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- ‘Optimal Interpolation’. Basic theory and basic 
properties. A simple example.	



-  Best Linear Unbiased Estimator (BLUE). 	



-  How  to  introduce  temporal  dynamics  in 
assimilation  ?  Kalman  Filter.  Theory.  One 
didactic example.	



-  How  to  introduce  nonlinearity  ?  Reduced 
Rank Kalman Filters. Ensemble Kalman Filter	
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Optimal Interpolation 

           x ξ1           
     x ξ3	



   X ξ 
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 x ξ5	



	

 	

 	

 x ξ4	



	

 Observations yj = Φ(ξj) + εj  at points ξj	



	

 Value x = Φ(ξ) at point ξ  ?	
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Optimal Interpolation 
Random field Φ(ξ)	



Observation network ξ1, ξ2, …, ξp	



For one particular realization of the field, observations	



yj = Φ(ξj) + εj   ,  j = 1, …, p        ,	

                making up vector y = (yj)	



Estimate x = Φ(ξ) at given point ξ, in the form	



	

 	

 	

  xa = α + Σj βj yj  = α + βTy	

, 	

 where β = (βj)	



α and the βj’s being determined so as to minimize the expected quadratic 
estimation error E[(x-xa)2]	
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Optimal Interpolation (continued 1) 

	

 E[(x-xa)2] minimum ⇒  E(x-xa) = 0    Estimate xa is unbiased.	



	

 	

 	

  xa = α + Σj βj yj	



	

 	

 	

 E(xa) = α + Σj βj E(yj)  	



	

 	

           xa - E(x) =  Σj βj [yj - E(yj)]	



	

 Computations are to be made on centred variables 	



	

 x’a  ≡  xa  -  E(x)  is  the  linear  combination  of  the  yj’  =  yj  -  E(yj)  that 
minimizes the distance to x’ = x - E(x). It is the orthogonal projection, 
in the sense of covariance, of x’ onto the space spanned by the yj’’s.         	
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Optimal Interpolation (continued 2) 

	

  x’ - x’a uncorrelated with yj’	



	

 	

 	

 E[(x’ – x’a) yj’] = 0	


	

 	

 	

 x’a =  Σk βk yk’ 	



	

 	

     ⇒	

 Σk βk E(yk’ yj’)  = E(x’ yj’)	



in matrix form	

  Cyy β = Cyx	
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Optimal Interpolation (continued 3) 
Solution	


	

 	

 	

   xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]	


	

 	

 	

        = E(x) + Cxy [Cyy]-1 [y - E(y)] 	



	

 	

 i. e.,	

 βT = Cxy [Cyy]-1	


	

 	

        	

 α = E(x) - βTE(y)	



Estimate is unbiased 	

  E(x-xa) = 0	



Minimized quadratic estimation error	



	

 	

 	

  E[(x-xa)2] = E(x’2) - E[(x’a)2] 	


	

 	

 	

                   = Cxx  - Cxy [Cyy]-1 Cyx	



Estimation made in terms of deviations x’ and y’ from expectations E(x) 
and E(y).	
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Optimal Interpolation (continued 4) 
	

 	

 	

 	


	

 	

 	

  xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]	



	

 	

 	

  yj = Φ(ξj) + εj 	



E(yj’yk’) = E {[Φ’(ξj) + εj’][Φ’(ξk) + εk’]}	



	

 If  observation  errors  εj  are  mutually  uncorrelated,  have  common 
variance r, and are uncorrelated with field Φ, then	



	

 	

 	

  E(yj’yk’) = CΦ(ξj, ξk) + rδjk	


	

 and	


 	

 	

 	

  E(x’yj’) = CΦ(ξ, ξj) 	
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Optimal Interpolation (continued 5) 
	

 	

 	

 	



Unique observation (p=1)  	

  y1 = Φ(ξ1) + ε1	



Value x = Φ(ξ) at some point ξ to be estimated	


(all values assumed to be centred)	



	

 	

 	

 Cyy β  = Cyx  	



Cyy = E(y1
2) = CΦ(ξ1, ξ1) + r	

 Cyx  = CΦ(ξ, ξ1)	
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Optimal Interpolation (continued 6) 
	

 	

 	

 	



 	

 	

 	

 	

 	

       	


	

 	

 	

 	

 	

       x y1	
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€ 

xa =Φ a (ξ) =
CΦ (ξ,ξ1)

CΦ (ξ1,ξ1) + r
y1

ξ1	

ξ	





After N. Gustafsson 
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Optimal Interpolation (continued 7) 
	

 	

 	

 	


Two mutually close observations (p=2)  	

 yj = Φ(ξj) + εj    ,  j = 1,2 	



Homogeneous covariance function  CΦ(χ1, χ2) = Γ(χ1- χ2)	



Linear system for weights βj’s  	
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Optimal Interpolation (continued 8) 
	

 	

 	

 	


Two mutually close observations (p=2)  	

 yj = Φ(ξj) + εj    ,  j = 1,2 	



For small δ,	



Sum equals weight that would be given to a unique observation located at 
position d, with error r/2    	
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d 
ξ1	

ξ2	
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2δ	



€ 
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€ 

β1 + β2 =
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Γ(0) + r /2
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Optimal Interpolation (continued 10) 
	

 	

 	

 	



	

 	

 	

  xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	



	

 Vector	


	

 	

 	

 µ = (µj) ≡ [Cyy]-1 [y - E(y)]	



	

 is independent of variable to be estimated	



	

 	

 	

 xa = E(x) + Σj µj  E(x’yj’) 	
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Optimal Interpolation (continued 11) 
	

 	

 	

 	



	

 	

 	

 xa = E(x) + Σj µj  E(x’yj’) 	



	

 	

 	

 Φa(ξ) = E[Φ(ξ)] + Σj µj  E[Φ’(ξ) yj’]	



	

 Under hypotheses made above, E[Φ’(ξ) yj’] = CΦ(ξ, ξj)   	



	

 	

 	

  Φa(ξ) = E[Φ(ξ)] + Σj µj  CΦ(ξ, ξj) 	



	

 Correction  made  on  a  priori  expectation  is  a  linear  combination 
of the p functions CΦ(ξ, ξj)	



	

 CΦ(ξ,  ξj),  considered as  a  function of  estimation position ξ,  is  the 
representer associated with observation yj.	
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Optimal Interpolation (continued 12) 

	

 Univariate  interpolation.  Each  physical  field  (e.  g.  temperature) 
determined from observations of that field only.	



	

 Multivariate  interpolation.  Observations  of  different  physical  fields 
are used simultaneously.  Requires specification of cross-covariances 
between various fields.	



	

 Cross-covariances  between  mass  and  velocity  fields  can  simply  be 
modelled on the basis of geostrophic balance.	



	

 Cross-covariances  between  humidity  and  temperature  (and  other) 
fields still a problem.	
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After N. Gustafsson 22 



After N. Gustafsson 



After A. Lorenc, MWR, 1981 
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After A. Lorenc, MWR, 1981 
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Optimal Interpolation (continued 13) 

Observation vector y	



Estimation of a scalar x	



	

 	

 	

  xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	



	

 	

 	

 pa ≡ E[(x-xa)2] = E(x’2) - E[(x’a)2]) 	


	

 	

 	

 	

   = Cxx  - Cxy [Cyy]-1 Cyx	



Estimation of a vector x	



	

 	

 	

  xa = E(x) + Cxy [Cyy]-1 [y - E(y)] 	



	

 	

 	

 Pa ≡  E[(x-xa) (x-xa)T] = E(x’x’T) - E(x’a x’aT) 	


	

 	

 	

 	

               = Cxx  - Cxy [Cyy]-1 Cyx	
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Optimal Interpolation (continued 14) 

	

 	

 	

  xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	


	

 	

 	

  Pa = Cxx  - Cxy [Cyy]-1 Cyx	



If probability distribution for couple (x, y) is Gaussian (with, 
in particular, covariance matrix	



then Optimal Interpolation achieves Bayesian estimation, in 
the sense that	



	

 	

 	

      P(x | y) = N [xa, Pa]	


€ 

C ≡
Cxx Cxy

Cyx Cyy
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€ 
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Best Linear Unbiased Estimate	



State vector x, belonging to state space S (dimS = n), to be estimated.	


Available data in the form of	



  A ‘background’ estimate  (e.  g.  forecast  from the  past),  belonging  to  state 
space, with dimension n 	



	

 xb  =  x  + ζb	

 	



  An additional set of data (e. g. observations), belonging to observation space, 
with dimension p	



	

 y  =  Hx + ε	



	

 H is known linear observation operator.	



Assume probability distribution is known for  the couple (ζb, ε).	


Assume E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 (not restrictive)	


Set E(ζbζbT) ≡ Pb (also often denoted B), E(εεT) ≡ R 	
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Best Linear Unbiased Estimate (continuation 1)	



	

 xb  =  x  + ζb	

 	

 	

  (1)	


	

 y  =  Hx + ε	

 	

 	

  (2)	



	

 A  probability  distribution  being  known  for  the  couple  (ζb,  ε),  eqs  (1-2) 
define probability distribution for the couple (x, y), with 	



	

 E(x) = xb ,  x’ = x - E(x) = - ζb	



	

 E(y) = Hxb ,  y’ = y - E(y) = y - Hxb = ε - Hζb	

 	

 (H is linear)	



	

 d ≡ y - Hxb is called the innovation vector.	
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Best Linear Unbiased Estimate (continuation 2)	


	

 	

 	

 	


Apply formulæ for Optimal Interpolation for estimating x 	



	

 	

 	

      xa = E(x) + Cxy [Cyy]-1 [y - E(y)] 	


	

 	

 	

      Pa = Cxx - Cxy [Cyy]-1 Cyx	



 	

 E(x) = xb ,  x’ = x - E(x) = - ζb	



	

 E(y) = Hxb ,  y’ = y - E(y) = y - Hxb = ε - Hζb	

 	


	

 	

 	



	

 Cxy = E(x’y’T)  =  E[-ζb(ε - Hζb)T] = - E(ζbεT) + E(ζbζbT)HT = PbHT        	


	

 	

      	

 	

 	

        0	

         Pb	



	

 Cyy = E(y’y’T)  =  E[(ε - Hζb) (ε - Hζb)T] = E(εεT) + HE(ζbζbT)HT	



	

 	

 	

 	

 	

               R	

 Pb	

 	

                 	


	

 	

 	

 Cyy =  R +  HPbHT	
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Best Linear Unbiased Estimate (continuation 3)	



	

 	

 	

 xa = xb + Pb
 HT

 [HPbHT 
 + R]-1 (y - Hxb)	



	

 	

 	

 Pa = Pb
 - Pb

 HT
 [HPbHT 

 + R]-1 HPb	



 	

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.	


	

 	


	

 Equivalent set of formulæ 	


	

 	


	

 	

 	

 xa = xb + Pa

 HT
 R-1 (y - Hxb)	



	

 	

 	

 [Pa]-1 = [Pb]-1
 + HT

 R-1H	



 	

 Vector d ≡  y – Hxb is innovation vector	


	

 Matrix K ≡ Pb

 HT
 [HPbHT 

 + R]-1 = Pa
 HT

 R-1 is gain matrix.	



	

 If  probability  distributions  are  globally  gaussian,  BLUE  achieves  bayesian 
estimation, in the sense that P(x | xb, y) = N [xa, Pa].	
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After A. Lorenc, MWR, 1981 
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Best Linear Unbiased Estimate (continuation 4)	



	

 H can be any linear operator	



	

 Example : (scalar) satellite observation	



	

 	

 	

 x = (x1, …, xn)T  temperature profile	


	

 	

 	

 	


	

 Observation 	

 y = Σi hixi + ε = Hx + ε  	

 ,      H = (h1, …, hn)     ,      E(ε2) = r	


	

 Background	

 xb = (x1

b, …, xn
b)T 	

 ,     error covariance matrix Pb = (pik

b)	



xa = xb + Pb
 HT

 [HPbHT 
 + R]-1 (y - Hxb)	



	

  [HPbHT + R]-1 (y - Hxb) = (y - Σι hιxιb) / (Σikhihk pik
b
 + r) ≡ µ	

	

 scalar !	



•  Pb = pb In	

  xi
a  = xi

b 
 + pb hi µ	



•   Pb = diag(pii
b) 	

 xi

a  = xi
b 

 + pii
b hi µ	



•   General case 	

 xi
a  = xi

b 
 + Σk pik

b hk µ 	

 	



	

 Each  level  i  is  corrected,  not  only  because  of  its  own  contribution  to  the  observation,  but  because  of  the 
contribution of the other levels with which its background error is correlated.	
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Best Linear Unbiased Estimate (continuation 5)	



	

 BLUE  is  invariant  in  any  invertible  linear  change  of 
variables, in either state or observation space.	



	

 Equivalently,  BLUE  is  independent  of  the  possible 
choice of a scalar product in either one of the two spaces.  	
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Best Linear Unbiased Estimate (continuation 6)	



	

 Variational form of the BLUE	



	

  BLUE xa minimizes following scalar objective function, defined on state space	



	

 ξ ∈ S  →	



•      J(ξ) ≡  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)	



  ≡ 	

         Jb                    + 	

                     Jo	



	

 	

 	

 	

 Pa =  [∂2J/∂ξ2]-1	

 	

 (inverse Hessian)	



	

 	

 	

 	

 ‘3D-Var’ 	

 	



	

 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	


	

 	


	

 Used operationally in USA, Australia, China, …	
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 Question.  How  to  introduce  temporal  dimension  in 
estimation process ?	



  Logic of Optimal Interpolation and of BLUE can be extended to time 
dimension.	



  But we know much more than just temporal correlations. We know 
explicit dynamics.	



	

 Real  (unknown)  state  vector  at  time  k  (in  format  of  assimilating  model)  xk.  Belongs 
to state space S (dimS = n)	



	

 Evolution equation	



 xk+1 = Mk(xk) + ηk  

  Mk is (known) model, ηk is (unknown) model error	
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Sequential Assimilation	



•  Assimilating model is integrated over period of time over which observations 
are available. Whenever model time reaches an instant at which observations 
are available, state predicted by the model is updated with new observations. 
In the jargon of the trade, Optimal Interpolation designates an algorithm for 
sequential assimilation in which the matrix Pb is constant with time, and 3D-
Var an algorithm in which, in addition, the analysis xa is obtained through a 
variational algorithm.   	



Variational Assimilation	



•  Assimilating  model  is  globally  adjusted  to  observations  distributed  over 
observation  period.  Achieved  by  minimization  of  an  appropriate  scalar 
objective function measuring misfit between data and sequence of model states 
to be estimated.	
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Sequential Assimilation	



	

 Optimal Interpolation	


  
  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	


	

 	


  Evolution equation	



 xk+1 = Mk (xk) + ηk    k = 0, …, K-1	
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 Optimal Interpolation (2)	


	

 	


	

 At  time  k,  background  xb

k  and  associated  error  covariance  matrix  Pb  known, 
assumed to be independent of k.	



  Analysis step	



	

  xa
k = xb

k + Pb
 Hk

T
 [HkPbHk

T 
 + Rk]-1 (yk - Hkxb

k)	



	

 In  3D-Var,  xa
k  is  obtained  by  (iterative)  minimization  of  associated 

objective function  	



•  Forecast step 

  xb
k+1 =  Mk( xa

k)	
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Sequential Assimilation.  Kalman Filter  	


  
  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	


	

 	

 	

 	


  Evolution equation	



 xk+1 = Mkxk + ηk    k = 0, …, K-1	


 E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj 	



	

 Mk linear	



	

  	

 	

  

  E(ηkεj
T) = 0  (errors uncorrelated in time) 
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 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1Hk Pb
k	



  Forecast step (Mk linear) 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = E[(xb

k+1 - xk+1)(xb
k+1 - xk+1)T] = E[(Mk xa

k - Mkxk - ηk)(Mk xa
k - Mkxk - ηk)T] 	



	

          =  Mk E[(xa
k - xk)(xa

k - xk)T]Mk
T	



	

 	

     - E[ηk (xa
k - xk)T] Mk

T - MkE[(xa
k - xk)ηk

T]  + E[ηkηk
T] 	



	

 	

 = Mk Pa
k Mk

T + Qk  
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 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1Hk Pb
k	



  Forecast step 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = Mk Pa

k Mk
T + Qk  

	

 Kalman filter (KF, Kalman, 1960)	



	

 Must be started from some initial estimate (xb
0, Pb

0)	
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 If  all  operators  are  linear,  and  if  errors  are  uncorrelated  in  time, 
Kalman filter produces at time k the BLUE xb

k (resp. xa
k) of the real 

state xk from all data prior to (resp. up to) time k, plus the associated 
estimation error covariance matrix Pb

k (resp. Pa
k).	



	

 If  in  addition  errors  are  globally  gaussian,  the  corresponding 
conditional  probability  distributions  are  the  respective  gaussian 
distributions N [xb

k, Pb
k] and N [xa

k, Pa
k].	
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 Kalman filter. A simple example (Ghil et al.)	



	

 Shallow-water equations (aka équations de Saint-Venant)	



	

 	



  

	

 Periodic domain D. Equations conserve energy 
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€ 

€ 

∂U
∂t

+ grad(ϕ +
1
2

U 2 )+ k ∧( f +ζ )U =  0

€ 

∂ϕ
∂t

+ div(ϕU ) =  0

€ € 

€ 

E ≡ 1
2

(ϕ 2

D
∫ +ϕU 2 )dS



	

 Equations linearized in the vicinity of state of rest	


	

 (ϕ = Φ0, U = 0)	



	

 	



  

	

 	



	

 Conserve quadratic energy 
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€ € € € 

€ 

∂ϕ
∂t

+Φ0divU = 0

€ 

∂U
∂t

+ gradϕ + k ∧ fU = 0

€ 

€ 

E ≡ 1
2

(ϕ 2

D
∫ +Φ0U

2 )dS



	

 Unidimensional domain	



	

 	



  

	

 	

 ‘Ocean’	

 	

 	

 ‘Continent’	


	

 	

 (no observation)	

 	

 	

 (observations) 
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M. Ghil et al. 49 



M. Ghil et al. 
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 Uncertainty evolves in time under the effct of	



	

 - Introduction of observations (decreases uncertainty)	



	

 - Model error (increases uncertainty)	



	

 -  Dynamics  of  the  system  (increases  or  decreases  uncertainty 
depending on stability of the state of the system) (dynamics is neutral 
in previous example)	
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 Nonlinearities ?	



	

 Linearity of observation and model operators have been explicitly used in	



	

 d ≡ y - Hxb = Hx + ε  - Hxb  = H(x - xb) + ε = - Hζb + ε	



	

 Mk xa
k - Mkxk = Mk(xa

k – xk)  	



	

     	


	

 If H nonlinear, and x – xb  small	


	

 H(x) – H(xb) ≈ H’(x - xb)	


	

 where H’ is Jacobian matrix of H (matrix of partial derivatives) at point xb	



	

 Similarly, if Mk nonlinear, and xa
k – xk small	



	

 Mk (xa
k) – Mk(x)  = Mk’(xa

k – xk)	


	

 where Mk’ is Jacobian matrix of Mk at point xa

k                     	



 Tangent Linear Approximation 
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 Nonlinearities ?	



	

 Model is usually nonlinear, and observation operators (satellite observations) tend more and more 
to be nonlinear.	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 [yk - Hk(xb
k)]	



	

  Pa
k = Pb

k - Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 Hk’ Pb
k	



  Forecast step 

  xb
k+1 =  Mk(xa

k)	


	

  Pb

k+1 = Mk’ Pa
k Mk’T + Qk  

	

 Extended Kalman Filter (EKF, heuristic !)	
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 Costliest part of computation	


	

 	

 	

 	


	

 	

 Pb

k+1 = Mk Pa
k Mk

T + Qk  

	

 Multiplication  of  one  vector  by  Mk  =  one  integration  of  the  model 
between times k and k+1	



	

 Computation of Mk Pa
k Mk

T  ≈ 2n integrations of the model 	



	

 Need  for  determining  the  temporal  evolution  of  the 
uncertainty on the state of the system is the major difficulty 
in  assimilation  of  meteorological  and  oceanographical 
observations	
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Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral 
truncation T21, unit m. After F. Bouttier)	
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Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 56 



Two solutions :	



• Low-rank filters	


   Use low-rank covariance matrix, restricted to modes 

in  state  space  on  which  it  is  known,  or  at  least 
assumed,  that  a  large  part  of  the  uncertainty  is 
concentrated (this requires the definition of a norm 
on state space).	



 Reduced  Rank  Square  Root  Filters  (RRSQRT, 
Heemink)	



 Singular Evolutive Extended Kalman Filter (SEEK, 
Pham)	


	

 ….	
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Reduced Rank Square Root Kalman Filter (RRSQRT, Verlaan and Heemink, 
1997)	



A covariance matrix P can be written as 	



P = S ST	



where  the  column  vectors  of  S  are  the  (orthogonal)  principal  components 
(eigenvectors)  of  P  (the  modulus  of  each  vector  is  the  square  root  of  the 
associated eigenvalue).	



The principle of RRSQRT is to restrict the background error covariance matrix Pb 

to r « n principal components, thereby approximating Pb by (the time index k is 
dropped)	



Pb ≈ Sb SbT	



where Sb has dimensions n x r.	
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RRSQRT (continuation 1)	



Setting Ψ  ≡  (HSb)T, the gain matrix of the Kalman filter and the analysis error 
covariance matrix respectively become   	



K = Sb Ψ (ΨTΨ + R)-1	



and	



Pa = Sa SaT	



with	



Sa = Sb [Ir - Ψ (ΨTΨ + R)-1ΨT] 1/2	
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RRSQRT (continuation 2)	



In the prediction phase, the column vectors of Sa are evolved by the tangent linear 
model (an evolution of a perturbed state by the full model is also possible). If a 
model error is to be introduced, that is done by reducing the order r of Sa to r-
q, and introducing q new column vectors meant to represent the model error.	



Orthogonality  of  the  column  vectors  is  lost  in  the  prediction,  and  has  to  be 
reestablished. And, even if process is started from dominant column vectors, 
that dominance may of course be lost.	



Advantages  :  in  addition  to  reduced  computational  cost,  numerical  errors  are 
smaller when dealing with square root covariance matrices, as done here, than 
with full matrices (better conditioning).    	
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Singular Evolutive Extended Kalman Filter (SEEK, Pham, 1996)	



Based on the fact that, because of the linearity of Kalman Filter, the rank of the 
covariance matrix Pa

 or Pb cannot increase in either the update or the model 
evolution. SEEK performs a linear filter starting from a low rank Pb

0, and so 
runs the exact Kalman filter in the case of a perfect model. The algorithmic 
implementation  takes  advantage  of  the  rank-deficiency  of  the  covariance 
matrix. The rank of the latter is conserved (or decreased), but the subspace 
spanned by the directions with non-zero error evolves, in both the update and 
the dynamic evolution.	



In case model error is present, corresponding covariance matrix Qk is projected 
onto the directions with non-zero error (this is of course an approximation).        
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Singular Evolutive Interpolated Kalman Filter (SEIK, Pham, 2001)	



Non-trivial extension of SEEK to nonlinear model or observation operators. Rank 
deficiency is now forced.	
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Second solution :	



•  Ensemble filters	


 	

 Uncertainty is represented, not by a covariance matrix, but by 

an ensemble of point estimates in state space that are meant to 
sample the conditional probability distribution for the state of 
the system (dimension L  ≈ O(10-100)).	



	

 Ensemble  is  evolved  in  time  through  the  full  model,  which 
eliminates any need for linear hypothesis as to the temporal 
evolution.	



	

 Ensemble Kalman Filter (EnKF, Evensen, Anderson, …)	
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How to update predicted ensemble with new observations ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time : y = Hx + ε	



•  Gaussian approach	


 	

 	


	

 Produce sample of probability distribution for real observed quantity Hx 	


	

 yl = y - εl 

	

 where εl is distributed according to probability distribution for observation error ε.   	

 	



	

 Then use Kalman formula to produce sample of ‘analysed’ states	



	

 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 l = 1, …, L	

	

 (2)	



	

 where Pb
 is the sample covariance matrix of predicted ensemble {xb

l}.	



	

 Remark.  In  case  of  Gaussian  errors,  if  Pb  was  exact  covariance  matrix  of 
background error, (2) would achieve Bayesian estimation, in the sense that {xa

l} 
would be a sample of conditional probability distribution for x, given all data up to 
time k.	
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C. Snyder 65 



⎯  EnKF   ⎯ 3DVar (prior, solid; posterior, dotted) 

Prior  

posterior 

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 
analysis in terms of root-mean square difference averaged over the entire month  

Month-long Performance of EnKF vs. 3Dvar with WRF 

(Meng and Zhang 2007c, MWR, in review ) 
66 



The case of a nonlinear observation operator ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time :   y = H(x) + ε  	

    H nonlinear	



Two possibilities	



1. Take tangent linear approximation (as in Extended KF) and introduce jacobian H’ 	



2. Come back to original formula	



xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	



That  formula does not  require  any other  link between x and y  than the one defined by the 
covariances matrices Cxy and Cyy.	



Here, as shown on the occasion of the derivation of the BLUE, E(x) is the backgound xb, and y - 
E(y) is the innovation y – H(xb)   	



Solution. Compute Cxy and Cyy as sample covariances matrices of the ensembles {xb
l} and {yl - 

H(xb
l)}, where the yl’s  are, as before, the perturbed observations yl = y - εl.     	
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But problems	



- Collapse of ensemble for small ensemble size (less than a few hundred). Collapse originates in 
the fact that gain matrix Pb

 HT
 [HPbHT 

 + R]-1 is nonlinear wrt background error matrix Pb, 
resulting in a systematic sampling effect. Solution : empirical ‘covariance inflation’.	



-  Spurious  correlations  appear  at  large  geographical  distances.  Empirical  ‘localization’ (see 
Gaspari and Cohn, 1999, Q. J. R. Meteorol. Soc.)	



-  In formula	



	

 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 	

 l = 1, …, L	

	



Pb, which is covariance matrix of an L-size ensemble, has rank L-1 at most. This means that 
corrections made on ensemble elements are contained in a subspace with dimension L-1. 
Obviously very restrictive if L « p , L « n.	
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Cours à venir	



 Vendredi 26 mars 
 Vendredi 2 avril 
 Vendredi 9 avril 
 Vendredi 16 avril 
 Vendredi 7 mai 
 Vendredi 14 mai 
 Vendredi 21 mai 
 Vendredi 28 mai	




