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-  Particle  filters.  Principle.  Variants  (Proposal 

Densities). A few results. 	


-  Ensemble  Variational  Assimilation.  A  few 
results. 	


-  Conclusions and perspectives	
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Exact bayesian estimation ?	


Particle filters	


Predicted ensemble at time t : {xb
l, l = 1, …, L},  each element with its own 

weight (probability) P(xb
l) 	


Observation vector at same time : y = H(x) + ε	


Bayes’ formula	

P(xb

l|y) = P(y|xb
l) P(xb

l) / P(y)   	


Defines updating of weights	
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Bayes’ formula	

P(xb

l|y) ∼ P(y|xb
l) P(xb

l)	


If error ε is independent of all previous data	


	
 	
 	
 	
 P(y|xb
l) = P[ε = y - H(xb

l)]	


Defines  updating  of  weights;  particles  are  not  modified.  Asymptotically 
converges to bayesian pdf. Very easy to implement.	


Observed fact. For large state dimension, ensemble tends to collapse.	
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C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmoda5/Oral/
Snyder.pdf 5 



Problem originates  in  the  ‘curse  of  dimensionality’.  Large  dimension 
pdf’s are very diffuse, so that very few particles (if any) are present in 
areas where conditional probability  (‘likelihood’) P(y|x) is large.	
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Curse of dimensionality	


Standard  one-dimensional  gaussian  random 
variable X	


	
 P[ ⎜X ⎜ < σ ] ≈ 0.84	


In dimension n = 100,  0.84100 = 3.10-8     

.	
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Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of 
filter  requires the size of ensembles to increase exponentially with 
space dimension.	
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Alternative possibilities (review in van Leeuwen, 2017, Annales de la faculté des sciences de 
Toulouse Mathématiques, 26 (4), 1051-1085)	


Resampling. Define new ensemble.	


Simplest way. Draw new ensemble according to probability distribution defined by the updated 
weights. Give same weight to all particles. Particles are not modified, but particles with low 
weights are likely to be eliminated, while particles with large weights are likely to be drawn 
repeatedly. For multiple particles, add noise, either from the start, or in the form of ‘model 
noise’ in ensuing temporal integration. 	


Random  character  of  the  sampling  introduces  noise.  Alternatives  exist,  such  as  residual 
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights wl are multiplied by 
ensemble dimension L. Then p copies of each particle l are taken, where p is the integer 
part  of  Lwl.  Remaining  particles,  if  needed,  are  taken  randomly  from  the  resulting 
distribution.	


However, resampling is not sufficient to avoid degeneracy of filters.	
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Sequence of random vectors {xn, n = 0, …}	


Assume P(xn | xn-1, …, x0) = P(xn | xn-1)	


Markovianity.  Verified  in  particular  if  xn  =  F(xn-1,  η),  where  F  is 
deterministic,  and  η  is  random  with  a  priori  known  probability 
distribution.          	


Sequence of observations {yn, n = 0, …} 	


Assume P(yn | xn, xn-1, …, x0) = P(yn | xn)	


Verified in particular if yn = G(xn, ε), where G is deterministic, and ε is 
random with a priori known probability distribution. 	
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We want to estimate P(xn | yn, …, y0) ≡P(xn | y0 : n)	


P(xn | y0 : n) = P(xn | yn , y0 : n-1) = P(yn | xn , y0 : n-1) P(xn | y0 : n-1) / P(yn | y0 : n-1) 	

	
 	
 	
 	
     = P(yn | xn) P(xn | y0 : n-1) / P(yn)	


	
  P(xn | y0 : n-1) = ∫ P(xn | xn-1) P(xn-1 | y0 : n-1) dxn-1	


	
 Chapman-Kolmogorov equation 	


	
 Particular case 	

	
 	
 	
 xn = Mn xn-1 + ηn     ηn Gaussian with a priori known pdf               	

	
 	
 	
 yn = Hn xn + εn        εn  Gaussian with a priori known pdf 	


	
 	
 ⇒ Kalman filter   	
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Idea :	


Use  a  proposal  density  that  is  closer  to  the  new 
observations  than  the  density  defined  by  the 
predicted particles (for instance the density defined 
by  EnKF,  after  the  latter  has  used  the  new 
observations). 	
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van Leeuwen, 2017, Annales de la faculté des sciences de 
Toulouse Mathématiques, 26 (4), 1051-1085 13 



van Leeuwen, 2017, ibid. 14 
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Several  variants  of  proposal  densities  have  been 
defined  and  studied  :  perform  an  EnKF  up  to 
observation  time,  and  then  use  the  obtained 
ensemble  as  proposal  density,  nudge  the  model 
integration  between  times  n-1  and  n  towards  the 
observations at time n,  perform a 4D-Var on each 
particle, optimal proposal density, …	
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van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084	
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The Equivalent-Weights Particle Filter (Ades and van 
Leeuwen, QJRMS, 2013).	


	
 Make  the  proposal  density  depend  on  the  whole 
ensemble  at  time  n-1,  and  not  only  on  xl

n-1,  use 
density  of  the  form  q(xn  | xn-1

1,L,  yn),  where  1,L  
denotes  all  ensemble  indices,  rather  than  of  the 
more  restrictive  form  q(xn  | xl

n-1,  yn).  This  gives 
many degrees of  freedom which can be exploited 
for  obtaining  at  time  n  an  ensemble  with  almost 
equal weights.        	
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Example Vorticity equation model with random 
error η.	


	
 	


	
 	

	
 State-vector dimension ≈ 65,000 
	
 Decorrelation time:  25 timesteps	

	
 One  complete  noisy  model  field  observed 

every 50 timesteps	

	
 24 particles  	
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Bayesianity : experts say all these filters are bayesian 
(in the limit of infinite  ensemble size) 

Possible difficulties : numerical implementation, 
numerical cost   

Particle filters are actively studied (van Leeuwen, 
Morzfeld, …)  
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-  Ensemble Variational Assimilation (EnsVAR). 	

	
 (work with M. Jardak, 2018)	
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Ensemble Variational Assimilation 

Data of the form	


z = Γx + ζ, 	
 ζ ∼ N [0, S]	


Conditional  probability distribution is	


	
 	
 	
       P(x | z) = N [xa, Pa]	

with	


	
 	
 	
       xa = (Γ T S-1Γ)-1 Γ T S-1 z	

	
 	
 	
       Pa = (Γ T S-1Γ)-1	
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Variational form	


P(x | z) ∝ exp[ -(z - Γξ)T S-1 (z - Γξ)/2 ] ∝ exp[ -(ξ -xa)T (Pa)-1 (ξ -xa)/2 ]	


Conditional expectation xa minimizes following scalar objective function, defined 
on state space X 

ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - z)]T S-1 [Γξ - z]	


Pa = [∂2J /∂ξ2]-1  	




26 

Ready recipe for determining Monte-Carlo sample of 
conditional pdf P(x | z) : 	


- Perturb data vector z according to its own error probability 
distribution  	


	
 	
 	
     z  → z‘ = z + δ, 	
 δ ∼ N [0, S]	


and compute  	

	
 	

 	
 	
 	
     x‘a = (Γ T S-1Γ)-1 Γ T S-1 z‘	


 x‘a is distributed according to N [xa, Pa] 	
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Ensemble Variational Assimilation (EnsVar) implements that 
algorithm, the expectations  x’a being computed by standard 
variational assimilation.	
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 Present purpose	


    Evaluate EnsVar as a probabilistic estimator when implemented in nonlinear 
and/or non-Gaussian cases, i. e., through minimization of	


ξ ∈  X  →  J(ξ)  ≡  (1/2) [Γ(ξ) – z‘]T S-1 [Γ(ξ) - z‘]	


	
 where Γ may be nonlinear, and errors affecting data z may be non-Gaussian.   	
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 -  Objectively  compare  with  other  existing  ensemble  assimilation 
algorithms : Ensemble Kalman Filter (EnKF), Particle Filters (PF)	


	
 -  Simulations  performed  on  two  small-dimensional  chaotic  systems,  the 
Lorenz’96 model and the Kuramoto-Sivashinsky equation	
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System produces wavelike chaotic motions, with properties similar to those of 
midlatitude atmospheric waves	


	
 - generally westward phase velocity	

	
 - typical predictability time : 5 ‘days’	

	
 - in addition, quadratic terms conserve ‘energy’  
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Experimental procedure (1)	


	
 0. Define a reference solution xt
r by integration of the numerical model	


	
 1. Produce ‘observations’ at successive times tk of the form	


	
 	
 	
 	
 yk = Hkxk
r
 + εk 	


	
 where  Hk is  (usually,  but  not  necessarily)  the  unit  operator,  and  εk  is  a  random (usually,  but  not 
necessarily, Gaussian) ‘observation error’.	
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Experimental procedure (2)	


	
 2. For given observations yk, repeat Nens times the following process	


	
 	
 - ‘Perturb’ the observations yk as follows	


	
 	
 	
 	
 yk →  zk = yk + δk 	


 	
 	
 where δk is an independent realization of the probability distribution which has produced εk.	


	
 	
 - Assimilate the ‘perturbed’ observations zk by variational assimilation	


	
 This  produces  Nens  (=30)  model  solutions  over  the  assimilation  window,  considered  as  making 
up a tentative sample of the conditional probability distribution for the state of the observed system 
over the assimilation window.	


	
 The  process  1-2  is  then  repeated  over  Nreal  successive  assimilation  windows.  Validation  is 
performed on the set of Nreal (=9000) ensemble assimilations thus obtained.       	
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Linearized Lorenz’96. 5 days	
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How  to  objectively  evaluate  the  performance  of  an  ensemble  (or  more  generally 
probabilistic) estimation system ?	


	
 - There is no general objective criterion for Bayesianity	


	
 -  We  use  instead  the  weaker  property  of  reliability,  i.  e.  statistical  consistency 
between predicted probabilities and observed frequencies of occurrence (it rains with 
frequency 40% in the circonstances where I have predicted 40% probability for rain).	


	
 Denote  Y  the  predicted  probability  distribution,  and  X  the  verifying  reality.  Consider 
the probability distribution for the couples (X, Y)  (that probability distribution can be 
obtained empirically). Reliability is the property that	


	
 P(X ⏐Y) = Y  for any Y  	


	
 Reliability  can  be  objectively  validated,  provided  a  large  enough  sample  of 
realizations of the estimation system is available.	


	
 Bayesianity implies reliability, the converse not being true.	
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 In  addition,  we  evaluate  resolution  (also  called  sharpness),  which  bears  no 
direct relation to bayesianity, and is the capability of the estimation system to a 
priori distinguish between different situations. It is best defined as the degree 
of  statistical  dependence  between  X  and  Y  (J.  Bröcker).  Total  absence  of 
resolution is independence between X and Y, viz.	


P(X ⏐Y) = P(X)  for any Y 	


	
 Resolution,  beyond  reliability,  measures  the  degree  of  usefulness  of  the 
ensembles.  	




aaaaa 

37 Linearized Lorenz’96. 5 days	
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Objective function	


J(ξ)  ≡  (1/2) [Γξ - z]T S-1 [Γξ - z]	


Jmin ≡ J(xa)  =  (1/2) [Γxa - z]T S-1 [Γxa - z]	


          =  (1/2) dT [E(ddT)]-1 d	


where d is innovation 	

	
 	
 	
 ⇒	
      E(Jmin)  =  p/2	
 	
 (p = dimy = dimd)	


If p is large, a few realizations are sufficient for determining E(Jmin) 	

Often called χ2 criterion.	


Remark. If in addition errors are gaussian Var(Jmin)  =  p/2	
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Linearized Lorenz’96. 5 days. Histogram of Jmin 	

E(Jmin) = p/2 (=200) ; σ(Jmin) = √(p/2) (≈14.14)    	


Observed values 199.39 and 14.27 	




40 Nonlinear Lorenz’96. 5 days	


(initial time of assimilation window) 



41 Nonlinear Lorenz’96. 5 days	




42 Nonlinear Lorenz’96. 5 days. Histogram of Jmin 	
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44 
Nonlinear Lorenz’96. 10 days. Histogram of Jmin 	
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- Results are independent of the Gaussian character of the 
observation errors (trials have been made with various 
probability distributions)  

- Ensembles produced by EnsVar are very close to Gaussian, 
even in strongly nonlinear cases. 
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-  Comparison Ensemble Kalman Filter (EnKF) and Particle 
Filters (PF) 

 Both of these algorithms being sequential, comparison is fair only at 

end of assimilation window  
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Nonlinear Lorenz’96. 5 days. Diagnostics at end of assimilation window	




51 
Nonlinear Lorenz’96. EnKF. Diagnostics after 5 days of assimilation	




52 
Nonlinear Lorenz’96. PF. Diagnostics after 5 days of assimilation	




53 
EnsVAR. Diagnostics for 5-day forecasts	




54 EnKF. Diagnostics for 5-day forecasts	
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PF. Diagnostics for 5-day forecasts	
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RMS errors at the end of 5-day assimilations and 5-day forecasts 



From course 7	


Weak constraint variational assimilation 	


Allows for errors in the assimilating model	


•  Data	

	
 	
 - Background estimate at time 0	

	
 	
 	

	
 	
   x0

b  =  x0
  + ζ0

b 	
  E(ζ0
bζ0

bT) = P0
b	


	
 	
 - Observations at times k = 0, …, K	

	
 	
 	

	
 	
    yk = Hkxk + εk	
 E(εkεk’

T) = Rkδkk’	


	
 	
  - Model	

	
 	
  	

	
 	
   xk+1 = Mkxk + ηk 	
  E(ηkηk’

T) = Qkδkk’ k = 0, …, K-1	
 	
 	
 	


	
 	
 Errors assumed to be unbiased and uncorrelated in time, Hk and Mk linear 	
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 In the present case, objective function of the form	

	
 	


	
 (ξ0, η1, ..., ηK-1) → 	


	
 J(ξ0, η1, ..., ηK-1)   

  =  (1/2) Σk=0,…,K[yk - Hkξk]T Rk
-1 [yk - Hkξk]	


	
 	
     + (1/2) Σk=0,…,K-1ηk
TQk

-1ηk 

 subject to 	


	
 	
    ξk+1 = Mk(ξk) + ηk   ,    k = 0, …, K-1    	


	
  ‘Observations’ consist of 	

	
 	
 	
 	

	
 	
 	
 - sequence {yk} ,    k = 0, …, K   (with unit observation operator Hk)	

	
 	
 	
 - observations 0 for ηk   ,    k = 0, …, K-1    	
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 It  turns  out  that  QSVA is  no  more  necessary.  The  model 
error  term  in  the  objective  function  has  a  regularizing 
effect which makes the function much smoother.  	
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Weak-constraint 
ensemble 
variational 
assimilation 
18 days, Q = 0.1 
1200 realizations 
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62 

 Kuramoto-Sivashinsky equation	


  

	
 with periodicity in x, L = 32π	
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Ensembles obtained are Gaussian, even if errors in data are not 

Produces Monte-Carlo sample of (probably not) bayesian pdf 
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Unknown x to be determined. Belongs to state space S, with dimension n	

Data, belonging to data space D, with dimension m, available in the form	


	
 	
 	
          z = Γx + ζ	


where Γ is a known (mxn)-matrix, rankΓ = n and ζ is ‘error’	


Best Linear Unbiased Estimate (BLUE)	


xa ≡ (Γ T S-1Γ)-1 Γ T S-1 [z - µ] 	
 	


	
 with µ = E(ζ) and S = E[(ζ- E(ζ) (ζ- E(ζ)T]. 	


	
 	

	
 E(xa-x) = 0	
 	
 E[(xa-x) (xa-x)T] ≡ Pa = (Γ T S-1Γ)-1	


Determinacy condition : rankΓ = n. Data contain information, directly or indirectly, on every 
component of state vector x. Requires m ≥ n.	


BLUE is invariant in any change of origin, or in any invertible linear transformation, in either 
data or state space. In particular, it is independent of the choice of a scalar product or 
norm in either of those spaces. BLUE minimizes the quadratic estimation error on any 
component of x. 	
 66 



If error ζ is gaussian, ζ ∼ N [µ, S], BLUE achieves bayesian estimation in the sense that	


 	
 	
 	
 	
 P(x | z) = N [xa, Pa]	


Any assumed probability distribution P(ζ) defines a conditional probability distribution P(x | 
z)  for  x.  In  case  the  distribution  P(ζ)  is  known only  through  its  expectation  µ  and 
covariance matrix S,  the gaussian distribution N [µ,  S] leads for x to the conditional 
probability distribution P(x | z) with the largest entropy. The gaussian choice is in that 
sense the ‘least-committing’ choice.          	


BLUE is the simplest of non-simplicist algorithms.	
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The  BLUE  can  be  obtained  by  minimization  of  the  following  scalar 
objective function, defined on state space X  	


ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - (z-µ)]T S-1 [Γξ - (z-µ)]	


And in case of nonlinearity ?	


 z = Γ(x) + ζ	


Variational approach can be heuristically implemented	


ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γ(ξ) - (z-µ)]T S-1  [Γ(ξ) - (z-µ)]	


It works !	
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If data are of the form (after possibly an appropriate transformation)	

 	

	
 	
 	
 xb  =  x  + ζb	
 	

	
 	
 	
 y  =  H(x) + ε	


Transformation 	


	
 	
 	
 xb  =  x  + ζb	
 	

	
 	
 	
 y - H(xb) =  H(x) - H(xb) + ε  ≈ H’(x - xb) + ε    

where H’ is jacobian of H, makes the estimation problem linear in the deviation x – xb 
(tangent linear approximation)	


All algorithms that have been presented in the course, with the exception of 
particle filters, are empirical heuristic extensions of the BLUE approach to 
approximate nonlinear and non-gaussian situations.   	
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Artificial Intelligence 	

	
 	
 	
 (aka Machine Learning or Deep Learning)	


Numerical  modelling of  the atmospheric  and oceanic flow, as  presented in the 
course,  fundamentally  built  on  physical  laws  known  from  physics 
(conservation of mass, momentum and energy).	


Why not directly use observations (for instance, in the case of a weather forecast, 
why not  look for  analogues in  the past,  and make the forecast  from those 
analogues) ?	


E. N. Lorenz (1960s). Sample of past observations will never be large enough for 
competing with physically-based models.	


But :	

	
 - there is no incompatibility between the two approaches	


	
 -  there  remain  many  processes  in  numerical  models  which  we  do  not  know 
how to describe on the basis of well-established physical laws (interactions 
between atmosphere and underlying medium, such as e.g. vegetation, all kinds 
of subgrid scale processes, …)       	
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Artificial Intelligence (aka Machine Learning) (continuation)	


Powerful numerical tools have been developed for the exploitation of very large 
sets of data (big data)	


	
 Neural  networks.  Define  an  explicit  numerical  link  between  an  input  set  and 
an  output  set.  Define  function  F  such  that,  to  some  useful  degree  of 
approximation 	


	
 	
 	
 	
 y = F(x)	


	
 where x and y belong to the input and output set respectively.	


	
 The function F is typically built as a composition of sigmoid functions     	
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Artificial Intelligence (aka Machine Learning) (continuation 2)	


	
 Neural  networks  have  turned  out  to  be  extrermely  efficient  in 
many  applications.  In  the  context  of  assimilation  of 
observations, they have been used for defining for instance the 
observation  operators  (H)  corresponding  to  satellite 
observations.  But  they  have  been  used  more  recently,  in 
evaluation  studies,  and  with  some  success,  for  determining 
‘dynamical laws’.  	
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Assimilation, which originated from the need of defining initial conditions for numerical weather forecasts, has 
gradually extended to many diverse applications	


•  Oceanography	

•  Palaoclimatology	

•  Atmospheric chemistry (both troposphere and stratosphere)	

•  Oceanic biogeochemistry	

•  Ground hydrology	

•  Terrestrial biosphere and vegetation cover	

•  Glaciology	

•  Magnetism (both planetary and stellar)	

•  Plate tectonics	

•  Planetary atmospheres (Mars, …)	

•  Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)	

•  Identification of source of tracers	

•  Parameter identification	

•  A priori evaluation of anticipated new instruments	

•  Definition of observing systems (Observing Systems Simulation Experiments)	

•  Validation of models	

•  Sensitivity studies (adjoints)	

•  Mathematical studies, independently of direct real life applications	

•  …	


It has now become a major tool of numerical environmental science, and a subject of mathematical study in its 
own right. 



A few of the (many) remaining problems : 

 Observability (what to observe in order to know what we 
want to know ? Data are noisy, system is chaotic !)  

 More accurate identification and quantification of errors 
affecting data particularly the assimilating model (will 
always require independent hypotheses) 

 Assimilation of images 

 … 
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La Fin du Cours …  
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