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- Best Linear Unbiased Estimator. Complements 	



-  How  to  introduce  temporal  dynamics  in 
assimilation  ?  Kalman  Filter.  Theory.  One 
didactic example.	



-  How  to  introduce  nonlinearity  ?  Reduced 
Rank Kalman Filters. Ensemble Kalman Filter	



-  Kalman Smoother	
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Best Linear Unbiased Estimate	



State vector x, belonging to state space S (dimS = n), to be estimated.	


Available data in the form of	



  A ‘background’ estimate  (e.  g.  forecast  from the  past),  belonging  to  state 
space, with dimension n 	



	

 xb  =  x  + ζb	

 	



  An additional set of data (e. g. observations), belonging to observation space, 
with dimension p	



	

 y  =  Hx + ε	



	

 H is known linear observation operator.	



Assume probability distribution is known for  the couple (ζb, ε).	


Assume E(ζb) = 0, E(ε) = 0, E(ζbεT) = 0 (not restrictive)	


Set E(ζbζbT) ≡ Pb (also often denoted B), E(εεT) ≡ R 	
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Best Linear Unbiased Estimate (continuation 3)	



	

 	

 	

 xa = xb + Pb
 HT

 [HPbHT 
 + R]-1 (y - Hxb)	



	

 	

 	

 Pa = Pb
 - Pb

 HT
 [HPbHT 

 + R]-1 HPb	



 	

 xa is the Best Linear Unbiased Estimate (BLUE) of x from xb and y.	


	

 	


	

 Equivalent set of formulæ 	


	

 	


	

 	

 	

 xa = xb + Pa

 HT
 R-1 (y - Hxb)	



	

 	

 	

 [Pa]-1 = [Pb]-1
 + HT

 R-1H	



 	

 Vector d ≡  y – Hxb is innovation vector	


	

 Matrix K ≡ Pb

 HT
 [HPbHT 

 + R]-1 = Pa
 HT

 R-1 is gain matrix.	



	

 If  probability  distributions  are  globally  gaussian,  BLUE  achieves  bayesian 
estimation, in the sense that P(x | xb, y) = N [xa, Pa].	
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After A. Lorenc, MWR, 1981 
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After N. Gustafsson 

6 Each observation comes with its representer	





Best Linear Unbiased Estimate (continuation 5)	



	

 BLUE  is  invariant  in  any  invertible  linear  change  of 
variables, in either state or observation space.	



	

 Equivalently,  BLUE  is  independent  of  the  possible 
choice of a scalar product in either one of the two spaces.  	
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Best Linear Unbiased Estimate (continuation 6)	



	

 Variational form of the BLUE	



	

  BLUE xa minimizes following scalar objective function, defined on state space	



	

 ξ ∈ S  →	



	

  J(ξ) ≡  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) (y - Hξ)T R-1 (y - Hξ)	



        ≡ 	

         Jb                    + 	

                     Jo	



	

 	

 	

 	

 Pa =  [∂2J/∂ξ2]-1	

 	

 (inverse Hessian)	



	

 	

 	

 	

 ‘3D-Var’ 	

 	



	

 Can easily, and heuristically, be extended to the case of a nonlinear observation operator H.	


	

 	


	

 Used operationally in USA, Australia, China, …	



8 



Best Linear Unbiased Estimate	



The case of a nonlinear observation operator	


	

 	



	

 xb  =  x  + ζb	

 	


	

 y  =  H(x) + ε         	

 H nonlinear	



	

 Innovation d ≡  y – H(xb)  = H(x) - H(xb) + ε	


	

 	

          	


	

 	

            ≈ H’(x – xb) + ε	

 	

 if  x – xb  small	



	

 where H’ is Jacobian matrix of H (matrix of partial derivatives) at point xb	



	

 Problem becomes linear in x – xb	

 	



	

 Tangent linear approximation             	
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Best Linear Unbiased Estimate	



	

 	



	

  0 =  x – xb+ ζb	

 	


	

 d  =  H’(x – xb) + ε	

 	



	

 	

 	

 xa = xb + Pb
 H’T

 [H’PbH’T 
 + R]-1 [y - H(xb)]	



	

 	

 	

 Pa = Pb
 - Pb

 H’T
 [H’PbH’T + R]-1 H’Pb	



	

 Analogue for variational form. Minimize	



ξ ∈ S  →	



     J(ξ) ≡  (1/2) (xb - ξ)T [Pb]-1 (xb - ξ) +  (1/2) [y – H(ξ)]T R-1 [y – H(ξ)]	
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-  How  to  introduce  temporal  dynamics  in 
assimilation  ?  Kalman  Filter.  Theory.  One 
didactic example.	



-  How  to  introduce  nonlinearity  ?  Reduced 
Rank Kalman Filters. Ensemble Kalman Filter	
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 Question.  How  to  introduce  temporal  dimension  in 
estimation process ?	



  Logic of Optimal Interpolation and of BLUE can be extended to time 
dimension.	



  But we know much more than just temporal correlations. We know 
explicit dynamics.	



	

 Real  (unknown)  state  vector  at  time  k  (in  format  of  assimilating  model)  xk.  Belongs 
to state space S (dimS = n)	



	

 Evolution equation	



 xk+1 = Mk(xk) + ηk  

  Mk is (known) model, ηk is (unknown) model error	
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Sequential Assimilation	



•  Assimilating model is integrated over period of time over which observations 
are available. Whenever model time reaches an instant at which observations 
are available, state predicted by the model is updated with new observations. 
In the jargon of the trade, Optimal Interpolation designates an algorithm for 
sequential assimilation in which the matrix Pb is constant with time, and 3D-
Var an algorithm in which, in addition, the analysis xa is obtained through a 
variational algorithm.   	



Variational Assimilation	



•  Assimilating  model  is  globally  adjusted  to  observations  distributed  over 
observation period. Often achieved by minimization of an appropriate scalar 
objective function measuring misfit between data and sequence of model states 
to be estimated.	
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Sequential Assimilation	



	

 Optimal Interpolation	


  
  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	


	

 	


  Evolution equation	



 xk+1 = Mk (xk) + ηk    k = 0, …, K-1	
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 Optimal Interpolation (2)	


	

 	


	

 At  time  k,  background  xb

k  and  associated  error  covariance  matrix  Pb  known, 
assumed to be independent of k.	



  Analysis step	



	

  xa
k = xb

k + Pb
 Hk

T
 [HkPbHk

T 
 + Rk]-1 (yk - Hkxb

k)	



	

 In  3D-Var,  xa
k  is  obtained  by  (iterative)  minimization  of  associated 

objective function  	



•  Forecast step 

  xb
k+1 =  Mk( xa

k)	
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Sequential Assimilation.  Kalman Filter  	


  
  Observation vector at time k	



 yk = Hkxk + εk     k = 0, …, K 

	

 E(εk) = 0   ;  E(εkεj
T) = Rk δkj	



 Hk linear	


	

 	

 	

 	


  Evolution equation	



 xk+1 = Mkxk + ηk    k = 0, …, K-1	


 E(ηk) = 0   ;  E(ηkηj

T) = Qk δkj 	



	

 Mk linear	



	

  	

 	

  

  E(ηkεj
T) = 0  (errors uncorrelated in time) 
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 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1Hk Pb
k	



  Forecast step (Mk linear) 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = E[(xb

k+1 - xk+1)(xb
k+1 - xk+1)T] = E[(Mk xa

k - Mkxk - ηk)(Mk xa
k - Mkxk - ηk)T] 	



	

          =  Mk E[(xa
k - xk)(xa

k - xk)T]Mk
T	



	

 	

     - E[ηk (xa
k - xk)T] Mk

T - MkE[(xa
k - xk)ηk

T]  + E[ηkηk
T] 	



	

 	

 = Mk Pa
k Mk

T + Qk  
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 At time k, background xb
k and associated error covariance matrix Pb

k known	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1 (yk - Hkxb
k)	



	

  Pa
k = Pb

k - Pb
k Hk

T
 [HkPb

kHk
T 

 + Rk]-1Hk Pb
k	



  Forecast step 

  xb
k+1 =  Mk xa

k	



	

  Pb
k+1 = Mk Pa

k Mk
T + Qk  

	

 Kalman filter (KF, Kalman, 1960)	



	

 Must be started from some initial estimate (xb
0, Pb

0)	
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 If  all  operators  are  linear,  and  if  errors  are  uncorrelated  in  time, 
Kalman filter produces at time k the BLUE xb

k (resp. xa
k) of the real 

state xk from all data prior to (resp. up to) time k, plus the associated 
estimation error covariance matrix Pb

k (resp. Pa
k).	



	

 If  in  addition  errors  are  globally  gaussian,  the  corresponding 
conditional  probability  distributions  are  the  respective  gaussian 
distributions N [xb

k, Pb
k] and N [xa

k, Pa
k].	
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 Kalman filter. A simple example (Ghil et al.)	



	

 Shallow-water equations (aka équations de Saint-Venant)	



	

 	



  

	

 Periodic domain D. Equations conserve energy 
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€ 

€ 

∂U
∂t

+ grad(ϕ +
1
2

U 2 )+ k ∧( f +ζ )U =  0

€ 

∂ϕ
∂t

+ div(ϕU ) =  0

€ € 

€ 

E ≡ 1
2

(ϕ 2

D
∫ +ϕU 2 )dS



	

 Equations linearized in the vicinity of state of rest	


	

 (ϕ = Φ0, U = 0)	



	

 	



  

	

 	



	

 Conserve quadratic energy 
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€ € € € 

€ 

∂ϕ
∂t

+Φ0divU = 0

€ 

∂U
∂t

+ gradϕ + k ∧ fU = 0

€ 

€ 

E ≡ 1
2

(ϕ 2

D
∫ +Φ0U

2 )dS



	

 Unidimensional domain	



	

 	



  

	

 	

 ‘Ocean’	

 	

 	

 ‘Continent’	


	

 	

 (no observation)	

 	

 	

 (observations) 
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M. Ghil et al. 23 



M. Ghil et al. 
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 Uncertainty evolves in time under the effect of	



	

 - Introduction of observations (decreases uncertainty)	



	

 - Model error (increases uncertainty)	



	

 -  Dynamics  of  the  system  (increases  or  decreases  uncertainty 
depending on stability of the state of the system) (dynamics is neutral 
in previous example)	
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 Nonlinearities ?	



	

 Linearity of observation and model operators have been explicitly used in	



	

 d ≡ y - Hxb = Hx + ε  - Hxb  = H(x - xb) + ε = - Hζb + ε	



	

 Mk xa
k - Mkxk = Mk(xa

k – xk)  	



	

     	


	

 If H nonlinear, and x – xb  small	


	

 H(x) – H(xb) ≈ H’(x - xb)	


	

 where H’ is Jacobian matrix of H (matrix of partial derivatives) at point xb	



	

 Similarly, if Mk nonlinear, and xa
k – xk small	



	

 Mk (xa
k) – Mk(x)  = Mk’(xa

k – xk)	


	

 where Mk’ is Jacobian matrix of Mk at point xa

k                     	



 Tangent Linear Approximation 
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 Nonlinearities ?	



	

 Model is usually nonlinear, and observation operators (satellite observations) tend more and more 
to be nonlinear.	



  Analysis step	



	

  xa
k = xb

k + Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 [yk - Hk(xb
k)]	



	

  Pa
k = Pb

k - Pb
k Hk’T

 [Hk’Pb
kHk’T 

 + Rk]-1 Hk’ Pb
k	



  Forecast step 

  xb
k+1 =  Mk(xa

k)	


	

  Pb

k+1 = Mk’ Pa
k Mk’T + Qk  

	

 Extended Kalman Filter (EKF, heuristic !)	
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 Costliest part of computation	


	

 	

 	

 	


	

 	

 Pb

k+1 = Mk Pa
k Mk

T + Qk  

	

 Multiplication  of  one  vector  by  Mk  =  one  integration  of  the  model 
between times k and k+1	



	

 Computation of Mk Pa
k Mk

T  ≈ 2n integrations of the model 	



	

 Need  for  determining  the  temporal  evolution  of  the 
uncertainty on the state of the system is the major difficulty 
in  assimilation  of  meteorological  and  oceanographical 
observations	
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Analysis of 500-hPa geopotential for 1 December 1989, 00:00 UTC (ECMWF, spectral 
truncation T21, unit m. After F. Bouttier)	
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Temporal  evolution  of  the  500-hPa  geopotential  autocorrelation  with  respect  to 
point located at 45N, 35W. From top to bottom: initial time, 6- and 24-hour range.  
Contour interval 0.1. After F. Bouttier. 30 



Two solutions :	



• Low-rank filters	


   Use low-rank covariance matrix, restricted to modes 

in  state  space  on  which  it  is  known,  or  at  least 
assumed,  that  a  large  part  of  the  uncertainty  is 
concentrated (this requires the definition of a norm 
on state space).	



 Reduced  Rank  Square  Root  Filters  (RRSQRT, 
Heemink)	



 Singular Evolutive Extended Kalman Filter (SEEK, 
Pham)	


	

 ….	
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Reduced Rank Square Root Kalman Filter (RRSQRT, Verlaan and Heemink, 
1997)	



A covariance matrix P can be written as 	



P = S ST	



where  the  column  vectors  of  S  are  the  (orthogonal)  principal  components 
(eigenvectors)  of  P  (the  modulus  of  each  vector  is  the  square  root  of  the 
associated eigenvalue).	



The principle of RRSQRT is to restrict the background error covariance matrix Pb 

to r « n principal components, thereby approximating Pb by (the time index k is 
dropped)	



Pb ≈ Sb SbT	



where Sb has dimensions n x r.	
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RRSQRT (continuation 1)	



Setting Ψ  ≡  (HSb)T, the gain matrix of the Kalman filter and the analysis error 
covariance matrix respectively become   	



K = Sb Ψ (ΨTΨ + R)-1	



and	



Pa = Sa SaT	



with	



Sa = Sb [Ir - Ψ (ΨTΨ + R)-1ΨT] 1/2	
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RRSQRT (continuation 2)	



In the prediction phase, the column vectors of Sa are evolved by the tangent linear 
model (an evolution of a perturbed state by the full model is also possible). If a 
model error is to be introduced, that is done by reducing the order r of Sa to r-
q, and introducing q new column vectors meant to represent the model error.	



Orthogonality  of  the  column  vectors  is  lost  in  the  prediction,  and  has  to  be 
reestablished. And, even if process is started from dominant column vectors, 
that dominance may of course be lost.	



Advantages  :  in  addition  to  reduced  computational  cost,  numerical  errors  are 
smaller when dealing with square root covariance matrices, as done here, than 
with full matrices (better conditioning).    	
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Singular Evolutive Extended Kalman Filter (SEEK, Pham, 1996)	



Based on the fact that, because of the linearity of Kalman Filter, the rank of the 
covariance matrix Pa

 or Pb cannot increase in either the update or the model 
evolution. SEEK performs a linear filter starting from a low rank Pb

0, and so 
runs the exact Kalman filter in the case of a perfect model. The algorithmic 
implementation  takes  advantage  of  the  rank-deficiency  of  the  covariance 
matrix. The rank of the latter is conserved (or decreased), but the subspace 
spanned by the directions with non-zero error evolves, in both the update and 
the dynamic evolution.	



In case model error is present, corresponding covariance matrix Qk is projected 
onto the directions with non-zero error (this is of course an approximation).        
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Singular Evolutive Interpolated Kalman Filter (SEIK, Pham, 2001)	



Non-trivial extension of SEEK to nonlinear model or observation operators. Rank 
deficiency is now forced.	
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Second solution :	



•  Ensemble filters	


 	

 Uncertainty is represented, not by a covariance matrix, but by 

an ensemble of point estimates in state space that are meant to 
sample the conditional probability distribution for the state of 
the system (dimension L  ≈ O(10-100)).	



	

 Ensemble  is  evolved  in  time  through  the  full  model,  which 
eliminates any need for linear hypothesis as to the temporal 
evolution.	



	

 Ensemble Kalman Filter (EnKF, Evensen, Anderson, …)	
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How to update predicted ensemble with new observations ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time : y = Hx + ε	



•  Gaussian approach	


 	

 	


	

 Produce sample of probability distribution for real observed quantity Hx 	


	

 yl = y - εl 

	

 where εl is distributed according to probability distribution for observation error ε.   	

 	



	

 Then use Kalman formula to produce sample of ‘analysed’ states	



	

 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 l = 1, …, L	

	

 (2)	



	

 where Pb
 is the sample covariance matrix of predicted ensemble {xb

l}.	



	

 Remark.  In  case  of  Gaussian  errors,  if  Pb  was  exact  covariance  matrix  of 
background error, (2) would achieve Bayesian estimation, in the sense that {xa

l} 
would be a sample of conditional probability distribution for x, given all data up to 
time k.	
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C. Snyder 39 



⎯  EnKF   ⎯ 3DVar (prior, solid; posterior, dotted) 

Prior  

posterior 

Better performance of EnKF than 3DVar also seen in both 12-h forecast and posterior 
analysis in terms of root-mean square difference averaged over the entire month  

Month-long Performance of EnKF vs. 3Dvar with WRF 

(Meng and Zhang 2007c, MWR, in review ) 
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The case of a nonlinear observation operator ?	



Predicted ensemble at time k : {xb
l},	

 l = 1, …, L	



Observation vector at same time :   y = H(x) + ε  	

    H nonlinear	



Two possibilities	



1. Take tangent linear approximation (as in Extended KF) and introduce jacobian H’ 	



2. Come back to original formula	



xa = E(x) + Cxy [Cyy]-1 [y - E(y)]	



That  formula does not  require  any other  link between x and y  than the one defined by the 
covariances matrices Cxy and Cyy.	



Here, as shown on the occasion of the derivation of the BLUE, E(x) is the backgound xb, and y - 
E(y) is the innovation y – H(xb)   	



Solution. Compute Cxy and Cyy as sample covariances matrices of the ensembles {xb
l} and {yl - 

H(xb
l)}, where the yl’s  are, as before, the perturbed observations yl = y - εl.     	
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But problems	



- Collapse of ensemble for small ensemble size (less than a few hundred). Collapse originates in 
the fact that gain matrix Pb

 HT
 [HPbHT 

 + R]-1 is nonlinear wrt background error matrix Pb, 
resulting in a systematic sampling effect. Solution : empirical ‘covariance inflation’.	



-  Spurious  correlations  appear  at  large  geographical  distances.  Empirical  ‘localization’ (see 
Gaspari and Cohn, 1999, Q. J. R. Meteorol. Soc.)	



-  In formula	



	

 xa
l = xb

l + Pb
 HT

 [HPbHT 
 + R]-1 (yl - Hxb

l) ,	

 	

 l = 1, …, L	

	



Pb, which is covariance matrix of an L-size ensemble, has rank L-1 at most. This means that 
corrections made on ensemble elements are contained in a subspace with dimension L-1. 
Obviously very restrictive if L « p , L « n.	
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Houtekamer and Mitchell (1998) use two ensembles, the elements of each of 
which are updated with covariance matrix of other ensemble.	
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There exist many variants of Ensemble Kalman Filter	



Ensemble Transform Kalman Filter (ETKF, Bishop et al., Mon. Wea. Rev., 2001)	



Requires  a  prior  ‘control’ analysis  xc
a,  emanating  from a  background  xc

b.  An  ensemble  is 
evolved about that control without explicit use of the observations (and without feedback to 
control)	



More precisely, define L x L matrix T such that, given Pb = ZZT, then Pa = ZTTTZT (not trivial, 
but possible). Then the background deviations xb

l – xc
b are transformed through Z → ZT into 

an ensemble of analysis deviations xa
l – xc

a.	



	

 (does not avoid collapse of ensembles) 	



Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., Physica D, 2007)	



Each gridpoint is corrected only through the use of neighbouring observations. 	
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Other variants of Ensemble Kalman Filter	



‘Unscented’ Kalman Filter (Wan and van der Merve, 2001, Wiley Publishing)	



Weighted Kalman Filter (Papadakis et al., 2010, Tellus A)	



Inflation-free Ensemble Kalman Filters (Bocquet and Sakov, 2012, Nonlin. Processes 
Geophys.)	



An iterative ensemble Kalman filter in the presence of additive model error (Sakov et 
al., 2017, Q. J. R. Meteorol. Soc.)   	
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Bayesian properties of Ensemble Kalman Filter ?	



Very little is known.	



 Le Gland et al. (2011). In the linear and gaussian case, the discrete pdf 
defined by the filter, in the limit of infinite sample size L, tends to the 
bayesian gaussian pdf. 

	

 No result  for  finite  size  (note  that  ensemble  elements  are  not  mutually 
independent)	



	

 In  the  nonlinear  case,  the  discrete  pdf  tends  to  a  limit  which  is  in 
general not the bayesian pdf.	



	

 Situation still not entirely clear	





Time-correlated Errors	



  Example of time-correlated observation errors	



  z1 = x + ζ1	

 	



  z2 = x + ζ2	

 	



	

 	

 E(ζ1) = E(ζ2) = 0   ;  E(ζ1
2) = E(ζ2

2) = s    ;     E(ζ1ζ2) = 0 	



	

 	

 BLUE of x from z1 and z2 gives equal weights to z1 and z2. The weights given to 
	

 z1 and z2. will remain equal in sequential assimilation in the successive 
	

 background and analyzed estimates xb and xa    	



	

 	

 Additional observation then becomes available 	


	

 	

 z3 = x + ζ3	

 	


	

 	

 E(ζ3) = 0    ;    E(ζ3

2) = s    ;    E(ζ1ζ3) = cs    ;    E(ζ2ζ3) = 0 	



	

 	

  BLUE of x from (z1, z2, z3) has weights in the proportion (1, 1+c, 1)	
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Time-correlated Errors (continuation 1)	



  Example of time-correlated model errors	



	

 	

 Evolution equation	


`	

 	

 xk+1 = xk + ηk	

  E(ηk

2) = q	


	

 	

 	


	

 	

 Observations	


	

 	

 yk = xk + εk , 	

  k = 0, 1, 2	

	

 E(εk

2) = r, 	

errors uncorrelated in time	


	

 	

 	


 Sequential  assimilation.  Weights  given  to  y0  and  y1  in  analysis  at  time  1  are  in  the  ratio 

r/(r+q). That ratio will be conserved in sequential assimilation. All right if model errors are 
uncorrelated in time.	



   
  Assume  E(η0η1) = cq	


	

 	

  Weights given to y0 and y1 in estimation of x2 are in the ratio 	



	

 	

 	

 	

 	

  	


  	



€ 

€ 

ρ =
r − qc

r + q + qc
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Conclusion	



 Sequential assimilation, in which data are processed by batches, the data of one 
batch being discarded once that batch has been used, cannot be optimal if data in different 
batches are affected with correlated errors. This is so even if one keeps trace of the 
correlations. 

	

 Solution	



	

 	

 Process all correlated in the same batch (4DVar, some smoothers)	


	

 	

 	

 	

 	

  	


  	



€ 
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Two questions	



	

 -  How  to  propagate  information  backwards  in  time  ? 
(useful for reassimilation of past data)	



	

 - How to take into account possible dependence in time ?	



Kalman Filter, whether in its standard linear form or in its Ensemble form, 
does neither.	
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 Kalman smoother 	



	

 Propagates information both forward and backward in time, as does 4DVar, 
but uses Kalman-type formulæ	



	

 Various possibilities 	



  Define new state vector  xT ≡ (x0
T, …, xK

T)	


	

 and use Kalman formula from a background xb and associated covariance 

matrix Πb.	


	

 ‘Observation operator’ must include the model equations	


	

 Can take into account temporal correlations         

  Update sequentially vector (x0
T, …, xk

T) T for increasing k	


	

 Cannot take into account temporal correlations  

	

 Algorithms exist in ensemble form	
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 E. Cosme (2015)	



	

 Ensemble  smoother  based  on  Singular  Evolutive 
Extended Kalman Filter (SEEK) 	



	

 Of  second  type  above.  Retropropagates  corrections  on 
fields backwards in time, but  without modifying relative 
weights given to previous data, i.e.  cannot be optimal in 
case of temporal dependence between errors.	
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E. Cosme, 
HDR, 
2015, 
Lissage 
d’ensemble 
SEEK 

Données 
synthétiques 
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E. Cosme, HDR, 2015, Lissage d’ensemble SEEK 

54 



Other variants of Ensemble Kalman Smoothers	



An  iterative  ensemble  Kalman  smoother  (Bocquet  and  Sakov,  2014.  Q.  J.  R. 
Meteorol. Soc.)	



An  Iterative  Ensemble  Kalman  Smoother  in  Presence  of  Additive  Model  Error 
(Fillion et al., 2019, SIAM/ASA J. Uncertainty Quantification) 	



55 



Best Linear Unbiased Estimate	



State vector x, belonging to state space S (dimS = n) 	


	

 	

 	

 xb  =  x  + ζb	

 E(ζbζbT) ≡ Pb    dim Pb  = n x n	



Observation vector y, belonging to observation space O  (dimO = p) 	


	

 	

 	

 y  =  Hx + ε	

 E(εεT) ≡ R         dim R  = p x p     	


	

 	

 	

 H linear operator from S  into O      dim H  = p x n          	


	

 	

 	


	

 	

 	

 	

 	



	

 	

 	

 xa = xb + Pb
 HT

 [HPbHT 
 + R]-1 (y - Hxb)	



	

 	

 	

 	


	

 	

 	

      S        ←   S  *     ←     O *    ←     O 	


	

 	

 	

 	


Alternative form of gain matrix 	


	

 	

 	

 	


	

 	

 	

 xa = xb + Pa

 HT
 R-1 (y - Hxb)	



	

 	

 	

 	


	

 	

 	

 structure is the same	
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gain matrix	





History of Numerical Weather Prediction 	



Cleveland Abbe	



The Physical Basis of Long Range Weather Forecasts, 1901,	



Monthly Weather Review	



Wilhelm Bjerknes	



Das Problem der Wettervorhersage, betrachtet von Standpunkt 	



der Mechanik und Physik, 1904, Meteorologische Zeitschrift	



V. Bjerknes at the origin of the ‘Bergen School of Meteorology' 
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From course 2	



Physical laws governing the flow	


  Conservation of mass	


	

 Dρ/Dt + ρ divU  =  0	

 	



  Conservation of energy	


	

 De/Dt - (p/ρ2) Dρ/Dt =  Q	



  Conservation of momentum	


	

 DU/Dt + (1/ρ) gradp - g + 2 Ω ∧U =  F	



  Equation of state	


	

  f(p, ρ, e) =  0	

 	

 	

 (p/ρ = rT, e = CvT)	



  Conservation of mass of secondary components (water in  the atmosphere, salt 
in the ocean, chemical species, …)	



	

 Dq/Dt + q divU  = S	



These physical laws must be expressed in practice in discretized (and necessarily	


imperfect) form, both in space and time	





History of Numerical Weather Prediction (continuation)   	



Lewis Fry Richardson  

Weather Prediction by Numerical Process, 1922 

Cambridge University Press * 

Forecast Factory 

Richardson number, fractals, pacifism  

* Accessible at URL 	



h t t p s : / / e n e r g y 4 c l i m a t e . p a g e s . i n 2 p 3 . f r / p u b l i c / e d u c a t i o n /
ensemble_data_assimilation_tutorial/notebooks/T1%20-%20Introduction%20to
%20Ensemble%20Data%20Assimilation%20for%20Numerical%20Weather
%20Prediction.html	
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 https://
energy4climate.pages.in2p3.fr/
public/education/
ensemble_data_assimilation_tut
orial/notebooks/T1%20-
%20Introduction%20to
%20Ensemble%20Data
%20Assimilation%20for
%20Numerical%20Weather
%20Prediction.html	
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History of Numerical Weather Prediction (continuation 2) 



History of Numerical Weather Prediction (continuation 3) 	



John von Neumann	



Institute for Advanced Studies, Princeton, 1946-1950	



First electronic computers (ENIAC)	



(J. Charney, N. A. Phillips, R. Fjørtoft, C. G. Rossby, 	



J. Smagorinsky, …) 	
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Institute for Advanced Study, about 1948-50. J. von Neumann is second from left, J. 
Charney first on right (R. Fjørtoft third from right ?) 

History of Numerical Weather Prediction (continuation 4) 	





History of Numerical Weather Prediction (continuation 5) 	



Charney developed vorticity  barotropic model 

First simulation of real atmospheric situation in 1950 

First operational numerical forecast performed in 1954 in Sweden 

(C. G. Rossby) 
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History of Numerical Weather Prediction (continuation 6) 	



Numerical  prediction  has  gradually  been  implemented  in  more  and  more 
meteorological services around the world.	



European Centre for Medium-Range Weather Forecasts (ECMWF, 1975) 

Ensemble prediction	



64 



History of Numerical Weather Prediction (continuation 7) 	



Extension to simulation of oceanic circulation and climate	



 (early 1970’s, S. Manabe and K. Bryan, GFDL).	



Climatic simulations (S. Manabe, R. Wetherald)	



S. Manabe awarded Nobel Prize in Physics in 2021 	
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History of Numerical Weather Prediction (continuation 8) 	



A  large  variety  of  models  covering  different  spatial  and  temporal  scales  and 
phenomena (small-scale convection, monthly and seasonal prediction, atmospheric 
chemistry, …) have been developed over the years and are used for research and 
operational applications.	



Intergovernmental Panel on Climate Change (IPCC, 1988) 

	

 Publishes  reports  that  describe  the  state  of  climate  science  and  presents 
‘projections’ largely based on numerical simulations	



	

 First report in 1990	



	

 Fifth report in 2014	



	

 Sixth report in 2021 and 2022 	
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Cours à venir	



 Jeudi 17 mars 
Jeudi 24 mars  

 Jeudi 31 mars  
Jeudi 14 avril  
Jeudi 21 avril  
Jeudi 28 avril  
Jeudi 5 mai  
Jeudi 12 mai 

 	




