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- Variational assimilation. Principle. The adjoint
approach. Results

- The ‘Incremental approach’ to variational
assimilation

- Weak constraint variational assimilation.
Principle. The dual algorithm for variational
assimilation. Examples.

or
- History of Numerical Weather Prediction



Bayesian Estimation (see course 2)

Data of the form
z=Tx+§ &~ N0, S]

Known data vector z belongs to data space D, dimD = m,
Unknown state vector x belongs to state space X, dimX'=n
I'known (mxn)-matrix,  unknown ‘error’

Probability that x = §given? x=&=C=2z-1%&
P(E=z- T8 xexpl-(z- IS (z-TE)/2] x exp[ -(&§-x)" (P! (§-x4)/2]

where

X =(ITSY TSz
Pa=(I'TS-')!

Then conditional probability distribution is

P(x | 2) = N[xe, P4]



Bayesian Estimation (continuation 1)

z=TIx+ ¢ E~ N0, S]
Then

P(x | z) = N[x9, P9]
with
X =(I'TS')' TSy

Pa=(ITS)!

Determinacy condition : rankI = n. Data contain information, directly or
indirectly, on every component of state vector x. Requires m > n.



Variational form
P(x | 2) < exp[ -(z - TS (z- I'E)/2] = exp[ -(&-x)T (Po)y! (§-x9)/2 ]

Conditional expectation x* minimizes following scalar objective function, defined
on state space X~

EEX—= A5 = U2)[IE-)]" S [IE-7]

Pt=[9°7 /08"



If data still of the form

z=Ix+ ¢,

but ‘error’ £ , which still has expectation 0 and covariance S, is not
Gaussian, expressions

x4 = (IS 7§y
Pe= (7S]
do not achieve Bayesian estimation, but define least-variance linear

estimate of x from z (Best Linear Unbiased Estimator, BLUE), and
associated estimation error covariance matrix.



Estimate x¢ and associated error covariance matrix P? are
invariant in any invertible linear change of coordinates,
either in data or state space.

Under determinacy condition rank/" = n, it is possible to
transform the data vector z into

xt = x+ &

y = Hx+ ¢

E(&e") =0



Setting E(Z&T) = PP, E(ec") = R
the expressions for x? and P“ take either one of the two equivalent forms

x* = x>+ P°"HT[HP’"H" + R]'! (y - Hx?)
Pa = Pb_ pb HT [HPPHT + R]! HP?

x¢=xt+ P*HTR! (y - Hx?)
[P = [P°]''+ H'R'H

where vector d = y — Hx?is innovation vector
and matrix K= PP H' [HPPH" + R]''= P* H' R'! is gain matrix.



From course 4
Best Linear Unbiased Estimate (continuation 6)

Variational form of the BLUE

BLUE x? minimizes following scalar objective function, defined on state space
se 5 —

* JO= A -HIPT -5+ (1/2) (y- HHY'R' (v - HY)

jb + jo

‘3D-Var’

Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.

Used operationally in USA, Australia, China, ...



Case of data that are distributed over time
Suppose for instance available data consist of

- Background estimate at time O

X' =x+ & E(&°&") = Py’
- Observations at times k=0, ..., K

- Model (supposed for the time being to be exact)
Xy = Mix, k=0,...,K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear

Then objective function

§€ S —
IE) = (172) (xe? - E)T[PPT! (xo” - &) + (1/2) 2Ly, - HEIT R, [y, - H &l
= jb + jo
subject to §,,, = M,§,, k=0,...,K-1
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j(go) = (172) (xob - Eo)T [P()b]_1 (xob - 50) + (172) 2 [y, - Hkgk]T Rk-l [V - Hkgk]

Background is not necessary, if observations are in sufficient number to
overdetermine the problem. Nor is strict linearity.

Four-Dimensional Variational Assimilation

‘4D-Var’

11



How to minimize objective function with respect to initial state u = &, (u is
called the control variable of the problem) ?

Use iterative minimization algorithm, each step of which requires the
explicit knowledge of the local gradient V /] = (0/]/du;) of /] with respect to u.

12



How to numerically compute the gradient V] ?

Direct perturbation, in order to obtain partial derivatives 0//du; by finite
differences ? That would require as many explicit computations of the
objective function /] as there are components in u. Practically impossible.

Gradient computed by adjoint method.

13



Adjoint Method

Input vector u = (u;), dimu =n

Numerical process, implemented on computer (e. g. integration of
numerical model)

u—v==GwW)
v = (v;) 18 output vector, dimy = m

Perturbation ou = (du;) of input. Resulting first-order perturbation on v
ov; = Z,(dv/du;) ou,

or, in matrix form

ov = G’ Ou
where G’= (dv/du,) is local matrix of partial derivatives, or jacobian matrix, of G.
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Adjoint Method (continued 1)

ov = G’ du

* Scalar function of output
Jv) = JiG(w)]
Gradient V[ of /] with respect to input u?
‘Chain rule’
0J/du;=%;97/dv;(dv/du,)

or

V.J=G"V,]

(D)

(A)
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Adjoint Method (continued 2)

G is the composition of a number of successive steps

G=Gy....G,-G,
‘Chain rule’

G =Gy ...G,G/
Transpose

GT=G’TG,T...G"

Transpose, or adjoint, computations are performed in reversed order of direct computations.
If G is nonlinear, local jacobian G’ depends on local value of input u. Any quantity which is an
argument of a nonlinear operation in the direct computation will be used again in the adjoint
computation. It must be kept in memory from the direct computation (or else be recomputed again in

the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times
operation count of direct computation (in practice about 2).

16



A few basics

- Basic (nonlinear) model

Xpp1 = M(x)

- Perturbation 0x, at time 0. Resulting perturbation oOx, evolves in time
according to

Oy = Mi(x; + 0x;) - Mi(x)) f

=M, (x;) Ox,+ o(0x,)

where M, ’(x,) 1s jacobian of M, at point x,.

0541 = M’ (x}) 05,

is tangent linear model along solution x,.



A few basics (continuation)

Tangent linear model

0511 = M, (x;) 65,

Adjoint model
A= M )T Ay

Describes evolution with respect to k& of gradient of a scalar function ‘] with
respect to x,.



Adjoint Method (continued 3)

ﬂ(?o) = (1/2) (xob - §0)T [Pob]_l (xob - §0) +(1/2) Zkb’k - Hkgk]TRk_l (Vi - Hk&k]
subjectto &§.,, = M, &, , k=0,...,K-1

Control variable E=u

Adjoint equation

Ag= Hy 'Ry [Hy & - vl

Ak= M A, + HTR [HLE, - y,] k=K-1,...,1

Ao = MOT)Ll + HOTRO_I [Hy & - yol + [Pob]_1 (& - xob)

V.J =%

Result of direct integration (&,), which appears in quadratic terms in expression of
objective function, must be kept in memory from direct integration.
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Adjoint Method (continued 3)

Nonlinearities ?

J&) = (1/2) (xg” - E)TIPT! (%" - &) + (1/2) 2Ly, - Hi(EPIT R [y - H(E))]
subject to &, = M (&), k=0,...,K-1

Control variable E=u
Adjoint equation
A= Hi "Rt [H(8g) - ygl

M= M Xy + HT R TH(E - vy k=K-1,...,1

A= M, ’UH +H, ’TRo'l [Ho(go) - Yol + [Pob]'1 (50 - xob)

V.J =%

Not approximate (it gives the exact gradient V /), and really used as described here.



60°W 0

Temporal evolution of the 500-hPa geopotential autocorrelation with respect to
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.
Contour interval 0.1. After F. Bouttier.
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FiG. 1. Background fields for 0000 UTC 15 October-0000 UTC 16 October 1987. Shown here are the Northern Hemisphere (a) 500-
WPa geopotential height and (b) mean sea level pressure for 15 October and the (¢) 500-hPa geopotential height and (d) mean sea level
pressure for 16 October. The ficlds for 15 October are from the initial estimate of the initial conditions for the 4DVAR minimization. The
fields for 16 October are from the 24-h T63 adiabatic model forecast from the initial conditions. Contour intervals are 80 m and 5 hPa.

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Analysis increments in a 3D-Var corresponding to a height observation at the 250-
hPa pressure level (no temporal evolution of background error covariance matrix)23

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



00 GMT 16 OCT 1987WIND 850 MBHEIGHT 850 MB.

Same as before, but at the end of a 24-hr 4D-Var

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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Analysis increments in a 3D-Var corresponding to a u-component wind observation at the
1000-hPa pressure level (no temporal evolution of background error covariance matrix)

25
Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414



00 GMT 16 OCT 1987WIND 850 MBHEIGHT 350 M8

O%
= 75° b
3
8
60°N v N
< gil. _q\
b ﬁquoN %
." "_"‘ (& 53
F e N X
[3CN, N\
lﬁ A 3(1’ ........ Y
15 nnbiiadedic i ‘ab
1
15N
3 -1
2 i 10
0 4o 0

40°W 20°W

3.0¢

100°W

60°'W

3,02
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Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414
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3-day forecast frp 3-Vr analysis

4D-Var verifying analysis

E 4 = N

ECMWEF, Results on one FASTEX case (1997)
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Figure 3: 500 hPa geopotential height mean square error skill score for Europe (top) and the northern hemisphere
extratropics (bottom). showing 12-month moving averages for forecast ranges from 24 to 192 hours. The last point
on each curve 1s for the 12-month period August 2013—July 2014.

Persistence = 0 ; climatology = 50 at long range 2



Initial state error reduction

HRes and ERA Interim 00,12UTC forecast sKill

500hPa geopotential
Lead time of Anomaly correlation reaching 99.5%
NHem Extratropics (iat 20.0 to 90.0, lon -180.0 to 180.0)

Operational
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Credit E. Killén, ECMWE 2



Strong Constraint 4D-Var 1s now used operationally at
several meteorological centres (Météo-France, UK
Meteorological Office, Canadian Meteorological Centre,
Japan Meteorological Agency, ...) and, for a number of
years, at ECMWFE. The latter now has a ‘weak constraint’
component in its operational system.
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Time-correlated Errors (continuation 3)

If data errors are correlated in time, it is not possible to discard observations as they are
used. In particular, if model error is correlated in time, all observations are liable to be
reweighted as assimilation proceeds.

Variational assimilation can take time-correlated errors into account.
Example of time-correlated observation errors. Global covariance matrix
R= (R, = E(g.e,.7))
Objective function

e S -
JE) = (172) (xg? - ENT P! (xof - &) + (1/2) 2o [y - HEIT [ R i - Hi &l

where [ R'];,; is the kk’-sub-block of global inverse matrix &'

Similar approach for time-correlated model error.
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Time-correlated Errors (continuation 4)

Temporal correlation of observational error has been introduced by ECMWF (Jirvinen

et al., 1999) in variational assimilation of high-frequency surface pressure observations
(correlation originates in that case in representativeness error).

Identification and quantification of time correlation of errors, especially model errors ?

32



In the linear case, Kalman Smoother and Variational Assimilation are
algorithmically equivalent. If errors are uncorrelated in time, they
produce the BLUE of the state of the system from all available data,
over the whole assimilation window (Kalman Filter produces the BLUE
only at the end of the final time of the window). If in addition errors are
globally Gaussian, both algorithms achieve Bayesian estimation.

If errors are correlated in time, only some Kalman Smoothers are
equivalent with Variational Assimilation.

33



Incremental Method for Variational Assimilation

Variational assimilation, as it has been described, requires the use of
the adjoint of the full model.

Simplifying the adjoint as such can be very dangerous. The
computed gradient would not be exact, and experience shows that
optimization algorithms (and especially efficient ones) are very
sensitive to even slight misspecification of the gradient.

Principle of Incremental Method (Courtier et al., 1994, Q. J. R.
Meteorol. Soc.) : simplify simultaneously the (local tangent linear)
dynamics and the corresponding adjoint.
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Incremental Method (continuation 1)

- Basic (nonlinear) model

§k+1 = M (&)

- Tangent linear model
08 = M 05,

where M, is jacobian of M, at point &,.
- Adjoint model
A=MTA  +...

Incremental Method. Simplify both M,” and M,’" consistently.

35



Incremental Method (continuation 2)

More precisely, for given solution & of nonlinear model, replace tangent
linear and adjoint models respectively by

5§k+1 =L, 5§k (2)
and
A=LTA,  +...

where L, 1s an appropriate simplification of jacobian M, .

It is then necessary, in order to ensure that the result of the adjoint
integration is the exact gradient of the objective function, to modify the basic
model in such a way that the solution emanating from &%+ &, is equal to
£+ 85, where 85, evolves according to (2). This makes the basic dynamics

exactly linear.
36



Incremental Method (continuation 3)

As concerns the observation operators in the objective function, a similar procedure
can be implemented if those operators are nonlinear. This leads to replacing H,(&,) by
H,(§)+ N, 065, where N, is an appropriate ‘simple’ linear operator (possibly, but not
necessarily, the jacobian of H, at point §%). The objective function depends only on the
initial 65, deviation from &, and reads

Ji(65) = (1/2) (x()b - 50(0) - 5&0)T [P ob]_l (xob - 50(0) - 05))
+ (172) 2,14, - Nk(S;—‘k]TRk-l [d, - NO&,]

where d, = y, - H,(§,") is the innovation at time k, and the &, evolve according to
0841 = Ly 05, 2)

With the choices made here, 7,(05,) is an exactly quadratic function of 0&,. The

minimizing perturbation 6&,,, defines a new initial state §V = §© + 6§, ,,, from which a
new solution & of the basic nonlinear equation is determined. The process is restarted
in the vicinity of that new solution.
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Incremental Method (continuation 4)

This defines a system of two-level nested loops for minimization.
Advantage is that many degrees of freedom are available for defining the
simplified operators L, and N,, and for defining an appropriate trade-off
between practical implementability and physical usefulness and accuracy. It is
the incremental method which, together with the adjoint method, makes
variational assimilation possible.

First-Guess-At-the-right-Time 3D-Var (FGAT 3D-Var). Corresponds to L, =
I,. Assimilation 1s four-dimensional in that observations are compared to a
first-guess which evolves in time, but is three-dimensional in that no dynamics
other than the trivial dynamics expressed by the unit operator is present in the
minimization.
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Buehner et al. (Mon. Wea. Rev., 2010)

For the same numerical cost, and in meteorologically realistic
situations, Ensemble Kalman Filter and Variational Assimilation
produce results of similar quality.
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How to take model error into account in
variational assimilation ?

40



Weak constraint variational assimilation

Allows for errors in the assimilating model

* Data
- Background estimate at time O

X = xy+ &P E(ELELT) = PP
- Observations at times k=0, ..., K

v, = Hx, + ¢ E(g.6.T) = R0y
- Model

Xy = Mx, + 1, E(Mmmne" = 0,0 k=0, ...,K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear

41



Then objective function

(o> 515 s Ek) —
J(&, &5 - Ek)
= (1/2) (xo" - &) [P"1" (%" - &)
+(1/2) Zic, .kl - HEN R i - Hi&il

+(172) 2, xilEeer - MUELT Ot 8y - ML

Can include nonlinear M, and/or H,.

Implemented operationally at ECMWF for the assimilation in the stratosphere.

Becomes singular in the strong constraint limit Q, — 0

42



Dual Algorithm for Variational Assimilation (aka Physical Space
Analysis System, PSAS, pronounced ‘pizzazz’; see in particular book
and papers by Bennett)

x4 =xP+ PPHT[HP’HT + R]"! (y - Hx?)
xX=xX+ PP H"Al'd=x*+ PP H"m
where A = HPPH'+ R, d =y - Hx* and m = A! d maximises
w— K(u)=-12) y" Au+du

Maximisation is performed in (dual of) observation space.

43



Dual Algorithm for Variational Assimilation (continuation 2)

Extends to time dimension, and to weak-constraint case, by defining state vector as

x=00 T, x DT
or, equivalently, but more conveniently, as
x=0x0n", DT
where, as before
M= X - Mix, k=0,...,K-1

The background for x, is x,”, the background for 1, is 0. Complete background is
xb = (x,T, 07, ..., 00T
It is associated with error covariance matrix

PP =diag(P, Qy, ..., Ox.1)

44



Dual Algorithm for Variational Assimilation (continuation 3)
Define global observation vector as

Y=oty eyt
and global innovation vector as

d=(d,",d,....d")T

where d.=y,—H x}/ withx,=Mx’, k=0,...

45



Dual Algorithm for Variational Assimilation (continuation 4)
For any state vector § = (&1, v,', ..., U ,T)T, the observation operator H
E—=HE=(u,,...,u)"
is defined by the sequence of operations
uy = Hy&,

thenfork =0, ..., K-1

Sie1 = M5 + v,
Uy = Hiyy S

The observation error covariance matrix is equal to

R =diag(R,, ..., Ry)

46



Dual Algorithm for Variational Assimilation (continuation 5)

Maximization of dual objective function
w— Ku)=-(1/2) t!" A u+du

requires explicit repeated computations of its gradient

V,K =-Au+d=-(HP’"H"+ R)ju+d

Starting from u = (u,", ..., ug')" belonging to (dual) of observation space, this requires 5 successive steps
- Step 1. Multiplication by HT. This is done by applying the transpose of the process defined above, viz.,

Set xXk=0
Then, fork=K-1,...,0

— T
Vk - Xk+1T+ Hk+1 Mk+1
X = M v,

Finally Ay =X + Hy' 1y

The output of this step, which includes a backward integration of the adjoint model, is the vector

(A'()Ta V()T 9 ey V[(.]T)T

47



Dual Algorithm for Variational Assimilation (continuation 6)

- Step 2. Multiplication by P”. This reduces to

& =Py A
v=0,v, , k=0,...,K-1

- Step 3. Multiplication by H. Apply the process defined above on the vector (&,",

Uy, ..., Uk DT, thereby producing vector (i4,!, ..., u. )T

- Step 4. Add vector Ru, i. e. compute

@ = 5o+ Ry Uy
(Pk=Uk_1+RkMk ,kzl,...,

- Step 5. Change sign of vector ¢ = (¢, ..., x")T, and add vectord = y - Hx?,

48



Dual Algorithm for Variational Assimilation (continuation 7)

Temporal correlations can be introduced.

Dual algorithm remains regular in the limit of vanishing model error. Can be used

for both strong- and weak-constraint assimilation.

No significant increase of computing cost in comparison with standard strong

constraint variational assimilation (Courtier, Louvel)

49
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Dual Algorithm for Variational Assimilation (continuation)

Requires

= Explicit background (not much of a problem)

= Exact linearity (much more of a problem). Definition of iterative nonlinear
procedures is being studied (Auroux, ...)
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Auroux, Doctoral Dissertation, Université de Nice-Sophia Antipolis, Nice, 2003
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Dual Algorithm for Variational Assimilation is now used, in
the weak-constraint form, at Centre Européen de Recherche

et de Formation Avancée en Calcul Scientifique
(CERFACS) in Toulouse (A. Weaver, S. Giirol) for
assimilation of oceanographical observations.
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Conclusion on Sequential Assimilation

Pros

‘Natural’, and well adapted to many practical situations

Provides, at least relatively easily, explicit estimate of estimation
error

Cons

Carries information only forward in time (of no importance
if one is interested only in doing forecast)

In a strictly sequential assimilation (i.e., any individual piece

of information 1s discarded once it has been wused), optimality is
possible only if errors are uncorrelated in time.



Conclusion on Variational Assimilation

Pros

Carries information both forward and backward in time (important for
reassimilation of past data).

Can easily take into account temporal statistical dependence (Jarvinen et al.)
Does not require explicit computation of temporal evolution of estimation error
Very well adapted to some specific problems (e. g., identification of tracer sources)

Cons

Does not readily provide estimate of estimation error

Requires development and maintenance of adjoint codes. But the latter can
have other uses (sensitivity studies).

e Dual approach seems most promising. But little used.

e Can be implemented in ensemble form (see course 7).



History of Numerical Weather Prediction

Wilhelm Bjerknes
Das Problem der Wettervorhersage, betrachtet von Standpunkt
der Mechanik und Physik, 1904, Meteorologische Zeitschrift

Ecole de Météorologie de Bergen
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From course 2

Physical laws governing the flow

= Conservation of mass
Dp/Dt + pdivU = 0

= Conservation of energy
De/Dt - (p/p?) Dp/Dt = Q

= Conservation of momentum
DU/Dt + (1/p) gradp - g + 2 QAU= F

= Equation of state
f(pap9e)=0 (p/p=l’T,e=CvT)

= Conservation of mass of secondary components (water in the atmosphere, salt
in the ocean, chemical species, ...)

Dq/Dt + g divU =8

These physical laws must be expressed in practice in discretized (and necessarily 58
imperfect) form, both in space and time



History of Numerical Weather Prediction (continuation)

Lewis Fry Richardson
Weather Prediction by Numerical Process, 1922
Cambridge University Press *

Forecast Factory

Richardson number, fractals, pacifism

* Accessible at URL
https://energy4d4climate.pages.in2p3.fr/public/education/

ensemble data_assimilation_tutorial/notebooks/T1%20-%?20Introduction%?20to
%20Ensemble%20Data%20Assimilation%?20for% 20Numerical%20WeeStgher
%20Prediction.html



https://
energy4climate.pages.in2p3.fr/
public/education/
ensemble_data_assimilation_tut
orial/notebooks/T1%?20-
%20Introduction%?20to
%20Ensemble%20Data
%20Assimilation%?20for
%20Numerical %20Weather
%020Prediction.html
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History of Numerical Weather Prediction (continuation 2)

John von Neumann

Institute for Advanced Studies, Princeton, 1946-1950
First electronic computers (ENIAC)

(J. Charney, N. A. Phillips, R. Fjgrtoft, C. G. Rossby,

J. Smagorinskys, ...)

Charney developed barotropic model

First operational numerical forecast around 1955 in Sweden

(C. G. Rossby)

Jule Gregory Charney en 1978.



History of Numerical Weather Prediction (continuation 3)

Numerical prediction has gradually been implemented in more and more

meteorological services around the world.

Extension to simulation of oceanic circulation and climate (early 1970’s, S. Manabe
and K. Bryan, GFDL).

Climatic simulations (S. Manabe, R. Wrtherald)

European Centre for Medium-Range Weather Forecasts (ECMWEF, 1975)

Ensemble prediction
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History of Numerical Weather Prediction (continuation 4)

A large variety of models covering different spatial and temporal scales and
phenomena (small-scale convection, monthly and seasonal prediction, atmospheric
chemistry, ...) have been developed over the years and are used for research and

operational applications.

Intergovernmental Panel on Climate Change (IPCC, 1988)

Publishes reports that describe the state of climate science and presents

‘projections’ largely based on numerical simulations
First report in 1990

Fifth report in 2014

Sixth report to be published in 2021-2022

63



Cours a venir

Vendredi 21 mai
Vendredi 28 mai



