École Doctorale des Sciences de l'Environnement d'Île-de-France
Année Universitaire 2021-2022

Modélisation Numérique de l'Écoulement Atmosphérique et Assimilation de Données

Olivier Talagrand
Cours 5

21 Avril 2022

From course 3

Best Linear Unbiased Estimate

$$
\begin{align*}
& \boldsymbol{x}^{b}=\boldsymbol{x}+\zeta^{b} \tag{1}\\
& \boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{\varepsilon} \tag{2}
\end{align*}
$$

A probability distribution being known for the couple (ξ^{b}, ε), eqs (1-2) define probability distribution for the couple $(\boldsymbol{x}, \boldsymbol{y})$, with
$E(\boldsymbol{x})=\boldsymbol{x}^{b}, \boldsymbol{x}^{\prime}=\boldsymbol{x}-E(\boldsymbol{x})=-\xi^{b}$
$E(\boldsymbol{y})=\boldsymbol{H} \boldsymbol{x}^{b}, \boldsymbol{y}^{\prime}=\boldsymbol{y}-E(\boldsymbol{y})=\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}^{b}=\boldsymbol{\varepsilon}-\boldsymbol{H} \xi^{b}$
(\boldsymbol{H} is linear)
$\boldsymbol{d} \equiv \boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}^{b}$ is called the innovation vector.

From course 3

Best Linear Unbiased Estimate

$$
\begin{aligned}
& \boldsymbol{x}^{a}=\boldsymbol{x}^{b}+\boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}\left[\boldsymbol{H} \boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}+\boldsymbol{R}\right]^{-1}\left(\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}^{b}\right) \\
& \boldsymbol{P}^{a}=\boldsymbol{P}^{b}-\boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}\left[\boldsymbol{H} \boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}+\boldsymbol{R}\right]^{-1} \boldsymbol{H} \boldsymbol{P}^{b}
\end{aligned}
$$

\boldsymbol{x}^{a} is the Best Linear Unbiased Estimate (BLUE) of \boldsymbol{x} from \boldsymbol{x}^{b} and \boldsymbol{y}.

Equivalent set of formulæ

$$
\begin{aligned}
& \boldsymbol{x}^{a}=\boldsymbol{x}^{b}+\boldsymbol{P}^{a} \boldsymbol{H}^{\mathrm{T}} \boldsymbol{R}^{-1}\left(\boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}^{b}\right) \\
& {\left[\boldsymbol{P}^{a}\right]^{-1}=\left[\boldsymbol{P}^{b}\right]^{-1}+\boldsymbol{H}^{\mathrm{T}} \boldsymbol{R}^{-1} \boldsymbol{H}}
\end{aligned}
$$

Vector $\boldsymbol{d} \equiv \boldsymbol{y}-\boldsymbol{H} \boldsymbol{x}^{b}$ is innovation vector
Matrix $\boldsymbol{K} \equiv \boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}\left[\boldsymbol{H} \boldsymbol{P}^{b} \boldsymbol{H}^{\mathrm{T}}+\boldsymbol{R}\right]^{-1}=\boldsymbol{P}^{a} \boldsymbol{H}^{\mathrm{T}} \boldsymbol{R}^{-1}$ is gain matrix.

If couple $\left(\xi^{b}, \varepsilon\right)$ is Gaussian, BLUE achieves bayesian estimation, in the sense that $P\left(\boldsymbol{x} \mid \boldsymbol{x}^{b}, \boldsymbol{y}\right)=\mathcal{N}\left[\boldsymbol{x}^{a}, \boldsymbol{P}^{a}\right]$.

From course 3

Best Linear Unbiased Estimate

Variational form of the BLUE

BLUE \boldsymbol{x}^{a} minimizes following scalar objective function, defined on state space
$\xi \in S \rightarrow$

- $\quad J(\boldsymbol{\xi}) \equiv(1 / 2)\left(\boldsymbol{x}^{b}-\boldsymbol{\xi}\right)^{\mathrm{T}}\left[\boldsymbol{P}^{b}\right]^{-1}\left(\boldsymbol{x}^{b}-\boldsymbol{\xi}\right)+(1 / 2)(\boldsymbol{y}-\boldsymbol{H} \boldsymbol{\xi})^{\mathrm{T}} \boldsymbol{R}^{-1}(\boldsymbol{y}-\boldsymbol{H} \boldsymbol{\xi})$
$\equiv \quad \mathcal{J}_{b} \quad+\quad J_{o}$

$$
\boldsymbol{P}^{a}=\left[\partial^{2} \mathfrak{J} / \partial \xi^{2}\right]^{-1} \quad \text { (inverse Hessian) }
$$

'3D-Var'

Can easily, and heuristically, be extended to the case of a nonlinear observation operator \boldsymbol{H}.

Used operationally in USA, Australia, China, ...

- Assimilation variationnelle. Principe
- Méthode adjointe. Principe.
- Assimilation variationnelle. Résultats
- La Méthode incrémentale
- Assimilation à contrainte faible

Case of data that are distributed over time

Suppose for instance available data consist of

- Background estimate at time 0

$$
x_{0}{ }^{b}=x_{0}+\zeta_{0}{ }^{b} \quad E\left(\zeta_{0}{ }^{b} \xi_{0}{ }^{b T}\right)=P_{0}{ }^{b}
$$

- Observations at times $k=0, \ldots, K$

$$
y_{k}=H_{k} x_{k}+\varepsilon_{k} \quad E\left(\varepsilon_{k} \varepsilon_{j}^{\mathrm{T}}\right)=R_{k} \delta_{k j}
$$

- Model (supposed for the time being to be exact)

$$
x_{k+1}=M_{k} x_{k} \quad k=0, \ldots, K-1
$$

Errors assumed to be unbiased and uncorrelated in time, H_{k} and M_{k} linear

Then objective function

$$
\begin{aligned}
& \xi_{0} \in S \rightarrow \\
& \qquad \begin{aligned}
& \mathcal{J}\left(\xi_{0}\right) \equiv(1 / 2)\left(x_{0}{ }^{b}-\xi_{0}\right)^{\mathrm{T}}\left[P_{0}{ }^{b}\right]^{-1}\left(x_{0}{ }^{b}-\xi_{0}\right)+(1 / 2) \\
& \equiv \mathcal{J}_{k}\left[y_{k}-H_{k} \xi_{k}\right]^{\mathrm{T}} R_{k}^{-1}\left[y_{k}-H_{k} \xi_{k}\right] \\
& \mathcal{J}_{0}
\end{aligned} \\
& \text { subject to } \xi_{k+1}=M_{k} \xi_{k}, \quad k=0, \ldots, K-1
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{J}\left(\xi_{0}\right)=(1 / 2)\left(x_{0}{ }^{b}-\xi_{0}\right)^{\mathrm{T}}\left[P_{0}{ }^{b}\right]^{-1}\left(x_{0}{ }^{b}-\xi_{0}\right)+(1 / 2) \Sigma_{k}\left[y_{k}-H_{k} \xi_{k}\right]^{\mathrm{T}} R_{k}^{-1}\left[y_{k}-H_{k} \xi_{k}\right] \\
& \text { subject to } \xi_{k+1}=M_{k} \xi_{k}, \quad k=0, \ldots, K-1
\end{aligned}
$$

Background is not necessary, if observations are in sufficient number to overdetermine the problem. Nor is strict linearity.

Four-Dimensional Variational Assimilation

$$
‘ 4 D \text {-Var' }
$$

How to minimize objective function with respect to initial state $u=\xi_{0}$ (u is called the control variable of the problem)?

Use iterative minimization algorithm, each step of which requires the explicit knowledge of the local gradient $\nabla_{u} \mathcal{J} \equiv\left(\partial \mathcal{J} / \partial u_{i}\right)$ of \mathcal{J} with respect to u.

How to numerically compute the gradient $\nabla_{u} \mathcal{J}$?

Direct perturbation, in order to obtain partial derivatives $\partial \mathcal{J} / \partial u_{i}$ by finite differences ? That would require as many explicit computations of the objective function \mathcal{J} as there are components in u. Practically impossible.

Gradient computed by adjoint method.

- Méthode adjointe. Principe.

Adjoint Method

Input vector $\boldsymbol{u}=\left(u_{i}\right), \operatorname{dim} \boldsymbol{u}=n$
Numerical process, implemented on computer (e. g. integration of numerical model)

$$
u \rightarrow v=G(u)
$$

$\boldsymbol{v}=\left(v_{j}\right)$ is output vector, $\operatorname{dim} v=m$

Perturbation $\delta \boldsymbol{u}=\left(\delta u_{i}\right)$ of input. Resulting first-order perturbation on \boldsymbol{v}

$$
\delta v_{j}=\Sigma_{i}\left(\partial v_{j} / \partial u_{i}\right) \delta u_{i}
$$

or, in matrix form

$$
\delta v=G^{\prime} \delta u
$$

where $\boldsymbol{G}^{\prime} \equiv\left(\partial v_{j} / \partial u_{i}\right)$ is local matrix of partial derivatives, or jacobian matrix, of \boldsymbol{G}.

Adjoint Method (continued 1)

$$
\begin{equation*}
\delta v=G^{\prime} \delta u \tag{D}
\end{equation*}
$$

- Scalar function of output

$$
\mathcal{J}(\boldsymbol{v})=\mathcal{I}[\boldsymbol{G}(\boldsymbol{u})]
$$

Gradient $\nabla_{u} \mathcal{J}$ of \mathcal{J} with respect to input \boldsymbol{u} ?
'Chain rule’

$$
\partial \mathcal{I} / \partial u_{i}=\Sigma_{j} \partial \mathcal{J} / \partial v_{j}\left(\partial v_{j} / \partial u_{i}\right)
$$

or

$$
\begin{equation*}
\nabla_{u} \mathcal{J}=G^{\prime}{ }^{\mathrm{T}} \nabla_{v} \mathcal{J} \tag{A}
\end{equation*}
$$

Adjoint Method (continued 2)

\boldsymbol{G} is the composition of a number of successive steps

$$
\boldsymbol{G}=\boldsymbol{G}_{N} \circ \ldots \circ \boldsymbol{G}_{2} \circ \boldsymbol{G}_{1}
$$

'Chain rule'

$$
\boldsymbol{G}^{\prime}=\boldsymbol{G}_{N}{ }^{\prime} \ldots \boldsymbol{G}_{2}{ }^{\prime} \boldsymbol{G}_{1}{ }^{\prime}
$$

Transpose

Transpose, or adjoint, computations are performed in reversed order of direct computations.
If \boldsymbol{G} is nonlinear, local jacobian \boldsymbol{G}^{\prime} depends on local value of input \boldsymbol{u}. Any quantity which is an argument of a nonlinear operation in the direct computation will be used again in the adjoint computation. It must be kept in memory from the direct computation (or else be recomputed again in the course of the adjoint computation).

If everything is kept in memory, total operation count of adjoint computation is at most 4 times operation count of direct computation (in practice about 2).

A few basics

- Basic (nonlinear) model

$$
x_{k+1}=M_{k}\left(x_{k}\right)
$$

- Perturbation δx_{0} at time 0 . Resulting perturbation δx_{k} evolves in time according to

$$
\begin{aligned}
\delta x_{k+1} & =M_{k}\left(x_{k}+\delta x_{k}\right)-M_{k}\left(x_{k}\right) \\
& =M_{k}{ }^{\prime}\left(x_{k}\right) \delta x_{k}+o\left(\delta x_{0}\right)
\end{aligned}
$$

where $M_{k}{ }^{\prime}\left(x_{k}\right)$ is jacobian of M_{k} at point x_{k}.
$\delta \xi_{k+1}=M_{k}{ }^{\prime}\left(x_{k}\right) \delta \xi_{k}$
is tangent linear model along solution x_{k}.

A few basics (continuation)

Tangent linear model

$$
\delta \xi_{k+1}=M_{k}{ }^{\prime}\left(x_{k}\right) \delta \xi_{k}
$$

Adjoint model
$\lambda_{k}=\left[M_{k}{ }^{\prime}\left(x_{k}\right)\right]^{\mathrm{T}} \lambda_{k+1}$

Describes evolution with respect to k of gradient of a scalar function \mathcal{J} with respect to x_{k}.

Adjoint Method (continued 3)

$$
\begin{aligned}
& \mathcal{J}\left(\xi_{0}\right)=(1 / 2)\left(x_{0}{ }^{b}-\xi_{0}\right)^{\mathrm{T}}\left[P_{0}{ }^{b}\right]^{-1}\left(x_{0}{ }^{b}-\xi_{0}\right)+(1 / 2) \Sigma_{k}\left[y_{k}-H_{k} \xi_{k}\right]^{\mathrm{T}} R_{k}^{-1}\left[y_{k}-H_{k} \xi_{k}\right] \\
& \quad \text { subject to } \xi_{k+1}=M_{k} \xi_{k}, \quad k=0, \ldots, K-1
\end{aligned}
$$

Control variable $\quad \xi_{0}=\boldsymbol{u}$

Adjoint equation

$$
\begin{aligned}
& \lambda_{K}=\quad H_{K}{ }^{\mathrm{T}} R_{K}^{-1}\left[H_{K} \xi_{K}-y_{K}\right] \\
& \ldots \\
& \lambda_{k}=M_{k}^{\mathrm{T}} \lambda_{k+1}+H_{k}^{\mathrm{T}} R_{k}^{-1}\left[H_{k} \xi_{k}-y_{k}\right] \\
& \cdots \\
& \lambda_{0}=M_{0}{ }^{\mathrm{T}} \lambda_{1}+H_{0}{ }^{\mathrm{T}} R_{0}{ }^{-1}\left[H_{0} \xi_{0}-y_{0}\right]+\left[P_{0}{ }^{b}\right]^{-1}\left(\xi_{0}-x_{0}{ }^{b}\right)
\end{aligned} \quad k=K-1, \ldots, 1
$$

Result of direct integration $\left(\xi_{k}\right)$, which appears in quadratic terms in expression of objective function, must be kept in memory from direct integration.

Adjoint Method (continued 3)

Nonlinearities?

$$
\begin{aligned}
& \mathcal{J}\left(\xi_{0}\right)=(1 / 2)\left(x_{0}{ }^{b}-\xi_{0}\right)^{\mathrm{T}}\left[P_{0}{ }^{b}\right]^{-1}\left(x_{0}{ }^{b}-\xi_{0}\right)+(1 / 2) \Sigma_{k}\left[y_{k}-H_{k}\left(\xi_{k}\right)\right]^{\mathrm{T}} R_{k}^{-1}\left[y_{k}-H_{k}\left(\xi_{k}\right)\right] \\
& \quad \text { subject to } \xi_{k+1}=M_{k}\left(\xi_{k}\right), \\
& \\
& \text { Control variable } \quad \xi_{0}=\boldsymbol{u}
\end{aligned}
$$

Adjoint equation

$$
\begin{array}{ll}
\lambda_{K}= & H_{K}{ }^{, \mathrm{T}} R_{K}{ }^{-1}\left[H_{K}\left(\xi_{K}\right)-y_{K}\right] \\
\ldots & k=K-1, \ldots, 1 \\
\lambda_{k}=M_{k}{ }^{\mathrm{T}} \lambda_{k+1}+H_{k}{ }^{, \mathrm{T}} R_{k}{ }^{-1}\left[H_{k}\left(\xi_{k}\right)-y_{k}\right] & \\
\ldots \\
\lambda_{0}=M_{0}{ }^{\mathrm{T}} \lambda_{1}+H_{0}{ }^{, \mathrm{T}} R_{0}{ }^{-1}\left[H_{0}\left(\xi_{0}\right)-y_{0}\right]+\left[P_{0}{ }^{b}\right]^{-1}\left(\xi_{0}-x_{0}{ }^{b}\right) & \\
\qquad \nabla_{u} \mathcal{J}=\lambda_{0} &
\end{array}
$$

Not approximate (it gives the exact gradient $\nabla_{l} \mathcal{J}$), and really used as described here.

- Assimilation variationnelle. Résultats

Temporal evolution of the $500-\mathrm{hPa}$ geopotential autocorrelation with respect to point located at 45 N , 35 W . From top to bottom: initial time, 6 - and 24 -hour range.

-1. Background fier 0000 UTC 15 October-0000 UTC 16 October 1987. Shown here are the Northern Hemisphere (a) 500 WIG. I. Background heendenserntial height and (b) mean sea level pressure for 15 October and the (c) 500 -hPa geopotential height and (d) mean sea level pelds for 16 October are from the $24-\mathrm{h} T 63$ adiabatic model forecast from the initial conditions. Contour intervals are 80 m and 5 hPa .

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414

Analysis increments in a 3D-Var corresponding to a height observation at the 250hPa pressure level (no temporal evolution of background error covariance matrix ${ }_{21}$

Same as before, but at the end of a $24-\mathrm{hr} 4 \mathrm{D}-\mathrm{Var}$

Analysis increments in a 3D-Var corresponding to a u-component wind observation at the 1000-hPa pressure level (no temporal evolution of background error covariance matrix)

Thépaut et al., 1993, Mon. Wea. Rev., 121, 3393-3414

Same as before, but at the end of a $24-\mathrm{hr} 4 \mathrm{D}-\mathrm{Var}$

3-day forecast from 3D-Var analysis

3D-Var verifying analysis

3-day forecast from 4D-Var analysis

4D-Var verifying analysis

Figure 3: 500 hPa geopotential height mean square error skill score for Europe (top) and the northern hemisphere extratropics (bottom), showing 12-month moving averages for forecast ranges from 24 to 192 hours. The last point on each curve is for the 12-month period August 2013-July 2014.

Persistence $=0$; climatology $=50$ at long range

Initial state error reduction

HRes and ERA Interim 00,12UTC forecast skill

500 hPa geopotential
Lead time of Anomaly correlation reaching 99.5\%
NHem Extratropics (lat 20.0 to 90.0 , lon -180.0 to 180.0)

Credit E. Källén, ECMWF

Strong Constraint $4 D$-Var is now used operationally at several meteorological centres (Météo-France, UK Meteorological Office, Canadian Meteorological Centre, Japan Meteorological Agency, ...) and, for a number of years, at ECMWF. The latter now has a 'weak constraint' component in its operational system.

Time-correlated Errors (continuation 3)

If data errors are correlated in time, it is not possible to discard observations as they are used. In particular, if model error is correlated in time, all observations are liable to be reweighted as assimilation proceeds.

Variational assimilation can take time-correlated errors into account.

Example of time-correlated observation errors. Global covariance matrix

$$
\mathcal{R}=\left(R_{k k^{\prime}}=E\left(\varepsilon_{k} \varepsilon_{k^{\prime}}^{\mathrm{T}}\right)\right)
$$

Objective function
$\xi_{0} \in S \rightarrow$
$\mathcal{J}\left(\xi_{0}\right)=(1 / 2)\left(x_{0}{ }^{b}-\xi_{0}\right)^{\mathrm{T}}\left[P_{0}{ }^{b}\right]^{-1}\left(x_{0}{ }^{b}-\xi_{0}\right)+(1 / 2) \Sigma_{k k}\left[y_{k}-H_{k} \xi_{k}\right]^{\mathrm{T}}\left[\mathcal{R}^{-1}\right]_{k k},\left[y_{k^{\prime}}-H_{k^{\prime}} \xi_{k^{\prime}}\right]$
where $\left[\boldsymbol{\mathcal { R }}^{-1}\right]_{k k^{\prime}}$, is the $k k^{\prime}$-sub-block of global inverse matrix $\boldsymbol{\mathcal { R }}^{-1}$.

Similar approach for time-correlated model error.

Time-correlated Errors (continuation 4)

Temporal correlation of observational error has been introduced by ECMWF (Järvinen et al., 1999) in variational assimilation of high-frequency surface pressure observations (correlation originates in that case in representativeness error).

Identification and quantification of time correlation of errors, especially model errors ?

In the linear case, Kalman Smoother and Variational Assimilation are algorithmically equivalent. If errors are uncorrelated in time, they produce the BLUE of the state of the system from all available data, over the whole assimilation window (Kalman Filter produces the BLUE only at the end of the final time of the window). If in addition errors are globally Gaussian, both algorithms achieve Bayesian estimation.

If errors are correlated in time, only some Kalman Smoothers are equivalent with Variational Assimilation.

- La Méthode incrémentale

Incremental Method for Variational Assimilation

Variational assimilation, as it has been described, requires the use of the adjoint of the full model.

Simplifying the adjoint as such can be very dangerous. The computed gradient would not be exact, and experience shows that optimization algorithms (and especially efficient ones) are very sensitive to even slight misspecification of the gradient.

Principle of Incremental Method (Courtier et al., 1994, Q. J. R. Meteorol. Soc.) : simplify simultaneously the (local tangent linear) dynamics and the corresponding adjoint.

Incremental Method (continuation 1)

- Basic (nonlinear) model

$$
\xi_{k+1}=M_{k}\left(\xi_{k}\right)
$$

- Tangent linear model

$$
\delta \xi_{k+1}=M_{k}^{\prime} \delta \xi_{k}
$$

where $M_{k}{ }^{\prime}$ is jacobian of M_{k} at point ξ_{k}.

- Adjoint model
$\lambda_{k}=M_{k}{ }^{\text {'T }} \lambda_{k+1}+\ldots$

Incremental Method. Simplify both $M_{k}{ }^{\prime}$ and $M_{k}{ }^{\text {'T }}$ consistently.

Incremental Method (continuation 2)

More precisely, for given solution $\xi_{k}{ }^{(0)}$ of nonlinear model, replace tangent linear and adjoint models respectively by

$$
\begin{equation*}
\delta \xi_{k+1}=L_{k} \delta \xi_{k} \tag{2}
\end{equation*}
$$

and
$\lambda_{k}=L_{k}{ }^{\mathrm{T}} \lambda_{k+1}+\ldots$
where L_{k} is an appropriate simplification of jacobian $M_{k}{ }^{\prime}$.

It is then necessary, in order to ensure that the result of the adjoint integration is the exact gradient of the objective function, to modify the basic model in such a way that the solution emanating from $\xi_{0}{ }^{(0)}+\delta \xi_{0}$ is equal to $\xi_{k}{ }^{(0)}+\delta \xi_{k}$, where $\delta \xi_{k}$ evolves according to (2). This makes the basic dynamics exactly linear.

Incremental Method (continuation 3)

As concerns the observation operators in the objective function, a similar procedure can be implemented if those operators are nonlinear. This leads to replacing $H_{k}\left(\xi_{k}\right)$ by $H_{k}\left(\xi_{k}{ }^{(0)}\right)+N_{k} \delta \xi_{k}$, where N_{k} is an appropriate 'simple' linear operator (possibly, but not necessarily, the jacobian of H_{k} at point $\xi_{k}^{(0)}$). The objective function depends only on the initial $\delta \xi_{0}$ deviation from $\xi_{0}{ }^{(0)}$, and reads

$$
\begin{aligned}
& \mathcal{J}_{\mathrm{I}}\left(\delta \xi_{0}\right)=(1 / 2)\left(x_{0}{ }^{b}-\xi_{0}{ }^{(0)}-\delta \xi_{0}\right)^{\mathrm{T}}\left[P_{0}{ }^{b}\right]^{-1}\left(x_{0}{ }^{b}-\xi_{0}{ }^{(0)}-\delta \xi_{0}\right) \\
&+(1 / 2) \Sigma_{k}\left[d_{k}-N_{k} \delta \xi_{k}\right]^{\mathrm{T}} R_{k}{ }^{-1}\left[d_{k}-N_{k} \delta \xi_{k}\right]
\end{aligned}
$$

where $d_{k} \equiv y_{k}-H_{k}\left(\xi_{k}^{(0)}\right)$ is the innovation at time k, and the $\delta \xi_{k}$ evolve according to

$$
\begin{equation*}
\delta \xi_{k+1}=L_{k} \delta \xi_{k} \tag{2}
\end{equation*}
$$

With the choices made here, $\mathcal{J}_{\mathrm{I}}\left(\delta \xi_{0}\right)$ is an exactly quadratic function of $\delta \xi_{0}$. The minimizing perturbation $\delta \xi_{0, m}$ defines a new initial state $\xi_{0}{ }^{(1)} \equiv \xi_{0}{ }^{(0)}+\delta \xi_{0, m}$, from which a new solution $\xi_{k}{ }^{(1)}$ of the basic nonlinear equation is determined. The process is restarted in the vicinity of that new solution.

Incremental Method (continuation 4)

This defines a system of two-level nested loops for minimization. Advantage is that many degrees of freedom are available for defining the simplified operators L_{k} and N_{k}, and for defining an appropriate trade-off between practical implementability and physical usefulness and accuracy. It is the incremental method which, together with the adjoint method, makes variational assimilation possible.

First-Guess-At-the-right-Time 3D-Var (FGAT 3D-Var). Corresponds to $L_{k}=$ I_{n}. Assimilation is four-dimensional in that observations are compared to a first-guess which evolves in time, but is three-dimensional in that no dynamics other than the trivial dynamics expressed by the unit operator is present in the minimization.

Buehner et al. (Mon. Wea.Rev., 2010)

For the same numerical cost, and in meteorologically realistic situations, Ensemble Kalman Filter and Variational Assimilation produce results of similar quality.

Bayesian Estimation

Data of the form

$$
z=\Gamma x+\zeta, \quad \zeta \sim \mathcal{N}[0, S]
$$

Known data vector z belongs to data space $\mathcal{D}, \operatorname{dim} \mathcal{D}=m$, Unknown state vector x belongs to state space $\mathcal{X}, \operatorname{dim} \mathcal{X}=n$
Γ known ($m \mathrm{x} n$)-matrix, ζ unknown 'error'
Probability that $x=\xi$ given ? $\quad x=\xi \Rightarrow \xi=z-\Gamma \xi$

$$
\mathrm{P}(\xi=z-\Gamma \xi) \propto \exp \left[-(z-\Gamma \xi)^{\mathrm{T}} S^{-1}(z-\Gamma \xi) / 2\right] \propto \exp \left[-\left(\xi-x^{a}\right)^{\mathrm{T}}\left(P^{a}\right)^{-1}\left(\xi-x^{a}\right) / 2\right]
$$

where

$$
\begin{aligned}
& x^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1} \Gamma^{\mathrm{T}} S^{-1} z \\
& P^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1}
\end{aligned}
$$

Then conditional probability distribution is

$$
P(x \mid z)=\mathcal{N}\left[x^{a}, P^{a}\right]
$$

Bayesian Estimation (continuation 1)

$$
z=\Gamma x+\zeta, \quad \zeta \sim \mathcal{N}[0, S]
$$

Then

$$
P(x \mid z)=\mathfrak{N}\left[x^{a}, P^{a}\right]
$$

with

$$
\begin{aligned}
& x^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1} \Gamma^{\mathrm{T}} S^{-1} z \\
& P^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1}
\end{aligned}
$$

Determinacy condition : $\operatorname{rank} \Gamma=n$. Data contain information, directly or indirectly, on every component of state vector x. Requires $m \geq n$.

Variational form

$$
P(x \mid z) \propto \exp \left[-(z-\Gamma \xi)^{\mathrm{T}} S^{-1}(z-\Gamma \xi) / 2\right] \propto \exp \left[-\left(\xi-x^{a}\right)^{\mathrm{T}}\left(P^{a}\right)^{-1}\left(\xi-x^{a}\right) / 2\right]
$$

Conditional expectation x^{a} minimizes following scalar objective function, defined on state space \mathcal{X}

$$
\begin{gathered}
\xi \in \mathcal{X} \rightarrow \mathcal{J}(\xi) \equiv(1 / 2)[\Gamma \xi-z)]^{\mathrm{T}} S^{-1}[\Gamma \xi-z] \\
P^{a}=\left[\partial^{2} \mathcal{J} / \partial \xi^{2}\right]^{-1}
\end{gathered}
$$

If data still of the form

$$
z=\Gamma x+\zeta
$$

but 'error' ζ, which still has expectation 0 and covariance S, is not Gaussian, expressions

$$
\begin{aligned}
& x^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1} \Gamma^{\mathrm{T}} S^{-1} z \\
& P^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1}
\end{aligned}
$$

do not achieve Bayesian estimation, but define least-variance linear estimate of x from z (Best Linear Unbiased Estimator, BLUE), and associated estimation error covariance matrix.

Expressions

$$
\begin{aligned}
& x^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1} \Gamma^{\mathrm{T}} S^{-1} z \\
& P^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1}
\end{aligned}
$$

are invariant in linear invertible change of coordinates, in either data or state space. If determinacy condition is verified, data vector z can be transformed, through linear invertible change of coordinates in data space, into

$$
\begin{aligned}
& \boldsymbol{x}^{b}=\boldsymbol{x}+\xi^{b} \\
& \boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{\varepsilon}
\end{aligned}
$$

with $E\left(\varepsilon \zeta^{b T}\right)=0$, from which the formulæ seen previously can be obtained.

Remark. Condition $E\left(\varepsilon \zeta^{\zeta T}\right)=0$ is not mathematically restrictive. If it not verified, replace \boldsymbol{y} with $v \equiv \boldsymbol{y}-E\left(\varepsilon \varsigma^{b \mathrm{~T}}\right)\left[E\left(\xi^{b} \xi^{b \mathrm{~T}}\right)\right]^{-1} x^{b}$

But that hypothesis is almost always made in practice, where it is unlikely to be verified (observations performed by a same satellite instrument, which have been through a same post-processing, are very likely to have correlated errors).

Expressions

$$
\begin{aligned}
& x^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1} \Gamma^{\mathrm{T}} S^{-1} z \\
& P^{a}=\left(\Gamma^{\mathrm{T}} S^{-1} \Gamma\right)^{-1}
\end{aligned}
$$

are valid in both the Gaussian case and the general linear (BLUE) case. But, although, they are algebraically identical, the do not have the same significance. In the Gaussian case, as said, they solve entirely the problem of Bayesian estimation. For any data vector z, x^{a} and P^{a} are respectively the expectation and covariance of the conditional (Gaussian) probability distribution $P(x \mid z)$. In the general linear case, x^{a} and P^{a} are expectations over all possible realizations of z (i.e. of the error ζ). For a given z, x^{a} and P^{a} can be very different from the corresponding Bayesian values.

- Assimilation à contrainte faible

How to take model error into account in variational assimilation ?

Weak constraint variational assimilation

Allows for errors in the assimilating model

- Data
- Background estimate at time 0

$$
x_{0}{ }^{b}=x_{0}+\xi_{0}{ }^{b} \quad E\left(\xi_{0}{ }^{b} \zeta_{0}{ }^{b T}\right)=P_{0}{ }^{b}
$$

- Observations at times $k=0, \ldots, K$

$$
y_{k}=H_{k} x_{k}+\varepsilon_{k} \quad E\left(\varepsilon_{k} \varepsilon_{k}{ }^{\mathrm{T}}\right)=R_{k} \delta_{k k}
$$

- Model

$$
x_{k+1}=M_{k} x_{k}+\eta_{k} \quad E\left(\eta_{k} \eta_{\mathrm{k}^{\prime}}, \mathrm{T}\right)=Q_{k} \delta_{k k^{\prime}} \quad k=0, \ldots, K-1
$$

Errors assumed to be unbiased and uncorrelated in time, H_{k} and M_{k} linear

Then objective function

$$
\begin{aligned}
& \left(\xi_{0}, \xi_{1}, \ldots, \xi_{K}\right) \rightarrow \\
& \mathcal{J}\left(\xi_{0}, \xi_{1}, \ldots, \xi_{K}\right) \\
& = \\
& (1 / 2)\left(x_{0}^{b}-\xi_{0}\right)^{\mathrm{T}}\left[P_{0}{ }^{b}\right]^{-1}\left(x_{0}^{b}-\xi_{0}\right) \\
& \quad+(1 / 2) \Sigma_{k=0, \ldots, K}\left[y_{k}-H_{k} \xi_{k}\right]^{\mathrm{T}} R_{k}^{-1}\left[y_{k}-H_{k} \xi_{k}\right] \\
& \quad+(1 / 2) \Sigma_{k=0, \ldots, K-1}\left[\xi_{k+1}-M_{k} \xi_{k}\right]^{\mathrm{T}} Q_{k}^{-1}\left[\xi_{k+1}-M_{k} \xi_{k}\right]
\end{aligned}
$$

Can include nonlinear M_{k} and/or H_{k}.

Implemented operationally at ECMWF for the assimilation in the stratosphere.

Becomes singular in the strong constraint limit $Q_{k} \rightarrow 0$

Dual Algorithm for Variational Assimilation (aka Physical Space Analysis System, PSAS, pronounced 'pizzazz'; see in particular book and papers by Bennett)

$$
\begin{gathered}
x^{a}=x^{b}+P^{b} H^{\mathrm{T}}\left[H P^{b} H^{\mathrm{T}}+R\right]^{-1}\left(y-H x^{b}\right) \\
x^{a}=x^{b}+P^{b} H^{\mathrm{T}} \Lambda^{-1} d=x^{b}+P^{b} H^{\mathrm{T}} m
\end{gathered}
$$

where $\Lambda \equiv H P^{b} H^{\mathrm{T}}+R, d \equiv y-H x^{b}$ and $m \equiv \Lambda^{-1} d$ maximises

$$
\mu \rightarrow \mathcal{K}(\mu)=-(1 / 2) \mu^{\mathrm{T}} \Lambda \mu+d^{\mathrm{T}} \mu
$$

Maximisation is performed in (dual of) observation space.

Dual Algorithm for Variational Assimilation (continuation 2)

Extends to time dimension, and to weak-constraint case, by defining state vector as

$$
x \equiv\left(x_{0}^{\mathrm{T}}, x_{1}^{\mathrm{T}}, \ldots, x_{K}^{\mathrm{T}}\right)^{\mathrm{T}}
$$

or, equivalently, but more conveniently, as

$$
x \equiv\left(x_{0}^{\mathrm{T}}, \eta_{0}^{\mathrm{T}}, \ldots, \eta_{K-1}^{\mathrm{T}}\right)^{\mathrm{T}}
$$

where, as before

$$
\eta_{k}=x_{k+1}-M_{k} x_{k}, \quad k=0, \ldots, K-1
$$

The background for x_{0} is $x_{0}{ }^{b}$, the background for η_{k} is 0 . Complete background is

$$
x^{b}=\left(x_{0}^{b \mathrm{~T}}, 0^{\mathrm{T}}, \ldots, 0^{\mathrm{T}}\right)^{\mathrm{T}}
$$

It is associated with error covariance matrix

$$
P^{b}=\operatorname{diag}\left(P_{0}^{b}, Q_{0}, \ldots, Q_{K-1}\right)
$$

Dual Algorithm for Variational Assimilation (continuation 3)

Define global observation vector as

$$
y \equiv\left(y_{0}{ }^{\mathrm{T}}, y_{1}{ }^{\mathrm{T}}, \ldots, y_{K}{ }^{\mathrm{T}}\right)^{\mathrm{T}}
$$

and global innovation vector as

$$
d \equiv\left(d_{0}^{\mathrm{T}}, d_{1}^{\mathrm{T}}, \ldots, d_{K}^{\mathrm{T}}\right)^{\mathrm{T}}
$$

where

$$
d_{k} \equiv y_{k}-H_{k} x_{k}^{b}, \text { with } x_{k+1}^{b} \equiv M_{k} x_{k}^{b}, \quad k=0, \ldots, K-1
$$

Dual Algorithm for Variational Assimilation (continuation 4)

For any state vector $\xi=\left(\xi_{0}{ }^{\mathrm{T}}, v_{0}{ }^{\mathrm{T}}, \ldots, v_{K-1}{ }^{\mathrm{T}}\right)^{\mathrm{T}}$, the observation operator H

$$
\xi \rightarrow H \xi=\left(u_{0}^{\mathrm{T}}, \ldots, u_{K}^{\mathrm{T}}\right)^{\mathrm{T}}
$$

is defined by the sequence of operations

$$
u_{0}=H_{0} \xi_{0}
$$

then for $k=0, \ldots, K-1$

$$
\begin{aligned}
& \xi_{k+1}=M_{k} \xi_{k}+v_{k} \\
& u_{k+1}=H_{k+1} \xi_{k+1}
\end{aligned}
$$

The observation error covariance matrix is equal to

$$
R=\operatorname{diag}\left(R_{0}, \ldots, R_{K}\right)
$$

Dual Algorithm for Variational Assimilation (continuation 5)

Maximization of dual objective function

$$
\mu \rightarrow \mathcal{K}(\mu)=-(1 / 2) \mu^{\mathrm{T}} \Lambda \mu+d^{\mathrm{T}} \mu
$$

requires explicit repeated computations of its gradient

$$
\nabla_{\mu} \mathcal{K}=-\Lambda \mu+d=-\left(H P^{b} H^{\mathrm{T}}+R\right) \mu+d
$$

Starting from $\mu=\left(\mu_{0}{ }^{\mathrm{T}}, \ldots, \mu_{K}{ }^{\mathrm{T}}\right)^{\mathrm{T}}$ belonging to (dual) of observation space, this requires 5 successive steps

- Step 1. Multiplication by H^{T}. This is done by applying the transpose of the process defined above, viz.,

Set $\quad \chi_{K}=0$
Then, for $k=K-1, \ldots, 0$

Finally

$$
\begin{aligned}
& v_{k}=\chi_{k+1}+H_{k+1}{ }^{\mathrm{T}} \mu_{k+1} \\
& \chi_{k}=M_{k}^{\mathrm{T}} v_{k}
\end{aligned}
$$

$$
\lambda_{0}=\chi_{0}+H_{0}{ }^{\mathrm{T}} \mu_{0}
$$

The output of this step, which includes a backward integration of the adjoint model, is the vector $\left(\lambda_{0}{ }^{\mathrm{T}}, v_{0}{ }^{\mathrm{T}}, \ldots, v_{K-1}{ }^{\mathrm{T}}\right)^{\mathrm{T}}$

Dual Algorithm for Variational Assimilation (continuation 6)

- Step 2. Multiplication by P^{b}. This reduces to

$$
\begin{aligned}
& \xi_{0}=P_{0}{ }^{b} \lambda_{0} \\
& v_{k}=Q_{k} v_{k}, k=0, \ldots, K-1
\end{aligned}
$$

- Step 3. Multiplication by H. Apply the process defined above on the vector $\left(\xi_{0}{ }^{T}\right.$, $\left.v_{0}{ }^{\mathrm{T}}, \ldots, v_{K-1}\right)^{\mathrm{T}}$, thereby producing vector $\left(u_{0}{ }^{\mathrm{T}}, \ldots, u_{K}{ }^{\mathrm{T}}\right)^{\mathrm{T}}$.
- Step 4. Add vector $R \mu$, i. e compute

$$
\begin{aligned}
& \varphi_{0}=\xi_{0}+R_{0} \mu_{0} \\
& \varphi_{k}=v_{k-1}+R_{k} \mu_{k} \quad, k=1, \ldots,
\end{aligned}
$$

- Step 5. Change sign of vector $\varphi=\left(\varphi_{0}{ }^{\mathrm{T}}, \ldots, \varphi_{K}{ }^{\mathrm{T}}\right)^{\mathrm{T}}$, and add vector $d=y-H x^{b}$,

Dual Algorithm for Variational Assimilation (continuation 7)

Temporal correlations can be introduced.

Dual algorithm remains regular in the limit of vanishing model error. Can be used for both strong- and weak-constraint assimilation.

No significant increase of computing cost in comparison with standard strong constraint variational assimilation (Courtier, Louvel)

FIg. 9.11 - Ecarts normalisés prévision/observations sur l'ensemble de la période étudiée

Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999

FIG. 9.15 - Description des écarts flotteurs/modèle en terme de vitesse (à 150 m de profondeur) pour les différents algorithmes d'assimilation

Louvel, Doctoral Dissertation, Université Paul-Sabatier, Toulouse, 1999

Dual Algorithm for Variational Assimilation (continuation)

Requires

- Explicit background (not much of a problem)
- Exact linearity (much more of a problem). Definition of iterative nonlinear procedures is being studied (Auroux, ...)

Fig. 6.13 - Normes RMS des erreurs d'assimilation obtenues pour les deux méthodes en fonction de l'erreur introduite dans le modèle au cours de la période d'assimilation.

Auroux, Doctoral Dissertation, Université de Nice-Sophia Antipolis, Nice, 2003

Dual Algorithm for Variational Assimilation is now used, in the weak-constraint form, at Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS) in Toulouse (A. Weaver, S. Gürol) for assimilation of oceanographical observations.

Conclusion on Sequential Assimilation

Pros

'Natural', and well adapted to many practical situations
Provides, at least relatively easily, explicit estimate of estimation error

Cons

Carries information only forward in time (of no importance if one is interested only in doing forecast)

In a strictly sequential assimilation (i.e., any individual piece of information is discarded once it has been used), optimality is possible only if errors are uncorrelated in time.

Conclusion on Variational Assimilation

Pros

Carries information both forward and backward in time (important for reassimilation of past data).

Can easily take into account temporal statistical dependence (Järvinen et al.)
Does not require explicit computation of temporal evolution of estimation error
Very well adapted to some specific problems (e.g., identification of tracer sources)

Cons

Does not readily provide estimate of estimation error
Requires development and maintenance of adjoint codes. But the latter can have other uses (sensitivity studies).

- Dual approach seems most promising. But little used.
- Can be implemented in ensemble form (see course 7).

Convective Instability

In dry atmosphere in hydrostatic balance, adiabatic lapse rate (vertical gradient of temperature)
$(d T / d z)_{a d}=-g / C_{p}$
$g \approx 10 \mathrm{~ms} \mathrm{~s}^{-2}, C_{p} \approx 10^{3} \mathrm{SI},-g / C_{p} \approx-10^{\circ} \mathrm{C} / \mathrm{km}$
Water vapour is present in the atmosphere, and will usually condense, and emit heat, in an ascending motion. In practice, $d T / d z$ is observed to have value about $-6^{\circ} \mathrm{C} /$ km , which is close to its adiabatic wet value.

Reminder
Potential temperature
$\theta \equiv T\left(p_{0} / p\right)^{\kappa}$ with $\kappa \equiv r / C_{p} \quad(\approx 0.285$ for dry air $)$
Potential temperature is conserved in adiabatic transformation

Stratified atmosphere at rest with temperature gradient $d T / d z$ and associated gradient of potential temperature $d \theta /$ $d z$.

Particle displaced adiabatically upward from its equilibrium position. Expands taking pressure of background stratification.

- if background temperature larger than temperature of displaced particle, i. e. $d T / d z>(d T / d z)_{a d}$ (potential temperature increases with altitude), buoyancy force will pull particle back to its original position. Stratification is said to be convectively stable. Particle will oscillate with Brunt-Väisälä frequency N

$$
N^{2} \equiv(g / \theta)(d \theta / d z)
$$

In the atmosphere, the corresponding period has typical value of a few minutes.

- if background temperature lower than temperature of displaced particle, i. e. $d T / d z<(d T / d z)_{\text {ad }}$ (potential temperature decreases with altitude), particle will move farther away from its original position \Rightarrow convective instability

Convective instability is at the origin of intense convective cells (cumulus clouds, thunderstorms), with core of intense ascending motion surrounded by slower subsiding motion. Convective instability is the main process through which energy is carried from the lower surface (continents, oceans) into the atmosphere. It also carries water and momentum.

Convection occurs also in the ocean, when the upper surface is cooled by radiation.

A similar phenomenon occurs in the ocean (but with no thermodynamical effects involved) when dense water (whose salinity has been increased by evaporation) is transported (for instance by wind) above less dense water. This phenomenon is a component of the thermohaline circulation.

Cours à venir

Jeudi 17 mars
Jeudi 24 mars-
Jeudi 31 mars-
Jeudi 14 avril
Jeudi 21 avril
Jeudi 28 avril
Jeudi 5 mai
Jeudi 12 mai

