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 Purpose of assimilation : reconstruct as accurately as possible the state of the 
atmospheric or oceanic flow, using all available appropriate information. The latter 
essentially consists of 

  The observations proper, which vary in nature, resolution and accuracy, and 
are distributed more or less regularly in space and time. 

  The physical laws governing the evolution of the flow, available in practice in 
the form of a discretized, and necessarily approximate, numerical model. 

  ‘Asymptotic’ properties of the flow, such as, e. g., geostrophic balance of middle latitudes. Although 
they basically are necessary consequences of the physical laws which govern the flow, these 
properties can usefully be explicitly introduced in the assimilation process. 
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Both observations and ‘model’ are affected with some uncertainty ⇒ 
uncertainty on the estimate. 

 For some reason, uncertainty is conveniently described by probability 
distributions (don’t know too well why, but it works; see, e.g. Jaynes, 
2007, Probability Theory: The Logic of Science, Cambridge University 
Press). 

 Assimilation is a problem in bayesian estimation. 

 Determine the conditional probability distribution for the state of the 
system, knowing everything we know (see Tarantola, A., 2005, Inverse 
Problem Theory and Methods for Model Parameter Estimation, SIAM). 

3 



4 

Bayesian Estimation   

 Determine  conditional  probability  distribution  of  the  state  of  the 
system, given the probability distribution of the uncertainty on the data	


  z1 = x + ζ1	
  ζ1 = N [0, s1] 	


	
 	
 	
 	
  density function 	
p1(ζ) ∝ exp[ - (ζ2)/2s1]	


  z2 = x + ζ2	
  ζ2 = N [0, s2] 	


	
 	
 	
 	
  density function 	
p2(ζ) ∝ exp[ - (ζ2)/2s2]	


•  ζ1 and ζ2 mutually independent	


What is the conditional probability P(x = ξ | z1, z2) that x be equal to some 
value ξ ?	




  z1 = x + ζ1	
 density function 	
 p1(ζ) ∝ exp[ - (ζ2)/2s1]	

  z2 = x + ζ2	
  density function 	
p2(ζ) ∝ exp[ - (ζ2)/2s2] 	


	
 	
 	
 ζ1 and ζ2 mutually independent	


x = ξ   ⇔  ζ1 = z1-ξ  and ζ2 = z2 -ξ	


•  P(x = ξ | z1, z2) ∝  p1(z1-ξ) p2(z2 -ξ)	


	
 	
 	
         ∝  exp[ - (ξ -xa)2/2pa]  

where 1/pa = 1/s1 + 1/s2 , xa = pa (z1/s1
 + z2/s2)	


Conditional probability distribution of x, given z1 and z2 :N [xa, pa]	

pa < (s1, s2) independent of z1 and z2 	
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Difficulties specific to assimilation of meteorological observations :	


	
 -  Very  large  numerical  dimensions  (n  ≈  106-109  parameters  to  be 
estimated,  p  ≈  4-5.107  observations  per  24-hour  period).  Difficulty 
aggravated in Numerical Weather Prediction by the need for the forecast to 
be ready in time.	


	
 - Non-trivial, actually chaotic, underlying dynamics	
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 Bayesian  estimation  is  actually  impossible  in  its  general  theoretical 
form in meteorological or oceanographical practice because	


•  It is impossible to explicitly describe a probability distribution in a space 
with dimension even as low as n ≈ 103, not to speak of the dimension  n ≈ 
106-9 of  present  Numerical  Weather  Prediction  models  (the  curse  of 
dimensionality).	


•  Probability distribution of errors on data very poorly known (model errors 
in particular).	
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One has to restrict oneself to a much more modest goal. Two	

approaches exist at present	


  Obtain  some  ‘central’  estimate  of  the  conditional  probability 
distribution  (expectation,  mode,  …),  plus  some  estimate  of  the  
corresponding  spread  (standard  deviations  and  a  number  of 
correlations). 

  Produce an ensemble of estimates which are meant to sample the 
conditional probability distribution (dimension N ≈ O(10-100)).	
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-  Reminder  on  elementary  probability  theory. 

Random  vectors  and  covariance  matrices, 
random functions and covariance functions	


-  Optimal  Interpolation.  Principle,  simple 
examples, basic properties.	


-  Best Linear Unbiased Estimate (BLUE)  	
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 Scalar random variable x 	


	
 Observed  outcome  of  ‘realizations’  of  a  process  that  is  repeated  a  large  number  of 
times. And also, a priori uncertainty on that result.  	


	
 For  any  interval  [a,  b],  the  probability  P(a  <  x  <  b)  is  known  (whether  inequalities 
are strict or not may matter).	


	
 Probability density function (pdf). Function  p(ξ) such that, for any interval [a, b] 	


	
 	


	
 (p(ξ) may contain diracs)	


	
 Expectation. Mean of a large number of realizations of x	


	
 	

	
 (may not exist)	
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 Scalar random variable x (continued)	


	
 Variance	


	
 	
 	
 Var(x) ≡ E{[x – E(x)]2} = E(x2) – [E(x)]2 

  

	
 Standard deviation	


	
 	
 	
 σ(x) ≡ √Var(x)    

	
 Centred variable  x’ ≡ x – E(x) 	
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 Couple of random variables x = (x1, x2)T	


	
 For any intervals [a1, b1], [a2, b2], probability P(a1 < x1 < b1 and a2 < x2 < b2) is known	


	
 Extends to any measurable  domain D  ⊂ R2 

   

	
 where p(ξ1, ξ2) is probability density function	


	
 Expectation 	

	
 	
 	
 E(x1 +  x2) = E(x1) +  E(x2)	
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 Couple of random variables x = (x1, x2)T	


	
 	

	
 Covariance	


	
 	
 	
 Cov(x1, x2) ≡ E(x1’ x2’) 

   Corr(x1, x2) ≡ Cov(x1, x2) / (σ(x1) σ(x2))  =  cos ϕ 

	
 Covariance  is  a  scalar  product,  and  defines  Euclidean  geometry  (on  space  of  finite-
variance random variables on a given trial space)	


	
 Modulus = standard deviation σ, angle = cos-1 (Corr), orthogonality = decorrelation	


	
 If x1 and x2 uncorrelated,	


	
 	
 	
 Var(x1 +  x2) = Var(x1) +  Var(x2)        (Pythagorean theorem) 

	
 	
 	
 E(x1 x2) = E(x1) E(x2)	
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 Couple of random variables x = (x1, x2)T (continued)	


	
 Independence	


	
 x1  and  x2  independent  :  knowledge  about  either  one  of  the  variables  brings  no 
knowledge about the other one.	


	
 For any intervals [a1, b1], [a2, b2]	


	
 	
 P(a1 < x1 < b1 and a2 < x2 < b2)  = P(a1 < x1 < b1) P(a2 < x2 < b2)	


	
 Equivalently, pdf’s verify	


	
 	
 p(ξ1, ξ2)  = p1(ξ1) p2(ξ2) 	


	
 Independence implies decorrelation. Converse is not true	

	
 (consider S = sin α, C = cos α, where α is uniformly distributed over [0, 2π])      	
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 Random  vector  x  =  (x1,  x2,  …,  xn)T  =  (xi)  (e.  g.  pressure,  temperature, 
abundance of given chemical compound at n grid-points of a numerical model)	


  Expectation E(x) ≡ [E(xi)] 	
 ;    centred vector    x’  ≡ x - E(x) 	


  Covariance  matrix 	


	
 	
 	
 	
 E(x’x’T) = [E(xi’xj’)]	
 	

	
  dimension nxn	

	
 	

	
 Non-random vector λ = (λi)i = 1, .., n	


	
 	
 	
 G ≡ Σi λi xi’	
 	
 G2 = Σi,j λi λj xi’xj’ 	


	
 	
 	
 E(G2) = Σi,j λi λj E(xi’xj’) =  λT E(x’x’T) λ  ≥ 0   	

	
 	

	
 Covariance  matrix  E(x’x’T)  is  symmetric  non  negative  (strictly  definite  positive 

except if linear relationship holds between the xi’‘s with probability 1).	
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 Change 	

	
 	
 	
 x  →  y ≡  Px	


	
 	
 	
 y’y’T = Px’(Px’)T = P x x’ T PT    	


	
 	
 	
 E(y’y’T)  = P E(x’x’T) PT	


    In change x  →  y, eigenvalues of covariance matrix remain 
>  0,  but  can  be  modified   (conserved  if  PT  =  P-1, 
orthogonal matrix). 	


	
 Eigenvalues can actually take any positive values. 	

	
 In  particular,  covariance  matrix  can  be  made equal  to  the 

unit  matrix,  for  instance  in  the  basis  of  principal 
components. 	
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  Two random vectors	


	
 x = (x1, x2, …, xn)T	

	
 z = (z1, z2, …, zp)T	

	
 	
 	
 	


	
 	
 	
 	
 E(x’z’T) = E(xi’zj’)	
  	


	
         dimension nxp	


	
 	
 Change  	


	
 	
 x  → u ≡  Ax	
 	
 z  →  v ≡  Bz	


	
 	
 	

	
 	
 	
 E(u’v’T) = A E(x’z’T) BT	
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     Covariance  matrices will be denoted	


	
 	
 	
 	
 Cxx  ≡  E(x’x’T) 	


	
 	
 	
 	
 Cxy  ≡  E(x’y’T) 	
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 Random  function  Φ(ξ)  (field  of  pressure,  temperature,  abundance  of 
given  chemical  compound,  …  ;  ξ  is  now  spatial  and/or  temporal 
coordinate) (aka stochastic process if function of time)	


  Expectation E[Φ(ξ)]  ; 	
 Φ’(ξ) ≡ Φ(ξ) - E[Φ(ξ)]	

  Variance      Var[Φ(ξ)] = E{[Φ’(ξ)]2}	


  Covariance function	


	
 	
 	
 (ξ1, ξ2) →  CΦ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)]	


  Correlation function	


	
 	
 	
 CorΦ(ξ1, ξ2)  ≡  E[Φ’(ξ1) Φ’(ξ2)] / {Var[Φ(ξ1)] Var[Φ(ξ2)]}1/2	
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After N. Gustafsson 
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After N. Gustafsson 



After N. Gustafsson 
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 Covariance function can be 	

	
 	

	
 homogeneous	
 	
 CΦ(ξ1, ξ2) = H(ξ1 - ξ2) 	

	
 	

	
 or isotropic 	
 	
 CΦ(ξ1, ξ2) = K(⎜ξ1 - ξ2⎜) 	

	
 (on the sphere, no difference)	


	
 N points ξ1, ξ2, …, ξN  in state space	

	
 N non-random coefficients λ1, λ2, …, λN	


	
 	
 	
 	
 G ≡ Σi λi Φ’(ξi) 	
 	

	
 	


	
 	
 	
 E(G2) = Σi,j λi λj CΦ(ξi, ξj) ≥ 0   	
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 E(G2) = Σi,j λi λj CΦ(ξi, ξj) ≥ 0 	


	
 covariance  functions  are  of  positive  type  (or  definite 
positive).  Conversely,  a  function of  positive type can be 
shown to be the covariance function of a random function.  	


	
 Example	

	
 On a  circle,  function  C(ξ1,  ξ2)  =  cos(ξ1-ξ2)  is  covariance 

function of random function Φ(ξ) = 2 cos(ξ + α), where α 
is uniformly distributed over [0, 2π].	


	
 	

	
  

	
 	

	
 	


25 



	
 More generally, random function on 2π-circle of the form	


	
 	
             Φ(ξ) = Σk=-K, +K  φk exp (ikξ) 	


with φk = ρk exp (iθk), ρk real, k ≥ 0, φ-k = ρk exp (-iθk)      	


All  ρk  and  θk  random,  the  θk’s  being  uniformly  distributed 
over [0, 2π], mutually independent, and indepedent of the 
ρk ‘s.      	


Φ(ξ)  is  the superposition of a spatially uniform random ρ0 
(we assume E(ρ0)=0)  and of K sine waves with random 
and mutually independent (uniformy distributed) phases.   	




 Φ’(ξ1) Φ’(ξ2) = [Σk ρk exp(iθk) exp(ikξ1)]	

	
 	
 	
 	
 x [Σk’ ρk’ exp(-iθk’) exp(-ik’ξ2)]	


	
 	
 	
 = Σkk’ ρk ρk’ exp[i(θk-θk’)] exp[i (kξ1 – k’ξ2)]	


On taking expectation, E[exp[i(θk-θk’)] = 0 if k ≠ k’ and there 
remains 	


   E[Φ’(ξ1) Φ’(ξ2)] = CΦ(ξ1, ξ2)  = Σk E(ρk
2) exp[ik(ξ1 – ξ2)]  	


  CΦ(ξ1, ξ2)  = E(ρ0
2) + 2 Σk>0 E(ρk

2) cos [k(ξ1 – ξ2)]     	




	
 	

	
 Bochner-Khintchin  theorem.  Homogeneous  function  C 

(ξ1, ξ2) = H(ξ1 - ξ2) over Rn  of positive type ⇔ Fourier 
Transform of H is real ≥ 0.	


	
 In Rn, squared exponential 	


	
 	
      C(ξ1, ξ2)  = exp[- (ξ1- ξ2)T B-1 (ξ1- ξ2) ]    B > 0	


	
 is of positive type     	
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 Gaussian variables	


	
 Unidimensional	


	
 N [m, a]  ~ (2π a)-1/2 exp [- (1/2a) (ξ-m)2] 

	
 Dimension n	


	
 N [m, A] ~  
   [(2π)n detA]-1/2 exp [- (1/2) (ξ-m)TA-1(ξ-m)] 	
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 Gaussian variables	


	
 Gaussian couple z = (xT, yT) T  with distribution N [0, C]	


	
 pdf  ~  exp [- (1/2) zTC-1z] 	


	
 	

	
 x and y uncorrelated Cxy = 0, Cyx = 0	


	
 	
 	
 zTC-1z = xT Cxx
-1 x  + yT Cyy

-1 y	
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 Gaussian variables	


	
 	
 	
 zTC-1z = xT Cxx
-1 x  + yT Cyy

-1 y	


	
 	
 exp [- (1/2) zTC-1z] =	

                            exp [- (1/2) xT Cxx

-1 x ] exp [- (1/2) yT Cyy
-1 y]    	


	
 	
 p(z)  =  p(x) p(y)   	


	
 For globally Gaussian variables, decorrelation implies independence  	
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-  ‘Optimal  Interpolation’.  Basic  theory  and 
basic properties. A simple example.	
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Optimal Interpolation 

           x ξ1           
     x ξ3	


   X ξ 
 x ξ2	
 	
 	
 	
 x ξ5	


	
 	
 	
 x ξ4	


	
 Observations yj = Φ(ξj) + εj  at points ξj	


	
 Value x = Φ(ξ) at point ξ  ?	
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Optimal Interpolation 
Random field Φ(ξ)	


Observation network ξ1, ξ2, …, ξp	


For one particular realization of the field, observations	


yj = Φ(ξj) + εj   ,  j = 1, …, p        ,	
                making up vector y = (yj)	


Estimate x = Φ(ξ) at given point ξ, in the form	


	
 	
 	
  xa = α + Σj βj yj  = α + βTy	
, 	
 where β = (βj)	


α and the βj’s being determined so as to minimize the expected quadratic 
estimation error E[(x-xa)2]	
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Optimal Interpolation (continued 1) 

	
 E[(x-xa)2] minimum ⇒  E(x-xa) = 0    Estimate xa is unbiased.	


	
 	
 	
  xa = α + Σj βj yj	


	
 	
 	
 E(xa) = α + Σj βj E(yj)  	


	
 	
           xa - E(x) =  Σj βj [yj - E(yj)]	


	
 Computations are to be made on centred variables 	


	
 x’a  ≡  xa  -  E(x)  is  the  linear  combination  of  the  yj’  =  yj  -  E(yj)  that 
minimizes the distance to x’ = x - E(x). It is the orthogonal projection, 
in the sense of covariance, of x’ onto the space spanned by the yj’’s.         	
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Optimal Interpolation (continued 2) 

	
  x’ - x’a uncorrelated with yj’	


	
 	
 	
 E[(x’ – x’a) yj’] = 0	

	
 	
 	
 x’a =  Σk βk yk’ 	


	
 	
     ⇒	
 Σk βk E(yk’ yj’)  = E(x’ yj’)	


in matrix form	
  Cyy β = Cyx	
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Optimal Interpolation (continued 3) 
Solution	

	
 	
 	
   xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]	

	
 	
 	
        = E(x) + Cxy [Cyy]-1 [y - E(y)] 	


	
 	
 i. e.,	
 βT = Cxy [Cyy]-1	

	
 	
        	
 α = E(x) - βTE(y)	


Estimate is unbiased 	
  E(x-xa) = 0	


Minimized quadratic estimation error	


	
 	
 	
  E[(x-xa)2] = E(x’2) - E[(x’a)2]) 	

	
 	
 	
                   = Cxx  - Cxy [Cyy]-1 Cyx	


Estimation made in terms of deviations x’ and y’ from expectations E(x) 
and E(y).	
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Optimal Interpolation (continued 4) 
	
 	
 	
 	

	
 	
 	
  xa = E(x) + E(x’y’T) [E(y’y’T)]-1 [y - E(y)]	


	
 	
 	
  yj = Φ(ξj) + εj 	


E(yj’yk’) = E {[Φ’(ξj) + εj’][Φ’(ξk) + εk’]}	


	
 If  observation  errors  εj  are  mutually  uncorrelated,  have  common 
variance r, and are uncorrelated with field Φ, then	


	
 	
 	
  E(yj’yk’) = CΦ(ξj, ξk) + rδjk	

	
 and	

 	
 	
 	
  E(x’yj’) = CΦ(ξ, ξj) 	
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Optimal Interpolation (continued 5) 
	
 	
 	
 	


Unique observation (p=1)  	
  y1 = Φ(ξ1) + ε1	


Value x = Φ(ξ) at some point ξ to be estimated	

(all values assumed to be centred)	


	
 	
 	
 Cyy β  = Cyx  	


Cyy = E(y1
2) = CΦ(ξ1, ξ1) + r	
 Cyx  = CΦ(ξ, ξ1)	
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Optimal Interpolation (continued 6) 
	
 	
 	
 	


 	
 	
 	
 	
 	
       	

	
 	
 	
 	
 	
       x y1	
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After N. Gustafsson 
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Optimal Interpolation (continued 7) 
	
 	
 	
 	

Two mutually close observations (p=2)  	
 yj = Φ(ξj) + εj    ,  j = 1,2 	


Homogeneous covariance function  CΦ(χ1, χ2) = Γ(χ1- χ2)	


Linear system for weights βj’s  	
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Optimal Interpolation (continued 8) 
	
 	
 	
 	

Two mutually close observations (p=2)  	
 yj = Φ(ξj) + εj    ,  j = 1,2 	


For small δ,	


Sum equals weight that would be given to a unique observation located at 
position d, with error r/2    	
 43 
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Optimal Interpolation (continued 10) 
	
 	
 	
 	


	
 	
 	
  xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	


	
 Vector	

	
 	
 	
 µ = (µj) ≡ [Cyy]-1 [y - E(y)]	


	
 is independent of variable to be estimated	


	
 	
 	
 xa = E(x) + Σj µj  E(x’yj’) 	
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Optimal Interpolation (continued 11) 
	
 	
 	
 	


	
 	
 	
 xa = E(x) + Σj µj  E(x’yj’) 	


	
 	
 	
 Φa(ξ) = E[Φ(ξ)] + Σj µj  E[Φ’(ξ) yj’]	


	
 Under hypotheses made above, E[Φ’(ξ) yj’] = CΦ(ξ, ξj)   	


	
 	
 	
  Φa(ξ) = E[Φ(ξ)] + Σj µj  CΦ(ξ, ξj) 	


	
 Correction  made  on  background  expectation  is  a  linear 
combination of the p functions CΦ(ξ, ξj)	


	
 CΦ(ξ,  ξj),  considered as  a  function of  estimation position ξ,  is  the 
representer associated with observation yj.	
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Optimal Interpolation (continued 12) 

	
 Univariate  interpolation.  Each  physical  field  (e.  g.  temperature) 
determined from observations of that field only.	


	
 Multivariate  interpolation.  Observations  of  different  physical  fields 
are used simultaneously.  Requires specification of cross-covariances 
between various fields.	


	
 Cross-covariances  between  mass  and  velocity  fields  can  simply  be 
modelled on the basis of geostrophic balance.	


	
 Cross-covariances  between  humidity  and  temperature  (and  other) 
fields still a problem.	
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After N. Gustafsson 



After A. Lorenc, MWR, 1981 
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Optimal Interpolation (continued 13) 

Observation vector y	


Estimation of a scalar x	


	
 	
 	
  xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	


	
 	
 	
 pa ≡ E[(x-xa)2] = E(x’2) - E[(x’a)2]) 	

	
 	
 	
 	
   = Cxx  - Cxy [Cyy]-1 Cyx	


Estimation of a vector x	


	
 	
 	
  xa = E(x) + Cxy [Cyy]-1 [y - E(y)] 	


	
 	
 	
 Pa ≡  E[(x-xa) (x-xa)T] = E(x’x’T) - E(x’a x’aT) 	

	
 	
 	
 	
               = Cxx  - Cxy [Cyy]-1 Cyx	
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Optimal Interpolation (continued 14) 

	
 	
 	
  xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	

	
 	
 	
  Pa = Cxx  - Cxy [Cyy]-1 Cyx	


If probability distribution for couple (x, y) is Gaussian (with, 
in particular, covariance matrix	


then Optimal Interpolation achieves Bayesian estimation, in 
the sense that	


	
 	
 	
      P(x | y) = N [xa, Pa]	
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Best Linear Unbiased Estimate	


State vector x, belonging to state space S (dimS = n), to be estimated.	

Available data in the form of	


  A ‘background’ estimate  (e.  g.  forecast  from the  past),  belonging  to  state 
space, with dimension n 	


	
 xb  =  x  + ζb	
 	


  An additional set of data (e. g. observations), belonging to observation space, 
with dimension p	


	
 y  =  Hx + ε	


	
 H is known linear observation operator.	


Assume probability distribution is known for  the couple (ζb, ε).	

Assume E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 (not restrictive)	

Set E(ζbζbT) ≡ Pb (also often denoted B), E(εεT) ≡ R 	
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Best Linear Unbiased Estimate (continuation 1)	


	
 xb  =  x  + ζb	
 	
 	
  (1)	

	
 y  =  Hx + ε	
 	
 	
  (2)	


	
 A  probability  distribution  being  known  for  the  couple  (ζb,  ε),  eqs  (1-2) 
define probability distribution for the couple (x, y), with 	


	
 E(x) = xb ,  x’ = x - E(x) = - ζb	


	
 E(y) = Hxb ,  y’ = y - E(y) = y - Hxb = ε - Hζb	
 	
 (H is linear)	


	
 d ≡ y - Hxb is called the innovation vector.	
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Best Linear Unbiased Estimate (continuation 2)	

	
 	
 	
 	

Apply formulæ for Optimal Interpolation for estimating x 	


	
 	
 	
      xa = E(x) + Cxy [Cyy]-1 [y - E(y)] 	

	
 	
 	
      Pa = Cxx - Cxy [Cyy]-1 Cyx	


 	
 E(x) = xb ,  x’ = x - E(x) = - ζb	


	
 E(y) = Hxb ,  y’ = y - E(y) = y - Hxb = ε - Hζb	
 	

	
 	
 	


	
 Cxy = E(x’y’T)  =  E[-ζb(ε - Hζb)T] = - E(ζbεT) + E(ζbζbT)HT = PbHT        	

	
 	
      	
 	
 	
        0	
         Pb	


	
 Cyy = E(y’y’T)  =  E[(ε - Hζb) (ε - Hζb)T] = E(εεT) + HE(ζbζbT)HT	


	
 	
 	
 	
 	
               R	
 Pb	
 	
                 	

	
 	
 	
 Cyy =  R +  HPbHT	
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Best Linear Unbiased Estimate (continuation 3)	


	
 	
 	
 xa = xb + Pb
 HT

 [HPbHT 
 + R]-1 (y - Hxb)	


	
 	
 	
 Pa = Pb
 - Pb

 HT
 [HPbHT 

 + R]-1 HPb	


 	
 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.	

	
 	

	
 Equivalent set of formulæ 	

	
 	

	
 	
 	
 xa = xb + Pa

 HT
 R-1 (y - Hxb)	


	
 	
 	
 [Pa]-1 = [Pb]-1
 + HT

 R-1H	


 	
 Vector d ≡  y – Hxb is innovation vector	

	
 Matrix K ≡ Pb

 HT
 [HPbHT 

 + R]-1 = Pa
 HT

 R-1 is gain matrix.	


	
 If  couple  (ζb,  ε)  is  Gaussian,  BLUE  achieves  bayesian  estimation,  in  the  sense  that 
P(x | xb, y) = N [xa, Pa].	
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After A. Lorenc, MWR, 1981 
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Best Linear Unbiased Estimate (continuation 4)	


	
 H can be any linear operator	


	
 Example : (scalar) satellite observation	


	
 	
 	
 x = (x1, …, xn)T  temperature profile	

	
 	
 	
 	

	
 Observation 	
 y = Σi hixi + ε = Hx + ε  	
 ,      H = (h1, …, hn)     ,      E(ε2) = r	

	
 Background	
 xb = (x1

b, …, xn
b)T 	
 ,     error covariance matrix Pb = (pik

b)	


xa = xb + Pb
 HT

 [HPbHT 
 + R]-1 (y - Hxb)	


	
  [HPbHT + R]-1 (y - Hxb) = (y - Σι hιxιb) / (Σikhihk pik
b
 + r) ≡ µ	
	
 scalar !	


•  Pb = pb In	
  xi
a  = xi

b 
 + pb hi µ	


•   Pb = diag(pii
b) 	
 xi

a  = xi
b 

 + pii
b hi µ	


•   General case 	
 xi
a  = xi

b 
 + Σk pik

b hk µ 	
 	


	
 Each  level  i  is  corrected,  not  only  because  of  its  own  contribution  to  the  observation,  but  because  of  the 
contribution of the other levels with which its background error is correlated.	
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Best Linear Unbiased Estimate (continuation 5)	


	
 BLUE  is  invariant  in  any  invertible  linear  change  of 
variables, in either state or observation space.	


	
 Equivalently,  BLUE  is  independent  of  the  possible 
choice of a scalar product in either one of the two spaces.	


	
 If the couple (ζb,  ε) is Gaussian, the BLUE is Bayesian in 
the sense that  P(x | xb, y) = N [xa, Pa]	
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Best Linear Unbiased Estimate (continuation 6)	


	
 Variational form of the BLUE	


	
  BLUE xa minimizes following scalar objective function, defined on state space	


	
 ξ ∈ S  →	


•      J(ξ) ≡  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)	


  ≡ 	
         Jb                    + 	
                     Jo	


	
 	
 	
 	
 Pa =  [∂2J/∂ξ2]-1	
 	
 (inverse Hessian)	


	
 	
 	
 	
 ‘3D-Var’ 	
 	


	
 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	

	
 	

	
 Used operationally in USA, Australia, China, …	
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Cours à venir	


 Jeudi 17 mars 
Jeudi 24 mars  

 Jeudi 31 mars  
Jeudi 14 avril  
Jeudi 21 avril  
Jeudi 28 avril  
Jeudi 5 mai  
Jeudi 12 mai 

 	



