École Doctorale des Sciences de l'Environnement d'Île-de-France
Année Universitaire 2020-2021

Modélisation Numérique de l'Écoulement Atmosphérique et Assimilation de Données

Olivier Talagrand
Cours 5

7 Mai 2021

- Kalman Filter. Continuation
- Ensemble Kalman Filter.
- Kalman Smoother. Brief theory. An example.
- Variational assimilation. Principle. The adjoint approach. Results

Sequential Assimilation. Kalman Filter

- System evolves in time according to equation

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}=\boldsymbol{M}_{k} \boldsymbol{x}_{k}+\boldsymbol{\eta}_{k} \\
& E\left(\boldsymbol{\eta}_{k}\right)=0 ; E\left(\boldsymbol{\eta}_{k} \boldsymbol{\eta}_{j}^{\mathrm{T}}\right)=\boldsymbol{Q}_{k} \delta_{k j} \\
& \boldsymbol{M}_{k} \text { linear }
\end{aligned}
$$

- Observation vector at time k

$$
\begin{aligned}
& \boldsymbol{y}_{k}=\boldsymbol{H}_{k} \boldsymbol{x}_{k}+\boldsymbol{\varepsilon}_{k} \\
& E\left(\boldsymbol{\varepsilon}_{k}\right)=0 ; E\left(\varepsilon_{k} \varepsilon_{j}^{\mathrm{T}}\right)=\boldsymbol{R}_{k} \delta_{k j} \\
& \boldsymbol{H}_{k} \text { linear }
\end{aligned}
$$

$$
k=0, \ldots, K
$$

- $E\left(\boldsymbol{\eta}_{k} \varepsilon_{j}^{\mathrm{T}}\right)=0$ (errors uncorrelated in time)

At time k, background $\boldsymbol{x}^{b}{ }_{k}$ and associated error covariance matrix $\boldsymbol{P}^{b}{ }_{k}$ known

- Analysis step

$$
\begin{aligned}
& \boldsymbol{x}^{a}{ }_{k}=\boldsymbol{x}^{b}{ }_{k}+\boldsymbol{P}^{b}{ }_{k} \boldsymbol{H}_{k}^{\mathrm{T}}\left[\boldsymbol{H}_{k} \boldsymbol{P}^{b}{ }_{k} \boldsymbol{H}_{k}^{\mathrm{T}}+\boldsymbol{R}_{k}\right]^{-1}\left(\boldsymbol{y}_{k}-\boldsymbol{H}_{k} \boldsymbol{x}^{b}{ }_{k}\right) \\
& \boldsymbol{P}^{a}{ }_{k}=\boldsymbol{P}^{b}{ }_{k}-\boldsymbol{P}^{b}{ }_{k} \boldsymbol{H}_{k}^{\mathrm{T}}\left[\boldsymbol{H}_{k} \boldsymbol{P}^{b}{ }_{k} \boldsymbol{H}_{k}^{\mathrm{T}}+\boldsymbol{R}_{k}\right]^{-1} \boldsymbol{H}_{k} \boldsymbol{P}^{b}{ }_{k}
\end{aligned}
$$

- Forecast step

$$
\begin{aligned}
\boldsymbol{x}^{b}{ }_{k+1} & =\boldsymbol{M}_{k} \boldsymbol{x}^{a}{ }_{k} \\
\boldsymbol{P}^{b}{ }_{k+1} & =\boldsymbol{M}_{k} \boldsymbol{P}^{a}{ }_{k} \boldsymbol{M}_{k}^{\mathrm{T}}+\boldsymbol{Q}_{k}
\end{aligned}
$$

Kalman filter (KF, Kalman, 1960)

Must be started from some initial estimate $\left(\boldsymbol{x}^{b}{ }_{0}, \boldsymbol{P}^{b}{ }_{0}\right)$

If all operators are linear, and if errors are uncorrelated in time, Kalman filter produces at time k the BLUE $x^{b}{ }_{k}\left(\right.$ resp. $\boldsymbol{x}^{a}{ }_{k}$) of the real state \boldsymbol{x}_{k} from all data prior to (resp. up to) time k, plus the associated estimation error covariance matrix $\boldsymbol{P}^{b}{ }_{k}\left(\right.$ resp. $\left.\boldsymbol{P}^{a}{ }_{k}\right)$.

If in addition errors are globally gaussian, the corresponding conditional probability distributions are the respective gaussian distributions $\mathcal{N}\left[x^{b}{ }_{k}, \boldsymbol{P}^{b}{ }_{k}\right]$ and $\mathcal{N}\left[\boldsymbol{x}^{a}{ }_{k}, \boldsymbol{P}^{a}{ }_{k}\right]$.

Kalman filter. A simple example (Ghil et al.)
Shallow-water equations (aka équations de Saint-Venant)

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial t}+\operatorname{div}(\varphi \boldsymbol{U})=0 \\
& \frac{\partial \boldsymbol{U}}{\partial \boldsymbol{t}}+\operatorname{grad}\left(\varphi+\frac{1}{2} \boldsymbol{U}^{2}\right)+k \wedge(f+\zeta) \boldsymbol{U}=0
\end{aligned}
$$

Periodic domain D. Equations conserve energy

$$
E \equiv \frac{1}{2} \int_{D}\left(\varphi^{2}+\varphi U^{2}\right) d S
$$

Equations linearized in the vicinity of state of rest ($\varphi=\Phi_{0}, \boldsymbol{U}=0$)

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial t}+\boldsymbol{\Phi}_{0} \operatorname{div} \boldsymbol{U}=0 \\
& \frac{\partial \boldsymbol{U}}{\partial t}+\operatorname{grad} \varphi+k \wedge f \boldsymbol{U}=0
\end{aligned}
$$

Conserve quadratic energy

$$
E \equiv \frac{1}{2} \int_{D}\left(\varphi^{2}+\Phi_{0} U^{2}\right) d S
$$

Unidimensional domain

$$
1 / 1 / 111
$$

‘Ocean’

(no observation)
'Continent'
(observations)

गHe umy

Fig. 2

The components of the total expected rms error (Erns), (trace: $\left.P_{k}\right)^{1 / 2}$, In the estimation of solutions to the stochastic-dynamic system ${ }^{k}(\mathbb{Q}, \mathrm{H})$, -1th \ddagger given by (3.6) and $H=(I 0)$. System noise is absent, $Q=0$. The filter used is the standard $K-B$ iliter (2.11) for the nodel.
a) Erma over Iand; b) Erns over the ocean; e) Eras over the entire L-domain

In each one of the figures, each curve represents one component of the total Erms error. The curves lnbelled t, V, and P represent the u component, \checkmark component and $\hat{\phi}$ component, respectively. They are found by sunning the dingonal elements of P_{k} which correspond to u, v, and ϕ, respectively, dividing by the number of terms in the sum, and then taking the square root. In a) the summation extends over land points only, in b) over ocean points only, and in c) over the entire L-domain. The vertical axis is scaled in such a wry that 1.0 corresponds to an Erms error of $v_{m a x}$ for the U and V curves, and of ϕ_{0} for the P curve. The observational error level is 0.089 for the U and V curves, and 0.080 for the P curve. The curves labelled T represent the total Frms error over esch region. Each T curve is a weighted nverage of the correspronding U, V, and P curves, with the weights chosen in such a way that the T curve measures the error in the total energy $u^{2}+v^{2}+\phi^{2} / 4$, conserved by the systen $(3,1)$. The observational noise level for the T curve ia then 0.088 . Notice the imnediate error decrease over land and the gradual decrease over the ocean. The total estimation error tends to sero.

M. Ghil et al.

Fig. 6 This figure and the following ones show the properties of the estinated algoritha (2.11) in the presence of system noise, $Q \neq 0$. This ifgure gives the Erms estimation error, and is homologous to Fig. 2. Notice the sharper increase of error over land between synoptic times, and the convergence of each curve to a periodic, nonzero function.

Uncertainty evolves in time under the effect of

- Introduction of observations (decreases uncertainty)
- Model error (increases uncertainty)
- Dynamics of the system (increases or decreases uncertainty depending on stability of the state of the system) (dynamics is neutral in previous example)

Nonlinearities?

Linearity of observation and model operators have been explicitly used in
$d \equiv \boldsymbol{y}-\boldsymbol{H} x^{b}=\boldsymbol{H} x+\varepsilon-\boldsymbol{H} x^{b}=\boldsymbol{H}\left(\boldsymbol{x}-\boldsymbol{x}^{b}\right)+\varepsilon=-\boldsymbol{H} \xi^{b}+\varepsilon$
$\boldsymbol{M}_{k} \boldsymbol{x}^{a}{ }_{k}-\boldsymbol{M}_{k} \boldsymbol{x}_{k}=\boldsymbol{M}_{k}\left(\boldsymbol{x}^{a}{ }_{k}-\boldsymbol{x}_{k}\right)$

If \boldsymbol{H} nonlinear, and $\boldsymbol{x}-\boldsymbol{x}^{b}$ small
$\boldsymbol{H}(\boldsymbol{x})-\boldsymbol{H}\left(\boldsymbol{x}^{b}\right) \approx \boldsymbol{H}^{\prime}\left(\boldsymbol{x}-\boldsymbol{x}^{b}\right)$
where \boldsymbol{H}^{\prime} is Jacobian matrix of \boldsymbol{H} (matrix of partial derivatives) at point \boldsymbol{x}^{b}

Similarly, if \boldsymbol{M}_{k} nonlinear, and $\boldsymbol{x}^{a}{ }_{k}-\boldsymbol{x}_{k}$ small
$\boldsymbol{M}_{k}\left(\boldsymbol{x}^{a}{ }_{k}\right)-\boldsymbol{M}_{k}(\boldsymbol{x}) \approx \boldsymbol{M}_{k}{ }^{\prime}\left(\boldsymbol{x}^{a}{ }_{k}-\boldsymbol{x}_{k}\right)$
where $\boldsymbol{M}_{k}{ }^{\prime}$ is Jacobian matrix of \boldsymbol{M}_{k} at point $\boldsymbol{x}^{a}{ }_{k}$

Tangent Linear Approximation

Nonlinearities?

Model is usually nonlinear, and observation operators (satellite observations) tend more and more to be nonlinear.

- Analysis step

$$
\begin{aligned}
& \boldsymbol{x}^{a}{ }_{k}=\boldsymbol{x}^{b}{ }_{k}+\boldsymbol{P}^{b}{ }_{k} \boldsymbol{H}_{k}{ }^{\mathrm{T}}\left[\boldsymbol{H}_{k}{ }^{\prime} \boldsymbol{P}^{b}{ }_{k} \boldsymbol{H}_{k}{ }^{\mathrm{T}}+\boldsymbol{R}_{k}\right]^{-1}\left[\boldsymbol{y}_{k}-\boldsymbol{H}_{k}\left(\boldsymbol{x}^{b}{ }_{k}\right)\right] \\
& \boldsymbol{P}^{a}{ }_{k}=\boldsymbol{P}^{b}{ }_{k}-\boldsymbol{P}^{b}{ }_{k} \boldsymbol{H}_{k}{ }^{\prime \mathrm{T}}\left[\boldsymbol{H}_{k}{ }^{\prime} \boldsymbol{P}^{b}{ }_{k} \boldsymbol{H}_{k}{ }^{\prime \mathrm{T}}+\boldsymbol{R}_{k}\right]^{-1} \boldsymbol{H}_{k}{ }^{\prime} \boldsymbol{P}^{b}{ }_{k}
\end{aligned}
$$

- Forecast step

$$
\begin{aligned}
& \boldsymbol{x}^{b}{ }_{k+1}=\boldsymbol{M}_{k}\left(\boldsymbol{x}^{a}{ }_{k}\right) \\
& \boldsymbol{P}^{b}{ }_{k+1}=\boldsymbol{M}_{k} \cdot \\
& \boldsymbol{P}^{a}{ }_{k} \boldsymbol{M}_{k}{ }^{\mathrm{T}}+\boldsymbol{Q}_{k}
\end{aligned}
$$

Extended Kalman Filter (EKF, heuristic !)

Costliest part of computation

$$
\boldsymbol{P}^{b}{ }_{k+1}=\boldsymbol{M}_{k} \boldsymbol{P}^{a}{ }_{k} \boldsymbol{M}_{k}^{\mathrm{T}}+\boldsymbol{Q}_{k}
$$

Multiplication of one vector by $\boldsymbol{M}_{k}=$ one integration of the model between times k and $k+1$
Computation of $\boldsymbol{M}_{k} \boldsymbol{P}^{a}{ }_{k} \boldsymbol{M}_{k}{ }^{\mathrm{T}} \approx 2 n$ integrations of the model

Need for determining the temporal evolution of the uncertainty on the state of the system is the major difficulty in assimilation of meteorological and oceanographical observations

Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral truncation T21, unit m. After F. Bouttier)

Temporal evolution of the $500-\mathrm{hPa}$ geopotential autocorrelation with respect to point located at 45 N , 35 W . From top to bottom: initial time, 6 - and 24 -hour range.

Two solutions :

- Low-rank filters

Use low-rank covariance matrix, restricted to modes in state space on which it is known, or at least assumed, that a large part of the uncertainty is concentrated (this requires the definition of a norm on state space).

Reduced Rank Square Root Filters (RRSQRT, Heemink)
Singular Evolutive Extended Kalman Filter (SEEK, Pham)

Reduced Rank Square Root Kalman Filter (RRSQRT, Verlaan and Heemink, 1997)

A covariance matrix P can be written as

$$
P=S S^{\mathrm{T}}
$$

where the column vectors of S are the (orthogonal) principal components (eigenvectors) of P (the modulus of each vector is the square root of the associated eigenvalue).

The principle of RRSQRT is to restrict the background error covariance matrix P^{b} to $r<n$ principal components, thereby approximating P^{b} by (the time index k is dropped)

$$
P^{b} \approx S^{b} S^{b \mathrm{~T}}
$$

where S^{b} has dimensions $n \mathrm{x} r$.

RRSQRT (continuation 1)

Setting $\Psi \equiv\left(H S^{b}\right)^{\mathrm{T}}$, the gain matrix of the Kalman filter and the analysis error covariance matrix respectively become

$$
K=S^{b} \Psi\left(\Psi^{\Gamma} \Psi+R\right)^{-1}
$$

and

$$
P^{a}=S^{a} S^{a \mathrm{~T}}
$$

with

$$
S^{a}=S^{b}\left[I_{r}-\Psi\left(\Psi^{\top} \Psi+R\right)^{-1} \Psi^{\top}\right]^{1 / 2}
$$

RRSQRT (continuation 2)

In the prediction phase, the column vectors of S^{a} are evolved by the tangent linear model (an evolution of a perturbed state by the full model is also possible). If a model error is to be introduced, that is done by reducing the order r of S^{a} to r q, and introducing q new column vectors meant to represent the model error.

Orthogonality of the column vectors is lost in the prediction, and has to be reestablished. And, even if process is started from dominant column vectors, that dominance may of course be lost.

Advantages : in addition to reduced computational cost, numerical errors are smaller when dealing with square root covariance matrices, as done here, than with full matrices (better conditioning).

Singular Evolutive Extended Kalman Filter (SEEK, Pham, 1996)

Based on the fact that, because of the linearity of Kalman Filter, the rank of the covariance matrix P^{a} or P^{b} cannot increase in either the update or the model evolution. SEEK performs a linear filter starting from a low rank $P^{b}{ }_{0}$, and so runs the exact Kalman filter in the case of a perfect model. The algorithmic implementation takes advantage of the rank-deficiency of the covariance matrix. The rank of the latter is conserved (or decreased), but the subspace spanned by the directions with non-zero error evolves, in both the update and the dynamic evolution.

In case model error is present, corresponding covariance matrix Q_{k} is projected onto the directions with non-zero error (this is of course an approximation).

Singular Evolutive Interpolated Kalman Filter (SEIK, Pham, 2001)

Non-trivial extension of SEEK to nonlinear model or observation operators. Rank deficiency is now forced.

Second solution :

- Ensemble filters

Uncertainty is represented, not by a covariance matrix, but by an ensemble of point estimates in state space that are meant to sample the conditional probability distribution for the state of the system (dimension $L \approx O(10-100)$).
Ensemble is evolved in time through the full model, which eliminates any need for linear hypothesis as to the temporal evolution.

Ensemble Kalman Filter (EnKF, Evensen, Anderson, ...)

How to update predicted ensemble with new observations?

Predicted ensemble at time $k:\left\{x^{b}{ }_{l}\right\}, \quad l=1, \ldots, L$
Observation vector at same time : $\boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{\varepsilon}$

- Gaussian approach

Produce sample of probability distribution for real observed quantity $\boldsymbol{H x}$
$y_{l}=\boldsymbol{y}-\varepsilon_{l}$
where ε_{l} is distributed according to probability distribution for observation error ε.

Then use Kalman formula to produce sample of 'analysed' states
$\boldsymbol{x}^{a}{ }_{l}=\boldsymbol{x}^{b}{ }_{l}+\boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}\left[\boldsymbol{H} \boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}+\boldsymbol{R}\right]^{-1}\left(\boldsymbol{y}_{l}-\boldsymbol{H} \boldsymbol{x}^{b}{ }_{l}\right), \quad l=1, \ldots, L$
where \boldsymbol{P}^{b} is the sample covariance matrix of predicted ensemble $\left\{\boldsymbol{x}^{b}{ }_{l}\right\}$.

Remark. In case of Gaussian errors, if \boldsymbol{P}^{b} was exact covariance matrix of background error, (2) would achieve Bayesian estimation, in the sense that $\left\{\boldsymbol{x}^{a}{ }_{l}\right\}$ would be a sample of conditional probability distribution for \boldsymbol{x}, given all data up to time k.

Month-long Performance of EnKF vs. 3Dvar with WRF

- EnKF - 3DVar (prior, solid; posterior, dotted)

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior analysis in terms of root-mean square difference averaged over the entire month
(Meng and Zhang 2007c, MWR, in review)

The case of a nonlinear observation operator ?

Predicted ensemble at time $k:\left\{x^{b}{ }_{l}\right\}, \quad l=1, \ldots, L$
Observation vector at same time : $\boldsymbol{y}=\boldsymbol{H}(\boldsymbol{x})+\boldsymbol{\varepsilon} \quad \boldsymbol{H}$ nonlinear

Two possibilities

1. Take tangent linear approximation (as in Extended KF) and introduce jacobian \boldsymbol{H}^{\prime}
2. Come back to original formula

$$
\boldsymbol{x}^{a}=E(\boldsymbol{x})+\boldsymbol{C}_{x y}\left[\boldsymbol{C}_{y y}\right]^{-1}[\boldsymbol{y}-E(\boldsymbol{y})]
$$

That formula does not require any other link between \boldsymbol{x} and \boldsymbol{y} than the one defined by the covariances matrices $\boldsymbol{C}_{x y}$ and $\boldsymbol{C}_{y y}$.

Here, as shown on the occasion of the derivation of the $B L U E, E(x)$ is the backgound \boldsymbol{x}^{b}, and \boldsymbol{y} $E(\boldsymbol{y})$ is the innovation $\boldsymbol{y}-\boldsymbol{H}\left(\boldsymbol{x}^{b}\right)$

Solution. Compute $\boldsymbol{C}_{x y}$ and $\boldsymbol{C}_{y y}$ as sample covariances matrices of the ensembles $\left\{x^{b}{ }_{l}\right\}$ and $\left\{\boldsymbol{y}_{l}-\right.$ $\left.\boldsymbol{H}\left(\boldsymbol{x}_{l}^{b}\right)\right\}$, where the \boldsymbol{y}_{l} 's are, as before, the perturbed observations $\boldsymbol{y}_{l}=\boldsymbol{y}-\boldsymbol{\varepsilon}_{l}$.

But problems

- Collapse of ensemble for small ensemble size (less than a few hundred). Collapse originates in the fact that gain matrix $\boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}\left[\boldsymbol{H} \boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}+\boldsymbol{R}\right]^{-1}$ is nonlinear wrt background error matrix P^{b}, resulting in a systematic sampling effect. Solution : empirical 'covariance inflation'.
- Spurious correlations appear at large geographical distances. Empirical 'localization’ (see Gaspari and Cohn, 1999, Q.J.R.Meteorol. Soc.)
- In formula

$$
\boldsymbol{x}^{a}{ }_{l}=\boldsymbol{x}^{b}{ }_{l}+\boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}\left[\boldsymbol{H} \boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}+\boldsymbol{R}\right]^{-1}\left(\boldsymbol{y}_{l}-\boldsymbol{H} \boldsymbol{x}^{b}{ }_{l}\right), \quad l=1, \ldots, L
$$

\boldsymbol{P}^{b}, which is covariance matrix of an L-size ensemble, has rank $L-1$ at most. This means that corrections made on ensemble elements are contained in a subspace with dimension $L-1$. Obviously very restrictive if $L \ll p, L \ll n$.

Houtekamer and Mitchell (1998) use two ensembles, the elements of each of which are updated with covariance matrix of other ensemble.

There exist many variants of Ensemble Kalman Filter

Ensemble Transform Kalman Filter (ETKF , Bishop et al., Mon. Wea. Rev., 2001)

Requires a prior 'control' analysis $x_{c}{ }^{a}$, emanating from a background $x_{c}{ }^{b}$. An ensemble is evolved about that control without explicit use of the observations (and without feedback to control)

More precisely, define $L x L$ matrix T such that, given $P^{b}=Z Z^{\mathrm{T}}$, then $P^{a}=Z T T^{\mathrm{T}} Z^{\mathrm{T}}$ (not trivial, but possible). Then the background deviations $x^{b}{ }_{l}-x_{c}{ }^{b}$ are transformed through $Z \rightarrow Z T$ into an ensemble of analysis deviations $x^{a}{ }_{l}-x_{c}{ }^{a}$.
(does not avoid collapse of ensembles)

Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., Physica D, 2007)

Each gridpoint is corrected only through the use of neighbouring observations.

Other variants of Ensemble Kalman Filter
'Unscented' Kalman Filter (Wan and van der Merve, 2001, Wiley Publishing)

Weighted Kalman Filter (Papadakis et al., 2010, Tellus A)

Inflation-free Ensemble Kalman Filters (Bocquet and Sakov, 2012, Nonlin. Processes Geophys.)

An iterative ensemble Kalman filter in the presence of additive model error (Sakov et al., 2017, Q.J.R. Meteorol. Soc.)

Bayesian properties of Ensemble Kalman Filter?

Very little is known.

Le Gland et al. (2011). In the linear and gaussian case, the discrete pdf defined by the filter, in the limit of infinite sample size L, tends to the bayesian gaussian pdf.

No result for finite size (note that ensemble elements are not mutually independent)

In the nonlinear case, the discrete pdf tends to a limit which is in general not the bayesian pdf.

Situation still not entirely clear

Time-correlated Errors

Example of time-correlated observation errors
$z_{1}=x+\xi_{1}$
$z_{2}=x+\zeta_{2}$
$E\left(\zeta_{1}\right)=E\left(\zeta_{2}\right)=0 \quad ; E\left(\zeta_{1}^{2}\right)=E\left(\zeta_{2}^{2}\right)=s \quad ; \quad E\left(\zeta_{1} \xi_{2}\right)=0$

BLUE of x from z_{1} and z_{2} gives equal weights to z_{1} and z_{2}. The weights given to z_{1} and z_{2}. will remain equal in sequential assimilation.

Additional observation then becomes available

$$
\begin{aligned}
& z_{3}=x+\zeta_{3} \\
& E\left(\zeta_{3}\right)=0 \quad ; \quad E\left(\zeta_{3}{ }^{2}\right)=s \quad ; \quad E\left(\zeta_{1} \zeta_{3}\right)=c s \quad ; \quad E\left(\zeta_{2} \zeta_{3}\right)=0
\end{aligned}
$$

BLUE of x from $\left(z_{1}, z_{2}, z_{3}\right)$ has weights in the proportion $(1,1+c, 1)$

Time-correlated Errors (continuation 1)

Example of time-correlated model errors

Evolution equation

$$
x_{k+1}=x_{k}+\eta_{k} \quad E\left(\eta_{k}^{2}\right)=q
$$

Observations

$$
y_{k}=x_{k}+\varepsilon_{k}, \quad k=0,1,2 \quad E\left(\varepsilon_{k}^{2}\right)=r, \text { errors uncorrelated in time }
$$

Sequential assimilation. Weights given to y_{0} and y_{1} in analysis at time 1 are in the ratio $r /(r+q)$. That ratio will be conserved in sequential assimilation. All right if model errors are uncorrelated in time.

Assume $E\left(\eta_{0} \eta_{1}\right)=c q$
Weights given to y_{0} and y_{1} in estimation of x_{2} are in the ratio

$$
\rho=\frac{r-q c}{r+q+q c}
$$

Conclusion

Sequential assimilation, in which data are processed by batches, the data of one batch being discarded once that batch has been used, cannot be optimal if data in different batches are affected with correlated errors. This is so even if one keeps trace of the correlations.

Solution

Process all correlated in the same batch (4DVar, some smoothers)

Two questions

- How to propagate information backwards in time? (useful for reassimilation of past data)
- How to take into account possible dependence in time ?

Kalman Filter, whether in its standard linear form or in its Ensemble form, does neither.

Kalman smoother

Propagates information both forward and backward in time, as does 4DVar, but uses Kalman-type formulæ

Various possibilities

- Define new state vector $x^{\mathrm{T}} \equiv\left(x_{0}{ }^{\mathrm{T}}, \ldots, x_{K}{ }^{\mathrm{T}}\right)$ and use Kalman formula from a background x^{b} and associated covariance matrix Π^{b}.
'Observation operator' must include the model equations
Can take into account temporal correlations
- Update sequentially vector $\left(x_{0}{ }^{\mathrm{T}}, \ldots, x_{k}\right)^{\mathrm{T}}$ for increasing k

Cannot take into account temporal correlations

Algorithms exist in ensemble form
E. Cosme (2015)

Ensemble smoother based on Singular Evolutive Extended Kalman Filter (SEEK)

Of second type above. Retropropagates corrections on fields backwards in time, but without modifying relative weights given to previous data, i.e. cannot be optimal in case of temporal dependence between errors.

E. Cosme, HDR, 2015, Lissage d'ensemble SEEK

Données synthétiques

Figure 3.6 - Evolution du champ d'erreur en SSH du jour 38, au cours des étapes d'analyse successives. En haut à gauche : prévision du filtre; en haut à droite : analyse du filtre. Les observations utilisées pour cette analyse sont distribuées le long des traces grises. En bas à gauche : analyse du lisseur après introduction des observations des jours 40 et 42 ; En bas à droite : analyse du lisseur après introduction des observations des jours 40 à 46 .

Figure 3.7 - Evolution de l'erreur RMS de SSH au cours du temps. Ligne continue : Résultat du filtre (les dents de scie reflètent l'alternance des étapes de prévision et d'analyse) ; Points : lisseur à retard fixe de 8 jours.
E. Cosme, HDR, 2015, Lissage d'ensemble SEEK

Other variants of Ensemble Kalman Smoothers

An iterative ensemble Kalman smoother (Bocquet and Sakov, 2014. Q. J. R. Meteorol.Soc.)

An Iterative Ensemble Kalman Smoother in Presence of Additive Model Error (Fillion et al., 2019, SIAM/ASA J. Uncertainty Quantification)

Bayesian Estimation (see course 2)

Data of the form

$$
z=\Gamma x+\zeta, \quad \zeta \sim \mathcal{N}[0, S]
$$

Known data vector z belongs to data space $\mathcal{D}, \operatorname{dim} \mathcal{D}=m$, Unknown state vector x belongs to state space $\mathcal{X}, \operatorname{dim} \mathcal{X}=n$ Γ known ($m \mathrm{x} n$)-matrix, ζ unknown 'error'

Probability that $x=\xi$ given ? $\quad x=\xi \Rightarrow \xi=z-\Gamma \xi$

$$
\mathrm{P}(\xi=z-\Gamma \xi) \propto \exp \left[-(z-\Gamma \xi)^{\mathrm{T}} S^{-1}(z-\Gamma \xi) / 2\right] \propto \exp \left[-\left(\xi-x^{a}\right)^{\mathrm{T}}\left(P^{a}\right)^{-1}\left(\xi-x^{a}\right) / 2\right]
$$

where

$$
\begin{aligned}
& x^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1} \Gamma^{\mathrm{T}} S^{-1} z \\
& P^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1}
\end{aligned}
$$

Then conditional probability distribution is

$$
P(x \mid z)=\mathcal{N}\left[x^{a}, P^{a}\right]
$$

Bayesian Estimation (continuation 1)

$$
z=\Gamma x+\zeta, \quad \zeta \sim \mathcal{N}[0, S]
$$

Then

$$
P(x \mid z)=\mathfrak{N}\left[x^{a}, P^{a}\right]
$$

with

$$
\begin{aligned}
& x^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1} \Gamma^{\mathrm{T}} S^{-1} z \\
& P^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1}
\end{aligned}
$$

Determinacy condition : $\operatorname{rank} \Gamma=n$. Data contain information, directly or indirectly, on every component of state vector x. Requires $m \geq n$.

Variational form

$$
P(x \mid z) \propto \exp \left[-(z-\Gamma \xi)^{\mathrm{T}} S^{-1}(z-\Gamma \xi) / 2\right] \propto \exp \left[-\left(\xi-x^{a}\right)^{\mathrm{T}}\left(P^{a}\right)^{-1}\left(\xi-x^{a}\right) / 2\right]
$$

Conditional expectation x^{a} minimizes following scalar objective function, defined on state space \mathcal{X}

$$
\begin{gathered}
\xi \in \mathcal{X} \rightarrow \mathcal{J}(\xi) \equiv(1 / 2)[\Gamma \xi-z)]^{\mathrm{T}} S^{-1}[\Gamma \xi-z] \\
P^{a}=\left[\partial^{2} \mathcal{J} / \partial \xi^{2}\right]^{-1}
\end{gathered}
$$

If data still of the form

$$
z=\Gamma x+\zeta
$$

but 'error' ζ, which still has expectation 0 and covariance S, is not Gaussian, expressions

$$
\begin{aligned}
& x^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1} \Gamma^{\mathrm{T}} S^{-1} z \\
& P^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1}
\end{aligned}
$$

do not achieve Bayesian estimation, but define least-variance linear estimate of x from z (Best Linear Unbiased Estimator, BLUE), and associated estimation error covariance matrix.

From course 4

Best Linear Unbiased Estimate

State vector x, belonging to state space $S(\operatorname{dim} S=n)$, to be estimated.
Available data in the form of

- A 'background’ estimate (e.g. forecast from the past), belonging to state space, with dimension n

$$
x^{b}=x+y^{b}
$$

- An additional set of data (e.g. observations), belonging to observation space, with dimension p

$$
y=H x+\varepsilon
$$

H is known linear observation operator.

Assume probability distribution is known for the couple $\left(\zeta^{b}, \varepsilon\right)$.
Assume $E\left(\zeta^{b}\right)=0, E(\varepsilon)=0, E\left(\xi^{b} \varepsilon^{\mathrm{T}}\right)=0$ (not restrictive)
Set $E\left(\xi^{b} \xi^{b_{\mathrm{T}}}\right) \equiv P^{b}($ also often denoted $B), E\left(\varepsilon \varepsilon^{\mathrm{T}}\right) \equiv R$

From course 4
Best Linear Unbiased Estimate (continuation 1)

$$
\begin{align*}
& x^{b}=x+\xi^{b} \tag{1}\\
& y=H x+\varepsilon \tag{2}
\end{align*}
$$

A probability distribution being known for the couple ($\xi^{b}, \boldsymbol{\varepsilon}$), eqs (1-2) define probability distribution for the couple $(\boldsymbol{x}, \boldsymbol{y})$, with
$E(x)=x^{b}, x^{\prime}=x-E(x)=-\xi^{b}$
$E(y)=H x^{b}, y^{\prime}=y-E(y)=y-H x^{b}=\varepsilon-H \xi^{b}$
$\boldsymbol{d} \equiv \boldsymbol{y}-H \boldsymbol{x}^{b}$ is called the innovation vector.

From course 4
Best Linear Unbiased Estimate (continuation 2)

Apply formulæ for Optimal Interpolation

$$
\begin{aligned}
& \boldsymbol{x}^{a}=\boldsymbol{x}^{b}+P^{b} H^{\mathrm{T}}\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1}\left(\boldsymbol{y}-H \boldsymbol{x}^{b}\right) \\
& P^{a}=P^{b}-P^{b} H^{\mathrm{T}}\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1} H P^{b}
\end{aligned}
$$

x^{a} is the Best Linear Unbiased Estimate (BLUE) of x from x^{b} and y.

Equivalent set of formulæ

$$
\begin{aligned}
& \boldsymbol{x}^{a}=\boldsymbol{x}^{b}+P^{a} H^{\mathrm{T}} R^{-1}\left(\boldsymbol{y}-H \boldsymbol{x}^{b}\right) \\
& {\left[P^{a}\right]^{-1}=\left[P^{b}\right]^{-1}+H^{\mathrm{T}} R^{-1} H}
\end{aligned}
$$

Vector $d \equiv \boldsymbol{y}-H \boldsymbol{x}^{b}$ is innovation vector
Matrix $K \equiv P^{b} H^{\mathrm{T}}\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1}=P^{a} H^{\mathrm{T}} R^{-1}$ is gain matrix.

If probability distributions are globally gaussian, BLUE achieves bayesian estimation, in the sense that $P\left(\boldsymbol{x} \mid \boldsymbol{x}^{b}, \boldsymbol{y}\right)=\mathcal{N}\left[\boldsymbol{x}^{a}, \boldsymbol{P}^{a}\right]$.

From course 4

Best Linear Unbiased Estimate (continuation 6)

Variational form of the BLUE

BLUE x^{a} minimizes following scalar objective function, defined on state space
$\xi \in S \rightarrow$

- $\quad J(\xi) \equiv(1 / 2)\left(x^{b}-\xi\right)^{\mathrm{T}}\left[P^{b}\right]^{-1}\left(x^{b}-\xi\right)+(1 / 2)(y-H \xi)^{\mathrm{T}} R^{-1}(y-H \xi)$
$\equiv \quad \mathcal{J}_{b} \quad+\quad J_{o}$
'3D-Var'

Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.

Used operationally in USA, Australia, China, ...

Case of data that are distributed over time

Suppose for instance available data consist of

- Background estimate at time 0

$$
x_{0}{ }^{b}=x_{0}+\zeta_{0}{ }^{b} \quad E\left(\zeta_{0}{ }^{b} \xi_{0}^{b T}\right)=P_{0}{ }^{b}
$$

- Observations at times $k=0, \ldots, K$

$$
y_{k}=H_{k} x_{k}+\varepsilon_{k} \quad E\left(\varepsilon_{k} \varepsilon_{j}^{\mathrm{T}}\right)=R_{k} \delta_{k j}
$$

- Model (supposed for the time being to be exact)

$$
x_{k+1}=M_{k} x_{k} \quad k=0, \ldots, K-1
$$

Errors assumed to be unbiased and uncorrelated in time, H_{k} and M_{k} linear

Then objective function

$$
\begin{aligned}
& \xi_{0} \in S \rightarrow \\
& \mathcal{J}\left(\xi_{0}\right) \equiv(1 / 2)\left(x_{0}{ }^{b}-\xi_{0}\right)^{\mathrm{T}}\left[P_{0}{ }^{b}\right]^{-1}\left(x_{0}{ }^{b}-\xi_{0}\right)+(1 / 2) \Sigma_{k}\left[y_{k}-H_{k} \xi_{k}\right]^{\mathrm{T}} R_{k}{ }^{-1}\left[y_{k}-H_{k} \xi_{k}\right] \\
& \equiv \\
& J_{b} \quad+ \\
& +\quad J_{o} \\
& \text { subject to } \xi_{k+1}=M_{k} \xi_{k}, \quad k=0, \ldots, K-1
\end{aligned}
$$

$$
\mathcal{J}\left(\xi_{0}\right)=(1 / 2)\left(x_{0}{ }^{b}-\xi_{0}\right)^{\mathrm{T}}\left[P_{0}{ }^{b}\right]^{-1}\left(x_{0}{ }^{b}-\xi_{0}\right)+(1 / 2) \Sigma_{k}\left[y_{k}-H_{k} \xi_{k}\right]^{\mathrm{T}} R_{k}^{-1}\left[y_{k}-H_{k} \xi_{k}\right]
$$

Background is not necessary, if observations are in sufficient number to overdetermine the problem. Nor is strict linearity.

Four-Dimensional Variational Assimilation
'4D-Var'

How to minimize objective function with respect to initial state $u=\xi_{0}$ (u is called the control variable of the problem)?

Use iterative minimization algorithm, each step of which requires the explicit knowledge of the local gradient $\nabla_{u} \mathcal{J} \equiv\left(\partial \mathcal{J} / \partial u_{i}\right)$ of \mathcal{J} with respect to u.

How to numerically compute the gradient $\nabla_{u} \mathcal{J}$?

Direct perturbation, in order to obtain partial derivatives $\partial \mathcal{J} / \partial u_{i}$ by finite differences ? That would require as many explicit computations of the objective function \mathcal{J} as there are components in u. Practically impossible.

Gradient computed by adjoint method.

Adjoint Method

Input vector $\boldsymbol{u}=\left(u_{i}\right), \operatorname{dim} \boldsymbol{u}=n$
Numerical process, implemented on computer (e. g. integration of numerical model)

$$
u \rightarrow v=G(u)
$$

$v=\left(v_{j}\right)$ is output vector, $\operatorname{dim} v=m$

Perturbation $\delta \boldsymbol{u}=\left(\delta u_{i}\right)$ of input. Resulting first-order perturbation on \boldsymbol{v}

$$
\delta v_{j}=\Sigma_{i}\left(\partial v_{j} / \partial u_{i}\right) \delta u_{i}
$$

or, in matrix form

$$
\delta v=G^{\prime} \delta u
$$

where $\boldsymbol{G}^{\prime} \equiv\left(\partial v_{j} / \partial u_{i}\right)$ is local matrix of partial derivatives, or jacobian matrix, of \boldsymbol{G}.

Adjoint Method (continued 1)

$$
\begin{equation*}
\delta v=G^{\prime} \delta u \tag{D}
\end{equation*}
$$

- Scalar function of output

$$
\mathcal{J}(\boldsymbol{v})=\mathcal{I}[\boldsymbol{G}(\boldsymbol{u})]
$$

Gradient $\nabla_{u} \mathcal{J}$ of \mathcal{J} with respect to input \boldsymbol{u} ?
'Chain rule’

$$
\partial \mathcal{I} / \partial u_{i}=\Sigma_{j} \partial \mathcal{J} / \partial v_{j}\left(\partial v_{j} / \partial u_{i}\right)
$$

or

$$
\begin{equation*}
\nabla_{u} \mathcal{J}=G^{\prime}{ }^{\mathrm{T}} \nabla_{v} \mathcal{J} \tag{A}
\end{equation*}
$$

Adjoint Method (continued 2)

\boldsymbol{G} is the composition of a number of successive steps

$$
\boldsymbol{G}=\boldsymbol{G}_{N} \circ \ldots \circ \boldsymbol{G}_{2} \circ \boldsymbol{G}_{1}
$$

'Chain rule'

$$
\boldsymbol{G}^{\prime}=\boldsymbol{G}_{N}{ }^{\prime} \ldots \boldsymbol{G}_{2}{ }^{\prime} \boldsymbol{G}_{1}{ }^{\prime}
$$

Transpose

Transpose, or adjoint, computations are performed in reversed order of direct computations.
If \boldsymbol{G} is nonlinear, local jacobian \boldsymbol{G}^{\prime} depends on local value of input \boldsymbol{u}. Any quantity which is an argument of a nonlinear operation in the direct computation will be used again in the adjoint computation. It must be kept in memory from the direct computation (or else be recomputed again in the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times operation count of direct computation (in practice about 2).

Adjoint Method (continued 3)

$$
\begin{aligned}
& \mathcal{J}\left(\xi_{0}\right)=(1 / 2)\left(x_{0}{ }^{b}-\xi_{0}\right)^{\mathrm{T}}\left[P_{0}{ }^{b}\right]^{-1}\left(x_{0}{ }^{b}-\xi_{0}\right)+(1 / 2) \Sigma_{k}\left[y_{k}-H_{k} \xi_{k}\right]^{\mathrm{T}} R_{k}^{-1}\left[y_{k}-H_{k} \xi_{k}\right] \\
& \quad \text { subject to } \xi_{k+1}=M_{k} \xi_{k}, \quad k=0, \ldots, K-1
\end{aligned}
$$

Control variable $\quad \xi_{0}=\boldsymbol{u}$

Adjoint equation

$$
\begin{aligned}
& \lambda_{K}=\quad H_{K}{ }^{\mathrm{T}} R_{K}^{-1}\left[H_{K} \xi_{K}-y_{K}\right] \\
& \ldots \\
& \lambda_{k}=M_{k}^{\mathrm{T}} \lambda_{k+1}+H_{k}^{\mathrm{T}} R_{k}^{-1}\left[H_{k} \xi_{k}-y_{k}\right] \\
& \cdots \\
& \lambda_{0}=M_{0}{ }^{\mathrm{T}} \lambda_{1}+H_{0}{ }^{\mathrm{T}} R_{0}{ }^{-1}\left[H_{0} \xi_{0}-y_{0}\right]+\left[P_{0}{ }^{b}\right]^{-1}\left(\xi_{0}-x_{0}{ }^{b}\right)
\end{aligned} \quad k=K-1, \ldots, 1
$$

Result of direct integration $\left(\xi_{k}\right)$, which appears in quadratic terms in expression of objective function, must be kept in memory from direct integration.

Adjoint Method (continued 3)

Nonlinearities?

$$
\begin{aligned}
& \mathcal{J}\left(\xi_{0}\right)=(1 / 2)\left(x_{0}{ }^{b}-\xi_{0}\right)^{\mathrm{T}}\left[P_{0}{ }^{b}\right]^{-1}\left(x_{0}{ }^{b}-\xi_{0}\right)+(1 / 2) \Sigma_{k}\left[y_{k}-H_{k}\left(\xi_{k}\right)\right]^{\mathrm{T}} R_{k}^{-1}\left[y_{k}-H_{k}\left(\xi_{k}\right)\right] \\
& \quad \text { subject to } \xi_{k+1}=M_{k}\left(\xi_{k}\right), \\
& \\
& \text { Control variable } \quad \xi_{0}=\boldsymbol{u}
\end{aligned}
$$

Adjoint equation

$$
\begin{array}{ll}
\lambda_{K}= & H_{K}{ }^{, \mathrm{T}} R_{K}{ }^{-1}\left[H_{K}\left(\xi_{K}\right)-y_{K}\right] \\
\ldots & k=K-1, \ldots, 1 \\
\lambda_{k}=M_{k}{ }^{\mathrm{T}} \lambda_{k+1}+H_{k}{ }^{, \mathrm{T}} R_{k}{ }^{-1}\left[H_{k}\left(\xi_{k}\right)-y_{k}\right] & \\
\ldots \\
\lambda_{0}=M_{0}{ }^{\mathrm{T}} \lambda_{1}+H_{0}{ }^{, \mathrm{T}} R_{0}{ }^{-1}\left[H_{0}\left(\xi_{0}\right)-y_{0}\right]+\left[P_{0}{ }^{b}\right]^{-1}\left(\xi_{0}-x_{0}{ }^{b}\right) & \\
\qquad \nabla_{u} \mathcal{J}=\lambda_{0} &
\end{array}
$$

Not approximate (it gives the exact gradient $\nabla_{l} \mathcal{J}$), and really used as described here.

Temporal evolution of the $500-\mathrm{hPa}$ geopotential autocorrelation with respect to point located at 45 N , 35 W . From top to bottom: initial time, 6 - and 24 -hour range.

10.1. Background fit 0000 UTC 15 October-0000 UTC 16 October 1987. Shown here are the Northern Hemisphere (a) 500WIG. I. Background heendetential height and (b) mean sea level pressure for 15 October and the (c) 500 -hPa geopotential height and (d) mean sea level pelds for 16 October are from the $24-\mathrm{h} T 63$ adiabatic model forecast from the initial conditions. Contour intervals are 80 m and 5 hPa .

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414

Analysis increments in a 3D-Var corresponding to a height observation at the 250hPa pressure level (no temporal evolution of background error covariance matrix) ${ }_{61}$

Same as before, but at the end of a $24-\mathrm{hr} 4 \mathrm{D}-\mathrm{Var}$

Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414

Same as before, but at the end of a $24-\mathrm{hr} 4 \mathrm{D}-\mathrm{Var}$

3-day forecast from 3D-Var analysis

3D-Var verifying analysis

3-day forecast from 4D-Var analysis

4D-Var verifying analysis

Strong Constraint $4 D$-Var is now used operationally at several meteorological centres (Météo-France, UK Meteorological Office, Canadian Meteorological Centre, Japan Meteorological Agency, ...) and, for a number of years, at ECMWF. The latter now has a 'weak constraint' component in its operational system.

Cours à venir

Vendredi 26 mars
Vendredi 2 avril
Vendredi 9 avril
Vendredi 16 avril
Vendredi 7 mai
Vendredi 14 mai
Vendredi 21 mai
Vendredi 28 mai

