological’ standard deviation 5.1).	



	

 Sequences  of  variational  assimilations  have  been  cycled  over 
windows with length τ  = 1, … , 5 days. Results are averaged over 5000 
successive windows.	
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No explicit  background term (i.  e.,  with  error  covariance  matrix)  in  objective  function  : 
information from past lies in the background to be updated, and in the N perturbations 
which define the subspace in which updating is to be made.	



Best performance for N slightly above number  N+ of positive Lyapunov exponents.	
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Different curves are almost identical on all three panels. Relative improvement obtained by decreasing 
subspace dimension N to its optimal value is largest for smaller window length τ.	
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Experiments have been performed in which an explicit background term was present, the 
associated error covariance matrix having been obtained as the average of a sequence of full 
4D-Var’s. 

The estimates are systematically improved, and more for full 4D-Var than for 4D-Var-AUS. But 
they remain qualitatively similar, with best performance for 4D-Var-AUS with N slightly 
above N+.   
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Minimum of objective function cannot be made smaller by reducing control space. Numerical 
tests show that minimum of objective function is smaller (by a few percent) for full 4D-Var 
than for 4D-Var-AUS. Full 4D-Var is closer to the noisy observations, but farther away from 
the truth. And tests also show that full 4D-Var performs best when observations are perfect 
(no noise). 

Results show that, if all degrees of freedom that are available to the model are used, the 
minimization process introduces components along the stable modes of the system, in which 
no error is present, in order to ensure a closer fit to the observations. This degrades the 
closeness of the fit to reality. The optimal choice is to restrict the assimilation to the unstable 
modes. 

These results apply because no explicit background is available at the initial time of the 
assimilation window (only the unstable subspace is known). A proper  background (obtained 
for instance from a properly implemented Kalman Filter, or from an Ensemble Variational 
Assimilation) would not only say that the uncertainty is restricted to the unstable space, but 
how it is distributed in that subspace. The ‘restriction’ to the unstable subspace would be 
automatically made.        
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Can have major practical algorithmic implications. 

Questions. 

- Degree of generality of results ? 

- Impact of model errors ? 
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Time averaged rms analysis error at the end  of the assimilation window (with length τ) as a function of increment  
subspace dimension (I = 60, N+=19), for different amplitudes of white model noise. 

(W. Ohayon and O. Pannekoucke, 2011). 

τ = 1 day τ = 2 days 
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Conclusions	



	

 Error  concentrates  in  unstable  modes  at  the  end  of  assimilation 
window.  It  must  therefore  be  sufficient,  at  the  beginning  of  new 
assimilation  cycle,  to  introduce  increments  only  in  the  subspace 
spanned by those unstable modes.	



	

 In  the  perfect  model  case,  assimilation  is  most  efficient  when 
increments are introduced in a space with dimension slightly above the 
number of non-negative Lyapunov exponents.	



	

 In  the  case  of  imperfect  model  (and  of  strong  constraint 
assimilation),  preliminary  results  lead  to  similar  conclusions,  with 
larger optimal subspace dimension,  and less well  marked optimality. 
Further work necessary.	



	

 In  agreement  with  theoretical  and  experimental  results  obtained  for 
Kalman Filter assimilation (Trevisan and Palatella, McLaughlin). 



 	



-  Ensemble Variational Assimilation (EnsVAR). 	


	

 (work with M. Jardak, 2018)	
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Ensemble Variational Assimilation 

Data of the form	



z = Γx + ζ, 	

 ζ ∼ N [0, S]	



Conditional  probability distribution is	



	

 	

 	

       P(x | z) = N [xa, Pa]	


with	



	

 	

 	

       xa = (Γ T S-1Γ)-1 Γ T S-1 z	


	

 	

 	

       Pa = (Γ T S-1Γ)-1	
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Variational form	



P(x | z) ∝ exp[ -(z - Γξ)T S-1 (z - Γξ)/2 ] ∝ exp[ -(ξ -xa)T (Pa)-1 (ξ -xa)/2 ]	



Conditional expectation xa minimizes following scalar objective function, defined 
on state space X 

ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - z)]T S-1 [Γξ - z]	



Pa = [∂2J /∂ξ2]-1  	
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Ready recipe for determining Monte-Carlo sample of 
conditional pdf P(x | z) : 	



- Perturb data vector z according to its own error probability 
distribution  	



	

 	

 	

     z  → z‘ = z + δ, 	

 δ ∼ N [0, S]	



and compute  	


	

 	


 	

 	

 	

     x‘a = (Γ T S-1Γ)-1 Γ T S-1 z‘	



 x‘a is distributed according to N [xa, Pa] 	
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Ensemble Variational Assimilation (EnsVar) implements that 
algorithm, the expectations  x’a being computed by standard 
variational assimilation.	
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 Present purpose	



    Evaluate EnsVar as a probabilistic estimator when implemented in nonlinear 
and/or non-Gaussian cases, i. e., through minimization of	



ξ ∈  X  →  J(ξ)  ≡  (1/2) [Γ(ξ) – z‘]T S-1 [Γ(ξ) - z‘]	



	

 where Γ may be nonlinear, and errors affecting data z may be non-Gaussian.   	
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 -  Objectively  compare  with  other  existing  ensemble  assimilation 
algorithms : Ensemble Kalman Filter (EnKF), Particle Filters (PF)	



	

 -  Simulations  performed  on  two  small-dimensional  chaotic  systems,  the 
Lorenz’96 model and the Kuramoto-Sivashinsky equation	
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System produces wavelike chaotic motions, with properties similar to those of 
midlatitude atmospheric waves	



	

 - generally westward phase velocity	


	

 - typical predictability time : 5 ‘days’	


	

 - in addition, quadratic terms conserve ‘energy’  
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Experimental procedure (1)	



	

 0. Define a reference solution xt
r by integration of the numerical model	



	

 1. Produce ‘observations’ at successive times tk of the form	



	

 	

 	

 	

 yk = Hkxk
r
 + εk 	



	

 where  Hk is  (usually,  but  not  necessarily)  the  unit  operator,  and  εk  is  a  random (usually,  but  not 
necessarily, Gaussian) ‘observation error’.	
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Experimental procedure (2)	



	

 2. For given observations yk, repeat Nens times the following process	



	

 	

 - ‘Perturb’ the observations yk as follows	



	

 	

 	

 	

 yk →  zk = yk + δk 	



 	

 	

 where δk is an independent realization of the probability distribution which has produced εk.	



	

 	

 - Assimilate the ‘perturbed’ observations zk by variational assimilation	



	

 This  produces  Nens  (=30)  model  solutions  over  the  assimilation  window,  considered  as  making 
up a tentative sample of the conditional probability distribution for the state of the observed system 
over the assimilation window.	



	

 The  process  1-2  is  then  repeated  over  Nreal  successive  assimilation  windows.  Validation  is 
performed on the set of Nreal (=9000) ensemble assimilations thus obtained.       	
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Linearized Lorenz’96. 5 days	
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How  to  objectively  evaluate  the  performance  of  an  ensemble  (or  more  generally 
probabilistic) estimation system ?	



	

 - There is no general objective criterion for Bayesianity	



	

 -  We  use  instead  the  weaker  property  of  reliability,  i.  e.  statistical  consistency 
between predicted probabilities and observed frequencies of occurrence (it rains with 
frequency 40% in the circonstances where I have predicted 40% probability for rain).	



	

 Denote  Y  the  predicted  probability  distribution,  and  X  the  verifying  reality.  Consider 
the probability distribution for the couples (X, Y)  (that probability distribution can be 
obtained empirically). Reliability is the property that	



	

 P(X ⏐Y) = Y  for any Y  	



	

 Reliability  can  be  objectively  validated,  provided  a  large  enough  sample  of 
realizations of the estimation system is available.	



	

 Bayesianity implies reliability, the converse not being true.	
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 In  addition,  we  evaluate  resolution  (also  called  sharpness),  which  bears  no 
direct relation to bayesianity, and is best defined as the degree of statistical 
dependence  between  X  and  Y  (J.  Bröcker).  Total  absence  of  resolution  is 
independence between X and Y, viz.	



P(X ⏐Y) = P(X)  for any Y 	



	

 Resolution,  beyond  reliability,  measures  the  degree  of  usefulness  of  the 
ensembles.  	





aaaaa 

46 Linearized Lorenz’96. 5 days	
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Objective function	



J(ξ)  ≡  (1/2) [Γξ - z]T S-1 [Γξ - z]	



Jmin ≡ J(xa)  =  (1/2) [Γxa - z]T S-1 [Γxa - z]	



          =  (1/2) dT [E(ddT)]-1 d	



where d is innovation 	


	

 	

 	

 ⇒	

      E(Jmin)  =  p/2	

 	

 (p = dimy = dimd)	



If p is large, a few realizations are sufficient for determining E(Jmin) 	


Often called χ2 criterion.	



Remark. If in addition errors are gaussian Var(Jmin)  =  p/2	
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Linearized Lorenz’96. 5 days. Histogram of Jmin 	


E(Jmin) = p/2 (=200) ; σ(Jmin) = √(p/2) (≈14.14)    	





49 Nonlinear Lorenz’96. 5 days	





50 Nonlinear Lorenz’96. 5 days	





51 Nonlinear Lorenz’96. 5 days. Histogram of Jmin 	
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53 
Nonlinear Lorenz’96. 10 days. Histogram of Jmin 	
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- Results are independent of the Gaussian character of the 
observation errors (trials have been made with various 
probability distributions)  

- Ensembles produced by EnsVar are very close to Gaussian, 
even in strongly nonlinear cases. 
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-  Comparison Ensemble Kalman Filter (EnKF) and Particle 
Filters (PF) 

 Both of these algorithms being sequential, comparison is fair only at 

end of assimilation window  
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Nonlinear Lorenz’96. 5 days. Diagnostics at end of assimilation window	





60 
Nonlinear Lorenz’96. EnKF. Diagnostics after 5 days of assimilation	





61 
Nonlinear Lorenz’96. PF. Diagnostics after 5 days of assimilation	
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EnsVAR. Diagnostics for 5-day forecasts	





63 EnKF. Diagnostics for 5-day forecasts	





64 
PF. Diagnostics for 5-day forecasts	
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RMS errors at the end of 5-day assimilations and 5-day forecasts 



From course 6	



Weak constraint variational assimilation 	



Allows for errors in the assimilating model	



•  Data	


	

 	

 - Background estimate at time 0	


	

 	

 	


	

 	

   x0

b  =  x0
  + ζ0

b 	

  E(ζ0
bζ0

bT) = P0
b	



	

 	

 - Observations at times k = 0, …, K	


	

 	

 	


	

 	

    yk = Hkxk + εk	

 E(εkεk’

T) = Rkδkk’	



	

 	

  - Model	


	

 	

  	


	

 	

   xk+1 = Mkxk + ηk 	

  E(ηkηk’

T) = Qkδkk’ k = 0, …, K-1	

 	

 	

 	



	

 	

 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	
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 In the present case, objective function of the form	


	

 	



	

 (ξ0, η1, ..., ηK-1) → 	



	

 J(ξ0, η1, ..., ηK-1)   

  =  (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	



	

 	

     + (1/2) Σk=0,…,K-1ηk
TQk

-1ηk 

 subject to 	



	

 	

    ξk+1 = Mk(ξk) + ηk   ,    k = 0, …, K-1    	



	

  ‘Observations’ consist of 	


	

 	

 	

 	


	

 	

 	

 - sequence {yk} ,    k = 0, …, K   (with unit observation operator Hk)	


	

 	

 	

 - observations 0 for ηk   ,    k = 0, …, K-1    	
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Weak-constraint 
ensemble 
variational 
assimilation 
18 days, Q = 0.1 
1200 realizations 
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 Kuramoto-Sivashinsky equation	



  

	

 with periodicity in x, L = 32π	
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Ensembles obtained are Gaussian, even if errors in data are not 

Produces Monte-Carlo sample of (probably not) bayesian pdf 
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History of Numerical Weather Prediction 	



Wilhelm Bjerknes	



Das Problem der Wettervorhersage, betrachtet von Standpunkt  

der Mechanik und Physik, 1904, Meteorologische Zeitschrift 

École de Météorologie de Bergen	
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From course 2	



Physical laws governing the flow	


  Conservation of mass	


	

 Dρ/Dt + ρ divU  =  0	

 	



  Conservation of energy	


	

 De/Dt - (p/ρ2) Dρ/Dt =  Q	



  Conservation of momentum	


	

 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	



  Equation of state	


	

  f(p, ρ, e) =  0	

 	

 	

 (p/ρ = rT, e = CvT)	



  Conservation of mass of secondary components (water in  the atmosphere, salt 
in the ocean, chemical species, …)	



	

 Dq/Dt + q divU  = S	



These physical laws must be expressed in practice in discretized (and necessarily	


imperfect) form, both in space and time	





History of Numerical Weather Prediction (continuation)   	



Lewis Fry Richardson  

Weather Prediction by Numerical Process, 1922 

Cambridge University Press 

Forecast Factory 

Richardson number, fractals, pacifism  
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History of Numerical Weather Prediction (continuation 2) 	



John von Neumann	



Institute for Advanced Studies, Princeton, 1946-1950	



First electronic computers (ENIAC)	



(J. Charney, N. A. Phillips, R. Fjørtoft, C. G. Rossby, 	



J. Smagorinsky, …) 	



Charney developed barotropic model 

First operational numerical forecast around 1955 in Sweden 

(C. G. Rossby) 
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History of Numerical Weather Prediction (continuation 3) 	



Numerical  prediction  has  gradually  been  implemented  in  more  and  more 
meteorological services around the world.	



Extension to simulation of oceanic circulation and climate (early 1970’s, S. Manabe, 
GFDL).	



European Centre for Medium-Range Weather Forecasts (ECMWF, 1975) 

Ensemble prediction	
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History of Numerical Weather Prediction (continuation 4) 	



A  large  variety  of  models  covering  different  spatial  and  temporal  scales  and 
phenomena (small-scale convection, monthly and seasonal prediction, atmospheric 
chemistry, …) have been developed over the years and are used for research and 
operational applications.	



Intergovernmental Panel on Climate Change (IPCC, 1988) 

	

 Publishes  reports  that  describe  the  state  of  climate  science  and  presents 
‘projections’ largely based on numerical simulations	



	

 First report in 1990	



	

 Fifth report in 2014	



	

 Sixth report to be published in 2021-2022 	
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Cours à venir	



Jeudi 19 Mars 
Jeudi 26 mars 
Jeudi 02 avril 
Jeudi 09 avril 
Mardi 21 avril, 14h00 
Mardi 28 avril, 14h00 
Mardi 12 mai, 14h00 
Mardi 26 mai, 14h00 
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