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Exact bayesian estimation ?	


Particle filters	


Predicted ensemble at time t : {xb
l, l = 1, …, L},  each element with its own 

weight (probability) P(xb
l) 	


Observation vector at same time : y = H(x) + ε	


Bayes’ formula	

P(xb

l|y) ∼ P(y|xb
l) P(xb

l) 	


Defines updating of weights	
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Bayes’ formula	

P(xb

l|y) ∼ P(y|xb
l) P(xb

l) 	


Defines  updating  of  weights;  particles  are  not  modified.  Asymptotically 
converges to bayesian pdf. Very easy to implement.	


Observed fact. For large state dimension, ensemble tends to collapse.	
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C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/
Snyder.pdf 5 



Problem originates  in  the  ‘curse  of  dimensionality’.  Large  dimension 
pdf’s are very diffuse, so that very few particles (if any) are present in 
areas where conditional probability  (‘likelihood’) P(y|x) is large.	
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Curse of dimensionality	


Standard  one-dimensional  gaussian  random 
variable X	


	
 P[ ⎜X ⎜ < σ ] ≈ 0.84	


In dimension n = 100,  0.84100 = 3.10-8     

.	
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Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of 
filter  requires the size of ensembles to increase exponentially with 
space dimension.	
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Alternative possibilities (review in van Leeuwen, 2017, Annales de la faculté des sciences de 
Toulouse Mathématiques, 26 (4), 1051-1085)	


Resampling. Define new ensemble.	


Simplest way. Draw new ensemble according to probability distribution defined by the updated 
weights. Give same weight to all particles. Particles are not modified, but particles with low 
weights are likely to be eliminated, while particles with large weights are likely to be drawn 
repeatedly. For multiple particles, add noise, either from the start, or in the form of ‘model 
noise’ in ensuing temporal integration. 	


Random  character  of  the  sampling  introduces  noise.  Alternatives  exist,  such  as  residual 
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights wl are multiplied by 
ensemble dimension L. Then p copies of each particle l are taken, where p is the integer 
part  of  Lwl.  Remaining  particles,  if  needed,  are  taken  randomly  from  the  resulting 
distribution.	


However, resampling is not sufficient to avoid degeneracy of filters.	
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Idea :	


Use  a  proposal  density  that  is  closer  to  the  new 
observations  than  the  density  defined  by  the 
predicted particles (for instance the density defined 
by  EnKF,  after  the  latter  has  used  the  new 
observations). 	
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van Leeuwen, 2017, Annales de la faculté des sciences de 
Toulouse Mathématiques, 26 (4), 1051-1085 11 



van Leeuwen, 2017, ibid. 12 
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Several  variants  of  proposal  densities  have  been 
defined  and  studied  :  perform  an  EnKF  up  to 
observation  time,  and  then  use  the  obtained 
ensemble  as  proposal  density,  nudge  the  model 
integration  between  times  n-1  and  n  towards  the 
observations at time n,  perform a 4D-Var on each 
particle, optimal proposal density, …	
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van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084	
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The Equivalent-Weights Particle Filter (Ades and van 
Leeuwen, QJRMS, 2013).	


	
 Make  the  proposal  density  depend  on  the  whole 
ensemble  at  time  n-1,  and  not  only  on  xi

n-1,  use 
density  of  the  form  q(xn  | xn-1

1,L,  yn),  where  1,L  
denotes  all  ensemble  indices,  rather  than  of  the 
more  restrictive  form  q(xn  | xi

n-1,  yn).  This  gives 
many degrees of  freedom which can be exploited 
for  obtaining  at  time  n  an  ensemble  with  almost 
equal weights.        	
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Example  Vorticity  equation  model  with 
random error.	


	
 	

	
 State-vector dimension ≈ 65,000 
	
 Decorrelation time:  25 timesteps	

	
 One  complete  noisy  model  field 

observed every 50 timesteps	

	
 24 particles  	


	
 	

17 



18 



19 



Bayesianity : experts say all these filters are bayesian 
(in the limit of infinite  ensemble size) 

Possible difficulties : numerical implementation, 
numerical cost   

Particle filters are actively studied (van Leeuwen, 
Morzfeld, …)  

  

  

  

  20 



 	


-  Validation of assimilation algorithms	
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Unknown x to be determined. Belongs to state space S, with dimension n	

Data, belonging to data space D, with dimension m, available in the form	


	
 	
 	
          z = Γx + ζ	


where Γ is a known (mxn)-matrix, rankΓ = n and ζ is ‘error’	


Best Linear Unbiased Estimate (BLUE)	


xa ≡ (Γ T S-1Γ)-1 Γ T S-1 [z - µ] 	
 	


	
 with µ = E(ζ) and S = E[(ζ- E(ζ) (ζ- E(ζ)T]. 	


	
 	

	
 E(xa-x) = 0	
 	
 E[(xa-x) (xa-x)T] ≡ Pa = (Γ T S-1Γ)-1	


Determinacy condition : rankΓ = n. Data contain information, directly or indirectly, on every 
component of state vector x. Requires m ≥ n.	


BLUE is invariant in any change of origin, or in any invertible linear transformation, in either 
data or state space. In particular, it is independent of the choice of a scalar product or 
norm in either of those spaces. BLUE minimizes the quadratic estimation error on any 
component of x. 	
 22 



If error ζ is gaussian, ζ ∼ N [µ, S], BLUE achieves bayesian estimation in the sense that	


 	
 	
 	
 	
 P(x | z) = N [xa, Pa]	


Signification  of  xa and Pa is  however  different.  In  particular,  in  the  gaussian  gase,  Pa is 
covariance matrix of conditional probability distribution of x for any data set z, while it 
is only, in the general BLUE case, the covariance of the estimation error xa-x, taken over 
all realizations of the error ζ.	


The BLUE can  be  obtianed  by  minimization  of  the  following  scalar  objective  function, 
defined on state space X  	


ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]	


Pa = [∂2J /∂ξ2]-1	


J(ξ) is squared Mahalanobis norm of difference Γξ - (z-µ). That norm, which is associated 
with covariance matrix S. is defined on data space D. 	
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Prasanta Chandra Mahalanobis (1893 -1972)"
24 



xa ≡ (Γ T S-1Γ)-1 Γ T S-1 [z - µ] 	
 	


Determination of the BLUE  requires (at least apparently) the a priori specification of the 
expectation and covariance matrix, i. e. the statistical moments of orders 1 and 2,  of the 
error. The expectation is required for debiasing the data in the first place. 	
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 If  determinacy  condition  is  verified,  it  is  always  possible  to  decompose  data  vector  z, 
through change of origin and invertible linear change of coordinates in data space, into	


 	

	
 	
 	
 xb  =  x  + ζb	
 	

	
 	
 	
 y  =  Hx + ε	


	
 dimxb = n, dimy = p, H known linear observation operator.	


	
 and E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 	

	
 Set E(ζbζbT) = Pb (also often denoted B), E(εεT) = R 	


	
 Then	

	
 	
 	

	
 	
 	
 xa = xb + Pb

 HT
 [HPbHT + R]-1 (y - Hxb)	


	
 	
 	
 Pa = Pb
 - Pb

 HT
 [HPbHT 

 + R]-1 HPb	

	
 	

	
 	
 	
 xa = xb + Pa

 HT
 R-1 (y - Hxb)	


	
 	
 	
 [Pa]-1 = [Pb]-1
 + HT

 R-1H	


	
 In those formulations too, determination of the BLUE (apparently) requires the a 
priori specification of the expectation and covariance matrix of the errors.	
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Questions ���

  Is  it  possible  to  objectively evaluate  the quality  of  an assimilation 
system ?	


  Is  it  possible  to  objectively  evaluate  the  first-  and  second-order 
statistical moments of the data errors, whose specification is required 
for determining the BLUE ?	


  Is it possible to objectively determine whether an assimilation system 
is optimal ?	


  More generally, how to make the best of an assimilation system ?	
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Objective validation	


Objective validation is possible only by comparison with unbiased independent 
observations, i. e. observations that have not been used in the asssimilation, 
and that are affected with errors that are statistically independent of the errors 
affecting the data used in the assimilation.	


Amplitude  of  forecast  error,  if  estimated  against  observations  that  are  really 
independent of observations used in assimilation, and everything else being the 
same, is an objective measure of quality of assimilation.	
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J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]	


z-µ 

Γxa	


Γ(S)	
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Minimizing J(ξ) amounts to	


  debias z	


  project orthogonally onto space Γ(S) according to Mahalanobis S-metric	


  take inverse through Γ (inverse unambiguously defined through determinacy condition)	


Computation of the BLUE is a generalized (Moore-Penrose) inverse. (Γ T S-1Γ)-1 Γ T S-1 is a left-inverse 
of Γ. Conversely, any left-inverse of Γ is of the form (Γ T Σ-1Γ)-1 Γ T Σ-1, with Σ a (non-uniquely 
defined) symmetric positive definite mxm matrix. 	
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Decompose data space D  into image space Γ(S) (index 1) and its S-orthogonal space ⊥Γ(S) (index 2)	


	
 	
 	
 Γ1  invertible	


Set	


Then	

	
 	
 xa = Γ1 

-1
 [z1 - µ1] 	


	
 	
 Pa = (Γ1
 T S1

-1Γ1)-1	


	
 	
 	


€ 

€ 

Γ =
Γ1
0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

µ =
µ1
µ2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

z =
z1 = Γ1x + ζ1
z2 = ζ 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

S =
S1 0
0 S2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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 xa = Γ1 
-1

 [z1 - µ1] 	


The probability distribution of the error 	
  	

	
 	
 	

	
 	
 xa - x =  Γ1 

-1
 [ζ1 - µ1]	


depends on the probability distribution of ζ1.	


On the other hand, the probability distribution of 	


	
 	
  δ = (z-µ) - Γxa = 	


depends only on the probability distribution of ζ2.	


€ 

€ 

0
ζ 2 −µ2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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 Contrary  to  what  equations  suggest,  complete  specification  of  expectation  µ  and 
covariance matrix S is not necessary for determining xa and Pa. It suffices to specify 
the subspace ⊥Γ(S) which is S-orthogonal to the image subspace Γ(S) in data space, 
and the respective components µ1 and S1 of µ and S along Γ(S) .	


	
 Practical  implications  ?  Actually,  not  many.  Data  space  D varies  every  day  with 
observing system, and the above decomposition varies accordingly. It is only in the 
case of a stationary observing system (i.e., a system in which D, Γ, µ and S did not 
vary)  that  the above decomposition would be practically  useful.   Even if  some 
components  of  the  observing system are  permanent  (e.g.,  observation  operators 
and/or variances of associated errors), one can think it will in general be preferable 
to introduce those permanent components as such in a general estimation algorithm, 
rather than modifying the algorithm as such.   	
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 Evaluation of first- and second-order moments of error statistics ?	


	
 Systematic  search  among  all  possible  µ  and  S,  i.  e.  performing  assimilations  for  each 
possible couple (µ, S), and then evaluating results against independent observations ? 
Forget it.	


	
 Cross-validation  (Wahba  and  others).  For  given  instrument,  search  among  possible 
values for error variance through validation against independent observations. Possible, 
may not have been sufficiently considered. 	
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  (Γ T S-1Γ)-1 Γ T S-1 is left-inverse of Γ for any S  ⇒ Estimation schemes of the form 	


	
 	
 	
  xa = (Γ T S-1Γ)-1 Γ T S-1 z	
 	
 	
 (1)	


	
 will not spoil exact data.	


 	
 In background-observation (xb, y) format, same property holds for schemes of the form 	


	
 	
 	
 xa = xb + K (y - Hxb)	
 	
 	
 	
 (2)	


	
 where ‘gain matrix’ K is any nxp matrix (and holds only for those schemes).	

	
 	

	
 We  will  consider  a  scheme  of  form  (1-2),  built  on  a  priori  assumed  (but  not 

necessarily  correct)  error  statistics,  and  try  and  determine  whether  a  possible 
misspecification of those statistics can be detected, and then corrected.	
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 xb  =  x  + ζb 	
  	

	
 y  =  Hx + ε   	


The only combination of the data that is a function of only the error is the innovation vector	


d  =  y - Hxb  =  ε - Hζb 	


Innovation  is  the  only  objective  source  of  information  on  errors.  Now  innovation  is  a 
combination of background and observation errors, while determination of the BLUE 
requires explicit knowledge of the statistics of both observation and background errors.	


xa = xb + Pb
 HT

 [HPbHT + R]-1 (y - Hxb)	


Innovation alone will never be sufficient to entirely determine the required statistics, but it 
may impose constraints, in particular in the form of bounds, on those statistics. 	
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A priori hypotheses made on error statistics define statistics of innovation 	

d  =  y - Hxb  =  ε - Hζb 	


E. g., standard hypotheses and definitions 	


	
 	
 	
 E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 	

	
 	
 	
 E(ζbζbT) = Pb, E(εεT) = R 	


imply	


	
 	
 	
 E(d) = 0      ;         E(ddT) = HPbHT + R	


	
 Possible  to  check  statistical  consistency  between  a  priori  assumed  and  a 
posteriori observed statistics of innovation.	
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Data-minus-Analysis (DmA) difference δ = z - Γxa	


For given gain matrix K, one-to-one correspondance d ⇔ δ	

It is exactly equivalent to compute statistics on either the innovation d or 

on the DmA difference δ.	


δ ≡
x b − xa

y −Hxa
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

−Kd
(Ip − HK)d
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
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After A. Lorenc 
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For  perfectly  consistent  system (i.  e.,  system that  uses  the  exact  error 
statistics):	


E(d) = 0 ( ⇔  E(δ) = 0)	


Any systematic bias in either the innovation vector or the DmA difference 
is the signature of an inappropriately-taken-into-account bias in either 
the background or the observation (or both).	


	
 Primary diagnostic to perform on analysis system	
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In z-form, DmA difference reads	


	
 	
 	
 	
 δ = (S - Γ PaΓT) S-1 z	


	
 	
 	
 	
     = (S - Γ PaΓT) S-1 ζ	


And, for a perfectly consistent system 	


	
 	
 	
   	
 E(δδT) = S - Γ PaΓT	

	
 	
 	
 	

A perfectly  consistent  analysis  statistically  fits  the  data  to  within  their  own 

accuracy.	


If  new  data  are  added  to  (removed  from)  an  optimal  analysis  system,  DmA 
difference must increase (decrease).	
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Assume inconsistency has been found between a priori  assumed and a 
posteriori observed statistics of innovation or DmA difference.	


	
 - What can be done ?	


or, equivalently	


	
 -  Which  bounds  does  the  knowledge  of  the  statistics  of  innovation 
put on the error statistics whose knowledge is required by the BLUE ?	


42 



J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]	


z-µ 

Γxa	


Γ(S)	
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DmA  difference,  i.  e.  (z-µ)  -  Γxa,  is  in  effect  ‘rejected’ by the assimilation.  Its 
expectation and covariance are irrelevant for the assimilation.	


Consequence.  Any assimilation scheme (i.  e.,  a priori  subtracted bias  and gain 
matrix  K)  is  compatible  with  any  observed  statistics  of  either  DmA  or 
innovation.  Not  only  is  not  consistency  between  a  priori  assumed  and  a 
posteriori observed statistics of innovation (or DmA) sufficient for optimality 
of an assimilation scheme, it is not even necessary.	
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Example  
  z1 = x + ζ1	
 	

  z2 = x + ζ2	
 	


Errors ζ1 and ζ2 assumed to be centred (E(ζ1) = E(ζ2) = 0),  to have same variance s and to be mutually uncorrelated. 	


	
 Then	

	
 	
 	


xa = (1/2) (z1 + z2)	

	
 with expected quadratic estimation error	


E[(xa-x)2] = s/2	


Innovation is difference z1 - z2. With above hypotheses, one expects to observe	


E(z1 - z2) = 0	
 	
 ; 	
  E[(z1 - z2)2] = 2s	


Assume one observes	


E(z1 - z2) = b	
 	
 ; 	
  E[(z1 - z2)2] = b2 + 2γ	


Inconsistency if b≠0 and/or γ≠s 	
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Inconsistency can always be resolved by assuming that	


	
 	
 	
 	
 E(ζ1) = -E(ζ2) = -b/2 

	
 	
 	
 	
 E(ζ’1
2) = E(ζ’2

2) = (s+γ)/2 	

	
 	
 	
 	
 E(ζ’1ζ’2) = (s-γ)/2	


That alters neither the BLUE xa, nor the corresponding quadratic estimation error E[(xa-x)2].	
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Explanation. It is not necessary to know explicitly the complete expectation µ and 
covariance matrix S in order to perform the assimilation, and to determine the 
associated estimation error covariance matrix. A number of degrees of freedom 
are therefore useless for the assimilation, and can therefore be used, in infinitely 
many  ways,  to  resolve  any  observed  inconsistency  between  a  priori  and  a 
posteriori observed statistics of the innovation d. The parameters determined by 
the statistics of d are equal in number, for both expectation and covariance, to 
those useless degrees of freedom. As a consequence, among the infinitely many 
possibilities for resolving the inconsistency, there is one in which neither the 
analysis nor its associated error covariance matrix is modified.	


	
 	

	
 However,  it  may  be  that  resolving  the  inconsistency  in  that  way  requires 

conditions that are (independently) known to be very unlikely, if not simply 
impossible. For instance, in the above example, consistency when γ≠s requires  
the errors ζ1 and ζ2 to be mutually correlated, which may be known to be very 
unlikely.	
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Now, a resolution of the inconsistency that would change the orthogonal 
subspace ⊥Γ(S) would modify the analysis.	
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That result, which is purely mathematical, means that the specification of the error 
statistics required by the assimilation must always be entirely based, in the last 
resort, on external hypotheses, i. e. on hypotheses that cannot be objectively 
validated on the basis of the innovation alone. Given an inconsistency between 
a priori assumed  and a posteriori observed innovation statistics,  there is no 
mathematically  fool-proof  method  for  identifying  the  origin  of  the 
inconsistency.	


Question. Does this result hold true in a general nonlinear case ? I don’t know. If 
anyone knows, tell me …	
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Problem. Identify hypotheses 	


  That will not be questioned (errors on observation performed a long distance apart 
by radiosondes made by different manufacturers are uncorrelated)	


  That sound reasonable, but may be questioned (background errors are uncorrelated 
at scales of, say, 5000 km)	


  That certainly look questionable (background and observation errors are mutually 
uncorrelated)	


  That are undoubtedly questionable (model errors are negligible, or are uncorrelated 
in time)	


	
 	

Ideally,  define  a  minimum set  of  hypotheses  such  that  all  remaining  undetermined  error 

statistics can be objectively determined from observed statistics of innovation.	
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Hollingsworth and Lönnberg 
method 

(From Bouttier and Courtier, ECMWF) 
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Use of innovations 
to estimate model errors (Q) 
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Model error in M.F. ensemble 4D-Var  
(Raynaud et al 2012, QJRMS) 

Methodology :  

1. « Total » forecast error variances V[ M ea + em] 
   from innovations (Jb_min). 

2. Compare / ensemble-based variances V[ M ea ] 
    => inflation factor α. 

3. Inflation of forecast perturbations (by α > 1).	
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Model error in M.F. ensemble 4D-Var 
 (Raynaud et al 2012, QJRMS)  

Ensemble-based estimate, 
model error neglected 
Ensemble-based estimate, 
model error accounted for 

Observation-based estimate Vertical profiles of  
forecast errors (K) 
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Model error in M.F. ensemble 4D-Var  

  Inflation of forecast perturbations by 15% 
every 6h. 

  Much more realistic initial spread (by a factor 
2-3) 

 for ensemble prediction. 

  A vertical and latitudinal dependence is needed  

 w.r.t. high level tropical winds. 

  Neutral impact of new variances on the forecast 
quality. 

L. Berre 55 



Objective function	


J(ξ)  ≡  (1/2) [Γξ - z]T S-1 [Γξ - z]	


Jmin ≡ J(xa)  =  (1/2) [Γxa - z]T S-1 [Γxa - z]	


          =  (1/2) dT [E(ddT)]-1 d	


	
 	
 	
 ⇒	
      E(Jmin)  =  p/2	
 	
 (p = dimy = dimd)	


If p is large, a few realizations are sufficient for determining E(Jmin) 	

If observed E(Jmin)  >  p/2, amplitude of innovation is a priori underestimated, and overestimated if 

E(Jmin)  <  p/2	


Often called χ2 criterion.	


Remark. If in addition errors are gaussian Var(Jmin)  =  p/2	
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57 

Linearized Lorenz’96. 5 days. Histogram of Jmin 	

E(Jmin) = p/2 (=200) ; σ(Jmin) = √(p/2) (≈14.14)    	


From course 7 



Results for ECMWF (January 2003, n = 8.106)	


- Operations (p = 1.4 106, has almost doubled since then)	


2Jmin /p  =  0.40 - 0.45	


	
 Innovation is significantly smaller than implied by Pb and R (a residual bias in d would make 
Jmin too large).	


- Assimilation without satellite observations (p = 2 - 3 105)	

	
 	


2Jmin /p  =  1. - 1.05	


	
 Similar  results  obtained  at  other  NWP  centres  (C.  Fischer,  W.  Sadiki  with  Aladin  model,  T. 
Payne at Meteorological Office, UK).	


	
 Probable  explanation:  error  variance  of  satellite  observations  overestimated  in  order  to 
compensate for ignored spatial correlation.	
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Informative content	


Objective function	

J(ξ)  =  Σk  Jk(ξ)	


where	

Jk(ξ)  ≡  (1/2) (Hkξ - yk)T Sk

-1 (Hkξ - yk)	


with 	
 dimyk = mk	


Accuracy of analysis	

	
 	
 	
 	
         Pa = (Γ T S-1Γ)-1	


[Pa]-1  =   Σk  Hk
T Sk

-1 Hk	


1 =   (1/n) Σk tr(Pa Hk
T Sk

-1 Hk) 	

	
        =   (1/n) Σk tr(Sk

–1/2 Hk Pa Hk
T Sk

–1/2)	
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Informative content (continuation 1)	


(1/n) Σk tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2 ) = 1	


I(yk) ≡ (1/n) tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2) is a measure of the relative contribution of subset of 

data yk to overall accuracy of assimilation. Invariant in linear change of coordinates in 
data space ⇒ valid for any subset of data.	


In particular	


I(xb) = (1/n) tr[Pa (Pb)-1]  = 1 - (1/n) tr(KH)       	

	
 	
 	
     I(y) = (1/n) tr(KH)	


Rodgers,  2000,  calls  those  quantities  Degrees  of  Freedom for  Signal,  or  for  Noise,  depending on 
whether considered subset belongs to ‘observations’ or ‘background’.	
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Informative content per individual (scalar) observation (courtesy B. Chapnik) 61 



Objective function	

J(ξ)  =  Σk  Jk(ξ)	


where	

Jk(ξ)  ≡  (1/2) (Hkξ - yk)T Sk

-1 (Hkξ - yk)	

with 	
 dimyk = mk	


For a perfectly consistent system 	


E[Jk(xa)]  =   (1/2) [mk  -  tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2)]	


(in particular, E(Jmin)  =  p/2)	


For same vector dimension mk, more informative data subsets lead at the minimum to smaller terms in 
the objective function.	
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Equality 	


E[Jk(xa)]  =   (1/2) [mk   -  tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2)]	
 	
 (1)	


can  be  objectively  checked  (the  required  trace  can  be  computed  by  implementing  a  variational 
assimilation on synthetic data).	


Chapnik et al. (2004, 2005). Multiply each observation error covariance matrix Sk by a coefficient αk 
such that (1) is verified simultaneously for all observation types.	


System of equations fot the αk‘s solved iteratively.	


63 



Chapnik et al., 2006, 	

QJRMS, 132, 	

543-565	
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Informative content (continuation 2)	


I(yk) ≡ (1/n) tr(Sk
–1/2 Hk Pa Hk

T Sk
–1/2)	


Two subsets of data z1 and z2	


If errors affecting z1 and z2 are uncorrelated, then I(z1 ∪ z2)  =  I(z1) + I(z2) 	


If errors are correlated 	
 	
 	
 I(z1 ∪ z2) ≠ I(z1) + I(z2) 	


If I(z1 ∪ z2) < I(z1) + I(z2), subsets z1 and z2 can be said to be positively correlated, 
and negatively correlated if I(z1 ∪ z2) > I(z1) + I(z2)	
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Informative content (continuation 3)	


Example 1 
  z1 = x + ζ1	
 	


  z2 = x + ζ2	
 	


	
 	
 Errors ζ1 and ζ2 assumed to be centred, to have same variance and correlation coefficient  c. 	

	
 	
 	


I(z1)  =   I(z2)  =  (1/2) (1 + c)	


Example 2	


State vector x evolving in time according to	


x2  =  α x1	
	

 	

Observations are performed at times 1 and 2. Observation errors are assumed centred, uncorrelated and with same 

variance.  Information contents  are then in ratio (1/α  ,  α).  For an unstable system (α  >1),  later  observation 
contains more information (and the opposite for  a stable system).	
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Informative content (continuation 4)	


Subset u1 of analyzed fields, dimu1 = n1. Define relative contribution of subset yk of data to 
accuracy of u1?	


u2 : component of x orthogonal to u1 with respect to Mahalanobis norm associated with Pa 

(analysis errors on u1 and u2 are uncorrelated).	


x = (u1
T, u2

T)T. In basis (u1, u2)	


Pa =
Pa

1 0
0 Pa

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
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Informative content (continuation 5)	


Observation operator Hk decomposes into	


Hk  =  (Hk1 Hk2)	


and expression of estimation error covariance matrix into	


[Pa
1]-1  =   Σk  Hk1

T Sk
-1 Hk1	


[Pa
2]-1  =   Σk  Hk2

T Sk
-1 Hk2	


Same development as before shows that the quantity	


(1/n1) tr(Sk
–1/2 Hk1 Pa

1
 Hk1

T Sk
–1/2)	


is a measure of the relative contribution of subset yk of data to analysis of subset u1 of state vector.	


But can it be computed in practice for large dimension systems (requires the explicit decomposition 	

x = (u1

T, u2
T)T) ?	
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Other possible diagnostics (Desroziers et al., 2006)	


If background and observation errors are assumed to be unbiased and mutually uncorrelated, then	


	
 	
 	
 	
 E(ddT) = HPbHT + R	


If HPbHT invertible, this is equivalent to	


	
 	
 	

	
 	
 	
  E[H(xa-xb)(y-Hxb)T]  = E[H(xa-xb)dT] = HPbHT	


And, if R invertible, to	


	
 	
 	
 E[(y-Hxa)(y-Hxb)T]  = E[(y-Hxa)dT] = R	
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Optimality	


Equation	


xa = xb - E(ζbdT) [E(ddT)]-1 (y - Hxb)	


means that estimation error x - xa is uncorrelated with innovation y - Hxb (if it was not, it would be 
possible to improve on xa by statistical linear estimation).	


Independent unbiased observation	


v  =  Cx + γ	


Fit to analysis	
  v - Cxa =  C(x - xa) + γ	


E[(v - Cxa) dT] = CE[(x - xa) dT] + E(γ dT) 	


First term is 0 if analysis is optimal, second is 0 if observation v is independent from previous data.	


Daley (1992)	
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Conclusions	


  Absolute evaluation of analysis schemes, and comparison between different schemes	


	
 Can  be  evaluated  only  against  independent  unbiased  data  (independence  and  unbiasedness  cannot  be 
objectively checked). Fundamental, but not much to say.	


  Determination of required statistics	


	
 Impossible  to  achieve  in   a  purely  objective  way.  Will  always  require  physical  knowledge,  educated 
guess, interaction with instrumentalists and modelers, and the like.	


	
 Inconsistencies  in  specification  of  statistics  can  be  objectively  diagnosed,  and  can  help  in  improving 
assimilation.	


	
 For  given  error  statistics,  possible  to  quantify  relative  contribution  of  each  subset  of  data  to  analysis  of 
each subset of state vector.	


	
         (and also Generalized Cross-Validation, Adaptive Filtering)	


  Optimality of analysis schemes	


	
 Optimality in the sense of least error variance can be objectively checked against independent unbiased data. 	
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Unknown x to be determined. Belongs to state space S, with dimension n	

Data, belonging to data space D, with dimension m, available in the form	


	
 	
 	
          z = Γx + ζ	


where Γ is a known (mxn)-matrix, rankΓ = n and ζ is ‘error’	


Best Linear Unbiased Estimate (BLUE)	


xa ≡ (Γ T S-1Γ)-1 Γ T S-1 [z - µ] 	
 	


	
 with µ = E(ζ) and S = E[(ζ- E(ζ) (ζ- E(ζ)T]. 	


	
 	

	
 E(xa-x) = 0	
 	
 E[(xa-x) (xa-x)T] ≡ Pa = (Γ T S-1Γ)-1	


Determinacy condition : rankΓ = n. Data contain information, directly or indirectly, on every 
component of state vector x. Requires m ≥ n.	


BLUE is invariant in any change of origin, or in any invertible linear transformation, in either 
data or state space. In particular, it is independent of the choice of a scalar product or 
norm in either of those spaces. BLUE minimizes the quadratic estimation error on any 
component of x. 	
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If error ζ is gaussian, ζ ∼ N [µ, S], BLUE achieves bayesian estimation in the sense that	


 	
 	
 	
 	
 P(x | z) = N [xa, Pa]	


Any assumed probability distribution P(ζ) defines a conditional probability distribution P(x | 
z)  for  x.  In  case  the  distribution  P(ζ)  is  known only  through  its  expectation  µ  and 
covariance matrix S,  the gaussian distribution N [µ,  S] leads for x to the conditional 
probability distribution P(x | z) with the largest entropy. The gaussian choice is in that 
sense the ‘least-committing’ choice.          	


BLUE is the simplest of non-simplicist algorithms.	
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The  BLUE  can  be  obtained  by  minimization  of  the  following  scalar 
objective function, defined on state space X  	


ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]	


And in case of nonlinearity ?	


 z = Γ(x) + ζ	


Variational approach can be heuristically implemented	


ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γ(ξ) - (z-µ)]T S-1  [Γ(ξ) - (z-µ)]	


It works !	
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If data are of the form (after possibly an appropriate transformation)	

 	

	
 	
 	
 xb  =  x  + ζb	
 	

	
 	
 	
 y  =  H(x) + ε	


Transformation 	


	
 	
 	
 xb  =  x  + ζb	
 	

	
 	
 	
 y - H(xb) =  H(x) - H(xb) + ε  ≈ H’(x - xb) + ε    

where H’ is jacobian of H, makes the estimation problem linear in the deviation x – xb 
(tangent linear approximation)	


All algorithms that have been presented in the course, with the exception of 
particle filters, are empirical heuristic extensions of the BLUE approach to 
approximate nonlinear and non-gaussian situations.   	
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Assimilation, which originated from the need of defining initial conditions for numerical weather forecasts, has 
gradually extended to many diverse applications	


•  Oceanography	

•  Palaoclimatology	

•  Atmospheric chemistry (both troposphere and stratosphere)	

•  Oceanic biogeochemistry	

•  Ground hydrology	

•  Terrestrial biosphere and vegetation cover	

•  Glaciology	

•  Magnetism (both planetary and stellar)	

•  Plate tectonics	

•  Planetary atmospheres (Mars, …)	

•  Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)	

•  Identification of source of tracers	

•  Parameter identification	

•  A priori evaluation of anticipated new instruments	

•  Definition of observing systems (Observing Systems Simulation Experiments)	

•  Validation of models	

•  Sensitivity studies (adjoints)	

•  Mathematical studies, independently of direct real life applications	

•  …	


It has now become a major tool of numerical environmental science, and a subject of mathematical study in its 
own right. 



A few of the (many) remaining problems : 

  Observability (what to observe in order to know what we want to know ? Data are noisy, system 
is chaotic !)  

  More accurate identification and quantification of errors affecting data particularly the 
assimilating model (will always require independent hypotheses) 

  Assimilation of images 

  … 
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La Fin du Cours …  
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