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- Particle filters. Principle. Variants (Proposal
Densities). A few results.

- Ensemble Variational Assimilation. A few
results.

- Conclusions and perspectives



Exact bayesian estimation ?
Particle filters

Predicted ensemble at time 7 : {x*,, /=1, ..., L}, each element with its own
weight (probability) P(x?)

Observation vector at same time : y = H(x) + ¢

Bayes’ formula
P(xb|y) = P(y|xb) P(xb) / P(y)

Defines updating of weights



Bayes’ formula
P(x’)|y) ~ P(y]x”) P(x”)

If error ¢ is independent of all previous data
P(ylx?) = Ple=y - H(x")]

Defines updating of weights; particles are not modified. Asymptotically
converges to bayesian pdf. Very easy to implement.

Observed fact. For large state dimension, ensemble tends to collapse.



Behavior of max w*

> N, =103 N, = 10,30,100; 103 realizations

N =10 | average squared error of
200 | posterior mean = 5.5

Loo= 127
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C. Snyder, http://www.cawcr.gov.au/staff/pxs/wmodas/Oral/
Snyder.pdf



Problem originates in the ‘curse of dimensionality’. Large dimension
pdf’s are very diffuse, so that very few particles (if any) are present in
areas where conditional probability (‘likelihood’) P(y|x) is large.



Curse of dimensionality

Standard one-dimensional gaussian random
variable X

P[|X| <0]=0.84

In dimension n = 100, 0.84190=73 103



Bengtsson et al. (2008) and Snyder et al. (2008) evaluate that stability of
filter requires the size of ensembles to increase exponentially with
space dimension.



Alternative possibilities (review in van Leeuwen, 2017, Annales de la faculté des sciences de
Toulouse Mathématiques, 26 (4), 1051-1085)

Resampling. Define new ensemble.

Simplest way. Draw new ensemble according to probability distribution defined by the updated
weights. Give same weight to all particles. Particles are not modified, but particles with low
weights are likely to be eliminated, while particles with large weights are likely to be drawn
repeatedly. For multiple particles, add noise, either from the start, or in the form of ‘model
noise’ in ensuing temporal integration.

Random character of the sampling introduces noise. Alternatives exist, such as residual
sampling (Lui and Chen, 1998, van Leeuwen, 2003). Updated weights w, are multiplied by
ensemble dimension L. Then p copies of each particle / are taken, where p is the integer
part of Lw, Remaining particles, if needed, are taken randomly from the resulting
distribution.

However, resampling is not sufficient to avoid degeneracy of filters.



Sequence of random vectors {x*,n =0, ...}
Assume P(x"| x™1, ..., x0) = P(x"| x™1)

Markovianity. Verified in particular if x* = F(™!, n), where F is
deterministic, and 7 1s random with a priori known probability
distribution.

Sequence of observations {y",n=0, ...}
Assume P(y" | x", x™1, ..., x0) = P(y" | x")

Verified in particular if y" = G(x", €), where G is deterministic, and € 1s
random with a priori known probability distribution.
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We want to estimate P(x" | y", ..., y0) =P(x"| y°:7)

P(xn | yO : n) — P(xn | y, yO : n—l) — P(yn | X", yO ; n—l) P(xn ‘ yO : n—l) / P(yn | yO : n—l)
— P(yn | xn) P(xn ‘ yO : n—l) /P(yn)

P(x" | yO:n-l) =fP(x” | X1y P! | y():n—l) A1
Chapman-Kolmogorov equation
Particular case

x'=M,x"'+mn  n,Gaussian with a priori known pdf

Yi=H, x"+ ¢, ¢, Gaussian with a priori known pdf

= Kalman filter
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Idea :

Use a proposal density that 1s closer to the new

observations than the density defined by the
predicted particles (for instance the density defined
by EnKF, after the latter has used the new
observations).
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We are now to discuss a very interesting property of particle filters that
has received little attention in the geophysical community. We start from
Bayes:

— .
£ 0"
L"

| Tt n|.n—1 -
O:nl O:ny p(y |‘I" )p(:l: |$ ) On—-1),. 1:n—1 '
y ) = plx . 2.1
To simplify the analysis, and since we concentrate on a filter here, let us first
integrate out the past, to get:

p(z

P(-’Bnly ) M[ nlxn 1) n—llyln 1) dz"— 1 (5_2)

This expression does not change when we multiply and divide by a so-
called proposal transition density g(z"|z™~1,y"), so:

(mnlyﬂzn)

n n h f~1
lm)/ : )) a(z"le™ !,y )p(a Y d2n L (5.3)

1?“]12“ I,y

— 1064 -

van Leeuwen, 2017, Annales de la faculté des sciences de
Toulouse Mathematiques, 26 (4), 1051-1085
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As long as the support of g(z®|z" ', ™) is equal to or larger than that of
p{z™|z" ') we can always do this. This last condition makes sure we don’t
divide by zero. Let us now assume that we have an equal-weight ensemble
of particles from the previous analysis at time n — 1, so

. lhi!n—l)_z_‘s iy [5'4)

Using this in the equannn above gives:
- . 1 ply™|z") plz"|zF") i Sy
p(z®|y*™) = E N =t -g(z® |z, " b.b
TS LN T gy Ly

As a last step, we run the particles from time n — 1 to n, f.e. we sample
from the transition density. However, instead of drawing from p(z"|z7~1),
s0 running the original model, we sample from g(z™|=" ', y™). so0 from a
modified model. Let us write this modified model as

™= g(="%, ™) + g (5.6)
8o that we can write for the transition density, assuming 5" is Gaussian
distributed with covariance Q:

giz"z" 1, y™) = Nig(z" 1, 4"), Q). (5.7)

van Leeuwen, 2017, ibid. 14



Drawing from this dmsiw leads to:

nl)

FET N 1 ply"l=?) _pla?|e]
e = 3

s0 the posterior pdf at time n can be written as:

d{z" = z7) (5.8)

N
p(z" ™) = % wibpr (5.9)
=]
with weights w; given by:

1 plytle?)  plaplal!)
"N p(y*) e(zPla? ")
We recognise the first factor in this expression as the likelihood, and the
second as a [actor related to using the proposal transition density instead
of the original transition density to propagate from time n — 1 to n, so it is
related to the use of the proposed model instead of the original model. Note
that because the factor 1/N and p{y™) are the same for each particle and we
are only interested in relative weights, we will drop them from now on, so

(5.10)

p('mi n—'l)

g(z|=P "t y)

w; = p(y*[?) (5.11)
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Several variants of proposal densities have been
defined and studied : perform an EnKF up to
observation time, and then use the obtained
ensemble as proposal density, nudge the model
integration between times n-1 and n towards the
observations at time n, perform a 4D-Var on each
particle, optimal proposal density, ...

16
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Fic. 12. Comparison of rms error (m? s~!) between ensemble mean
and independent observations (dotted line) and the std dev in the
ensemble (solid line). The excellent agreement shows that the SIRF
1s working correctly.

van Leeuwen, 2003, Mon. Wea. Rev., 131, 2071-2084
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The Equivalent-Weights Particle Filter (Ades and van
Leeuwen, OJRMS, 2013).

Make the proposal density depend on the whole
ensemble at time n-1, and not only on x/*!, use
density of the form g(x" | x"!,;, y"), where 1L
denotes all ensemble indices, rather than of the
more restrictive form ¢g(x" | x/!, y"). This gives
many degrees of freedom which can be exploited
for obtaining at time n an ensemble with almost
equal weights.

18



Example Vorticity equation model with random
error 1.

DE +f) _
Dt

n

State-vector dimension = 65,000
Decorrelation time: 25 timesteps

One complete noisy model field observed
every 50 timesteps

24 particles

19



o L] - L o
= ra - = -]

0 2 & & & 0 12 14 ¥ 18 X 2 M M > 2 4 & B 10 1 4 18 18 H = I N

-5 4 -3 F -1 0 1 F 3 4 5 —54—3-2-10'!'2315

Figure 5.3. Snap shot of the vorticity field of the truth (right) and the
particle filter mean (left) at time 25. Note the highly chaotic state of
the fields, and the close to perfect tracking.
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Figure 5.4. Snap shot of the absolute value of the mean-truth misfit
and the standard deviation in the ensemble. The ensemble underesti-
mates the spread at several locations, but averaged over the field it is
slightly higher, 0.074 versus 0.056. 21



Bayesianity : experts say all these filters are bayesian

(in the limit of infinite ensemble size)

Possible difficulties : numerical 1mplementation,

numerical cost

Particle filters are actively studied (van Leeuwen,
Morzfeld, ...)
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- Ensemble Variational Assimilation (EnsVAR).
(work with M. Jardak, 2018)



Ensemble Variational Assimilation

Data of the form

z=Ix+ ¢ E~ N0, S]

Conditional probability distribution is

P(x|z) = N[x4, P4
with

x& = (FT S-ID-I 'Ts-1 z
Pé = (FT S-ll')-l

24



Variational form
P(x | 2) < exp[ -(z - TS (z- I'E)/2] = exp[ -(&-x)T (Po)y! (§-x9)/2 ]

Conditional expectation x* minimizes following scalar objective function, defined
on state space X~

EEX—= A5 = U2)[IE-)]" S [IE-7]

Pt=[9°7 /08"

25



Ready recipe for determining Monte-Carlo sample of
conditional pdf P(x | z) :

- Perturb data vector z according to its own error probability
distribution

z =>7'=z+6, 6~N|0,S]
and compute
x4 = (TSI TS

x‘? 1s distributed according to N [x¢, P

26



Ensemble Variational Assimilation (EnsVar) implements that
algorithm, the expectations x’¢ being computed by standard
variational assimilation.

27



Present purpose

Evaluate EnsVar as a probabilistic estimator when implemented in nonlinear
and/or non-Gaussian cases, i. e., through minimization of

EE X — A5 = (1) &) -z']' STTE) - z°]

where I'may be nonlinear, and errors affecting data z may be non-Gaussian.

28



- Objectively compare with other existing ensemble assimilation
algorithms : Ensemble Kalman Filter (EnKF), Particle Filters (PF)

- Simulations performed on two small-dimensional chaotic systems, the
Lorenz’96 model and the Kuramoto-Sivashinsky equation

29



The Lorenz96 model

@ Forward model

d:
% = (;’Ek+1 —IEk_Q);Ek_l —xp+F for k=1,--- N

e Set-up parameters :

©Q the index k is cyclic so that zx—N = Tr+N = k.
©Q F = 8, external driving force.
Q@ —x, a damping term.
Q N = 40, the system size.
© Nens = 30, number of ensemble members.

1
° A
Q At = 0.05 = 6hours, the time step.
© frequency of observations : every 12 hours.
© number of realizations : 9000 realizations.

~ 2.5days, Az the largest Lyapunov exponent.

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




System produces wavelike chaotic motions, with properties similar to those of
midlatitude atmospheric waves

- generally westward phase velocity
- typical predictability time : 5 ‘days’

- in addition, quadratic terms conserve ‘energy’

ensembile optmal control, referance and cbservalions emm;rs.ue op@mal rajectores and thedr respective referance solut

14

12

10

" _a i e
0 5 1 15 20 2 3 I &0 -5 -4 =3 -2 =1 o
ES T, time{days)
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Experimental procedure (1)
0. Define a reference solution x,;” by integration of the numerical model
1. Produce ‘observations’ at successive times 7, of the form
Vo= Hx + g,

where /1, is (usually, but not necessarily) the unit operator, and ¢, is a random (usually, but not
necessarily, Gaussian) ‘observation error’.

32



Experimental procedure (2)
2. For given observations y,, repeat N, times the following process

ens

- ‘Perturb’ the observations y, as follows

Vo™ =Yt O
where 0, is an independent realization of the probability distribution which has produced ¢,.
- Assimilate the ‘perturbed’ observations z, by variational assimilation

This produces N,  (=30) model solutions over the assimilation window, considered as making
up a tentative sample of the conditional probability distribution for the state of the observed system
over the assimilation window.

The process 1-2 is then repeated over N, successive assimilation windows. Validation is
performed on the set of V,, ,(=9000) ensemble assimilations thus obtained.
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How to objectively evaluate the performance of an ensemble (or more generally
probabilistic) estimation system ?

- There is no general objective criterion for Bayesianity

- We use instead the weaker property of reliability, i. e. statistical consistency
between predicted probabilities and observed frequencies of occurrence (it rains with
frequency 40% in the circonstances where I have predicted 40% probability for rain).

Denote Y the predicted probability distribution, and X the verifying reality. Consider
the probability distribution for the couples (X, Y) (that probability distribution can be
obtained empirically). Reliability is the property that

P(X |Y)=Y forany Y

Reliability can be objectively validated, provided a large enough sample of
realizations of the estimation system is available.

Bayesianity implies reliability, the converse not being true.
35



In addition, we evaluate resolution (also called sharpness), which bears no
direct relation to bayesianity, and is the capability of the estimation system to a
priori distinguish between different situations. It is best defined as the degree
of statistical dependence between X and Y (J. Brocker). Total absence of
resolution is independence between X and Y, viz.

P(X | Y)=P(X) forany Y

Resolution, beyond reliability, measures the degree of usefulness of the
ensembles.
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Objective function

HE = (12 [IE-z]' STIE-7]
Tnin =TI = (1/2) [Ix4 - z]" S [Tx“ - 7]
= (172) d" [E(ddD)]' d

where d is innovation
= E(T,..) = pl2 (p = dimy = dimd)

If p is large, a few realizations are sufficient for determining E(’/, . )

Often called x? criterion.

Remark. If in addition errors are gaussian Var(7,.) = p/2
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4 ensemble optimal control, reference and observations ense;noble optimal trajectories and their respective reference soluti

T
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EnsVar : the non-linear Lorenz96 model (10 days ~ 2 TU
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EnsVar : consistency

Y

Nonlinear Lorenz’96. 10 days. Histogram of 7/

min
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Quasi-Static Variational Assimilation (QSVA)

0 Data Assimilation over [0 T]with T=N .dt = M. dt T
4D-Var over [0 1] starting from the observations

0 T
_—)

4D-Var over [0 21] starting from the minimizer found above
s
0 27

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




EnsVar : the non-linear Lorenz96 model 10 days with
QSVA
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EnsVar : the non-linear Lorenz96 model 18 days with
QSVA
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- Results are independent of the Gaussian character of the
observation errors (trials have been made with various

probability distributions)

- Ensembles produced by EnsVar are very close to Gaussian,

even in strongly nonlinear cases.
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- Comparison Ensemble Kalman Filter (EnKF) and Particle
Filters (PF)

Both of these algorithms being sequential, comparison is fair only at

end of assimilation window
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g EnKF trajectories and respective reference solutions rank histogram
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PF trajectories and respective reference solutions
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ensergble optimal trajectories and their respective reference solutions rank histogram
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ense{gble optimal trajectories and their respective reference solutions
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ens%r“_r)lble optimal trajectories and their respective reference solutions
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DA procedure S .
Assimilation | Forecasting
method

EnsVAR 0.2193510 | 1.49403506
EnKF 0.2449690 | 1.67176110
PF 0.7579790 | 2.62461295

RMS errors at the end of 5-day assimilations and 5-day forecasts
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From course 7

Weak constraint variational assimilation

Allows for errors in the assimilating model

. Data

- Background estimate at time O

X = xy + &P E(GPET) = Py
- Observations at times k=0, ..., K
Ve =Hpx + & E(g&") = Ry Gy
- Model
Xep1 = Mixy + 1, E(mie™) = Qb k=0,....K-1

Errors assumed to be unbiased and uncorrelated in time, H, and M, linear
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In the present case, objective function of the form

(S M1 o> Miet) =
(o> M5 -5 Nic1)
= (172) Zio, ki - HiEJ" R [y - Hi&l
+(1/2) Zkzo,...,K-l’?kTQk'lnk

subject to

S =ME)+n,, k=0,... K-1

‘Observations’ consist of

- sequence {y,}, k=0,...,K (with unitobservation operator H,)
- observations O fornp, , k=0,...,K-1
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It turns out that QSVA 1s no more necessary. The model
error term 1n the objective function has a regularizing
effect which makes the function much smoother.

59



Weak-constraint
ensemble
variational

assimilation
18 days, Q =0.1
1200 realizations
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Figure 11. Values of (half) the minima of the objective function
for all realizations of the weak-constraint assimilations over 18-day
windows.
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Kuramoto-Sivashinsky equation

ou O*u 0O%*u  Ou
&"‘@"‘@"'u%—O,CBE[O,L]

with periodicity in x, L = 327
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Linear case
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| Summary _

@ Under non-linearity and non-Gaussianity the EnsVar is a reliable and

consistent ensemble estimator (provided the QSVA is used for long
DA windows) .

@ EnsVar is at least as good an estimator as EnKF and PF.

@ Similar results have been obtained for the Kuramuto-Sivashinsky
model.

Ensembles obtained are Gaussian, even if errors in data are not

Produces Monte-Carlo sample of (probably not) bayesian pdf

(!
"
¢

O - =
0. Talagrand & M. Jardak Optimization for Bayesian Estimation




EnsVar : Pros and cons _

e Easy to implement when having a 4D-Var code
e Highly parallelizable

@ No problems with algorithm stability (i.e. no ensemble collapse, no
need for localization and inflation, no need for weight resampling)

e Propagates information in both ways and takes into account
temporally correlated errors

@ Costly (Nens 4D-Var assimilations).
@ Empirical.

@ Cycling of the process (work in progress).

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




Unknown x to be determined. Belongs to state space .$, with dimension n
Data, belonging to data space D, with dimension m, available in the form

z=Ix+
where I'is a known (mxn)-matrix, rank/ = n and Cis ‘error’

Best Linear Unbiased Estimate (BLUE)
xt= (LTSI TS [z- u)

with g = E(Z) and S = E[(&- E(§) (&~ E(D)'].
E(x*x) =0 E[(x*x) (x*-x)T| = P*= (I'" S"'I)"!

Determinacy condition : rankl = n. Data contain information, directly or indirectly, on every
component of state vector x. Requires m = n.

BLUE is invariant in any change of origin, or in any invertible linear transformation, in either
data or state space. In particular, it is independent of the choice of a scalar product or
norm in either of those spaces. BLUE minimizes the quadratic estimation error on any
component of x. 66



If error £ is gaussian, &~ M |[u, S|, BLUE achieves bayesian estimation in the sense that
P(x|2) = N[x, P]

Any assumed probability distribution P(&) defines a conditional probability distribution P(x |

z) for x. In case the distribution P(&) is known only through its expectation u and
covariance matrix S, the gaussian distribution Mu, S] leads for x to the conditional

probability distribution P(x | z) with the largest entropy. The gaussian choice is in that
sense the ‘least-committing’ choice.

BLUE is the simplest of non-simplicist algorithms.
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The BLUE can be obtained by minimization of the following scalar
objective function, defined on state space X

E€ X —= A5 = A2 [IE- W] STIE- (z-w]

And 1in case of nonlinearity ?

z=Ix)+ &

Variational approach can be heuristically implemented

E€ X —= A8 = AL -w]" S L5 - (z-w]

It works !
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If data are of the form (after possibly an appropriate transformation)

xt = x+&

y=HXx)+¢
Transformation

xb=x+&

y-Hx?) = Hx)- Ho) + e = H (x-xb) + ¢

where H’ is jacobian of H, makes the estimation problem linear in the deviation x — x”
(tangent linear approximation)

All algorithms that have been presented in the course, with the exception of

particle filters, are empirical heuristic extensions of the BLUE approach to
approximate nonlinear and non-gaussian situations.
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Artificial Intelligence
(aka Machine Learning or Deep Learning)

Numerical modelling of the atmospheric and oceanic flow, as presented in the
course, fundamentally built on physical laws known from physics
(conservation of mass, momentum and energy).

Why not directly use observations (for instance, in the case of a weather forecast,
why not look for analogues in the past, and make the forecast from those
analogues) ?

E. N. Lorenz (1960s). Sample of past observations will never be large enough for

competing with physically-based models.

But :
- there 1s no incompatibility between the two approaches

- there remain many processes in numerical models which we do not know

how to describe on the basis of well-established physical laws (interactions
between atmosphere and underlying medium, such as e.g. vegetation, all kinds

of subgrid scale processes, ...)
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Artificial Intelligence (aka Machine Learning) (continuation)

Powerful numerical tools have been developed for the exploitation of very large
sets of data (big data)

Neural networks. Define an explicit numerical link between an input set and

an output set. Define function F such that, to some useful degree of
approximation

y = F(x)

where x and y belong to the input and output set respectively.

The function F is typically built as a composition of sigmoid functions
1 ﬁ
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Artificial Intelligence (aka Machine Learning) (continuation 2)

Neural networks have turned out to be extrermely efficient in
many applications. In the context of assimilation of
observations, they have been used for defining for instance the
observation operators (H) corresponding to satellite
observations. But they have been used more recently, in
evaluation studies, and with some success, for determining
‘dynamical laws’.
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Assimilation, which originated from the need of defining initial conditions for numerical weather forecasts, has
gradually extended to many diverse applications

e Oceanography

e  Palaoclimatology

e Atmospheric chemistry (both troposphere and stratosphere)

e Oceanic biogeochemistry

e Ground hydrology

e  Terrestrial biosphere and vegetation cover

*  Glaciology

*  Magnetism (both planetary and stellar)

e  Plate tectonics

e  Planetary atmospheres (Mars, ...)

e  Reassimilation of past observations (mostly for climatological purposes, ECMWF, NCEP/NCAR)
e Identification of source of tracers

e  Parameter identification

e A priori evaluation of anticipated new instruments

e Definition of observing systems (Observing Systems Simulation Experiments)
e  Validation of models

e  Sensitivity studies (adjoints)

e  Mathematical studies, independently of direct real life applications

It has now become a major tool of numerical environmental science, and a subject of mathematical study in its
own right. 73



A few of the (many) remaining problems :

= Observability (what to observe in order to know what we
want to know ? Data are noisy, system is chaotic !)

= More accurate identification and quantification of errors

affecting data particularly the assimilating model (will
always require independent hypotheses)

= Assimilation of images
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HDFLook project (LOAR-USTL MODIS October 2 2002 [18h10 Hurricane Hernan {(Baja Cali
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La Fin du Cours ...



