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Last course (April 21)	

-  Assimilation variationnelle. Principe 

-  Méthode adjointe. Principe. 

-  Assimilation variationnelle. Résultats  

-  La Méthode incrémentale 

-  Assimilation à contrainte faible    	
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This course 	


-  Variational Assimilation. Complements	

	
 	
 - Incremental Method	

	
 	
 - Mahalanobis Norm	

	
 	
 - How to write (and validate) an adjoint code	

	
 	
 - Value of objective function at minimum. χ2 test. 	


-  Assimilation  and  (In)stability.  Quasi-Static 
Variational Assimilation	
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Incremental Method for Variational Assimilation	


	
 Variational  assimilation,  as  it  has  been  described,  requires  the  use  of 
the adjoint of the full model.	


	
 Simplifying  the  adjoint  as  such  can  be  very  dangerous.  The 
computed  gradient  would  not  be  exact,  and  experience  shows  that 
optimization  algorithms  (and  especially  efficient  ones)  are  very 
sensitive to even slight misspecification of the gradient.	


	
 Principle  of  Incremental  Method  (Courtier  et  al.,  1994,  Q.  J.  R. 
Meteorol.  Soc.)  :  simplify  simultaneously  the  (local  tangent  linear) 
dynamics and the corresponding adjoint.	
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Incremental Method (continuation 1)	


	
 - Basic (nonlinear) model	

	
  ξk+1 = Mk(ξk) 	


	
 - Tangent linear model	

	
  δξk+1 = Mk’ δξk 	

	
 	

	
 where Mk’ is jacobian of Mk at point ξk.	


	
 - Adjoint model	


	
  λk = Mk’T λk+1 + …	


	
  Incremental Method. Simplify both Mk’ and Mk’T consistently.	
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Incremental Method (continuation 2)	


	
 More  precisely,  for  given  solution  ξk
(0) of  nonlinear  model,  replace  tangent 

linear and adjoint models respectively by 	

	
 	

	
  δξk+1 = Lk δξk 	
 	
  (2) 	

	
 	

	
 and	

	
 	

	
 λk = Lk

T λk+1 + …	


	
 where Lk is an appropriate simplification of jacobian Mk’.	


	
 It  is  then  necessary,  in  order  to  ensure  that  the  result  of  the  adjoint 
integration is the exact gradient of the objective function, to modify the basic 
model in such a way that the solution emanating from ξ0

(0) + δξ0 is equal to 
ξk

(0) + δξk, where δξk evolves according to (2). This makes the basic dynamics 
exactly linear.	
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Incremental Method (continuation 3)	


	
 As  concerns  the  observation  operators  in  the  objective  function,  a  similar  procedure 
can be implemented if those operators are nonlinear. This leads to replacing Hk(ξk) by 
Hk(ξk

(0)) + Nkδξk,  where  Nk is  an appropriate ‘simple’ linear operator (possibly, but not 
necessarily, the jacobian of Hk at point ξk

(0)). The objective function depends only on the 
initial δξ0 deviation from ξ0

(0), and reads  

	
 JI(δξ0)  =  (1/2) (x0
b - ξ0

(0) - δξ0)T [P0
b]-1 (x0

b - ξ0
(0) - δξ0) 	


	
 	
 	
 	
 	
 + (1/2) Σk[dk - Nkδξk]T Rk
-1 [dk - Nkδξk]  

 where dk ≡ yk - Hk(ξk
(0)) is the innovation at time k, and δξk evolves according to  

	
 	

	
  δξk+1 = Lk δξk 	
 	
  (2) 	

	
 	

	
 With  the  choices  made  here,  JI(δξ0) is  an  exactly  quadratic  function  of  δξ0.  The 

minimizing perturbation δξ0,m defines a new initial state ξ0
(1) ≡ ξ0

(0) + δξ0,m, from which a 
new solution ξk

(1) of the basic nonlinear equation is determined. The process is restarted 
in the vicinity of that new solution.	
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Incremental Method (continuation 4)	


	
 This  defines  a  system  of  two-level  nested  loops  for  minimization. 
Advantage  is  that  many  degrees  of  freedom are  available  for  defining  the 
simplified  operators  Lk  and  Nk,  and  for  defining  an  appropriate  trade-off 
between practical implementability and physical usefulness and accuracy. It is 
the  incremental  method  which,  together  with  the  adjoint  method,  makes 
variational assimilation possible.	


	
 First-Guess-At-the-right-Time  3D-Var  (FGAT  3D-Var).  Corresponds  to  Lk  = 
In.  Assimilation is  four-dimensional  in  that  observations are  compared to  a 
first-guess which evolves in time, but is three-dimensional in that no dynamics 
other than the trivial dynamics expressed by the unit operator is present in the 
minimization. 	
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Conclusion on Sequential Assimilation	


	
 Pros 	

	
      	
 ‘Natural’, and well adapted to many practical situations	

           Provides, at least relatively easily, explicit estimate of estimation 

error	


	
 Cons 	

	
 	
 Carries information only forward in time (of no importance 	

	
 if one is interested only in doing forecast)	

	
 	
 In a strictly sequential assimilation (i.e., any individual piece 	

	
 of  information  is  discarded  once  it  has  been  used),  optimality  is 

possible only if errors are uncorrelated in time.	

	
 	
 	

	
 	
 	


	
 	




Conclusion on Variational Assimilation	


	
 Pros 	

	
  	
 Carries  information  both  forward  and  backward  in  time  (important  for 

reassimilation of past data).	

	
 	
 Can easily take into account temporal statistical dependence (Järvinen et al.)	

	
 	
 Does not require explicit computation of temporal evolution of estimation error	

	
 	
 Very well adapted to some specific problems (e. g., identification of tracer sources)	


	
 Cons 	

	
  	
 Does not readily provide estimate of estimation error 	

	
 	
 Requires  development  and  maintenance  of  adjoint  codes.  But  the  latter  can 

have other uses (sensitivity studies).	

	
  	

•  Dual approach seems most promising. But little used. 	


•  Can be implemented in ensemble form (see course 7).	
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Bayesian Estimation (see course 5) 	


Data of the form	


z = Γx + ζ, 	
 ζ ∼ N [0, S]	


Known data vector z belongs to data space D, dimD = m,	

Unknown state vector x belongs to state space X, dimX = n 	

Γ known (mxn)-matrix, ζ unknown ‘error’	


Probability that x = ξ given ?      x = ξ ⇒ ζ = z - Γξ	


P(ζ = z - Γξ) ∝ exp[ -(z - Γξ)T S-1 (z - Γξ)/2 ] ∝ exp[ -(ξ -xa)T (Pa)-1 (ξ -xa)/2 ]	


where	


	
 	
 	
       xa = (Γ T S-1Γ)-1 Γ T S-1 z	

	
 	
 	
       Pa = (Γ T S-1Γ)-1	


Then conditional  probability distribution is	


	
 	
 	
       P(x | z) = N [xa, Pa]	
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Bayesian Estimation (continuation 1) 	


z = Γx + ζ, 	
 ζ ∼ N [0, S]	

Then	


	
 	
 	
        P(x | z) = N [xa, Pa]	


with	


	
 	
 	
       xa = (Γ T S-1Γ)-1 Γ T S-1 z	

	
 	
 	
       Pa = (Γ T S-1Γ)-1	


Determinacy condition : rankΓ = n. Data contain information, directly or 
indirectly, on every component of state vector x. Requires m ≥ n.	
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Variational form	


P(x | z) ∝ exp[ -(z - Γξ)T S-1 (z - Γξ)/2 ] ∝ exp[ -(ξ -xa)T (Pa)-1 (ξ -xa)/2 ]	


Conditional expectation xa minimizes following scalar objective function, defined 
on state space X 

ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - z)]T S-1 [Γξ - z]	


Pa = [∂2J /∂ξ2]-1  	
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ξ  ∈  X  →  J(ξ)  ≡  (1/2) [Γξ - z)]T S-1 [Γξ - z]	


S = E(ζζT) is covariance matrix of data error ζ	


Consider quantity	
    D = z1
T S-1 z2 = z1

T [E(ζζT)]-1 z2     	

where z1and z2 are any two vectors in data space   	


	
   Change of coordinates  z ≡ Tw	

	
 	

	
 	
 	
  ζ = Tχ    ⇒ S = E(ζζT) = E[Tχ(Tχ)T] = T E(χχT)TT         	


	
 	
 	
 D = w1
T TT [T E(χχT)TT]-1Tw2	


	
 	
 	
 D = w1
T [E(χχT)]-1 w2  	
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Expression 	
 D = z1
T S-1 z2	


defines proper scalar product, and associated norm, on data space	


Mahalanobis norm	




Prasanta Chandra Mahalanobis (1893 -1972)"
16 
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Objective function	


J(ξ)  ≡  (1/2) [Γξ - z]T S-1 [Γξ - z]	


Jmin ≡ J(xa)  =  (1/2) [Γxa - z]T S-1 [Γxa - z]	


          =  (1/2) dT [E(ddT)]-1 d	


where d is innovation 	

	
 	
 	
 ⇒	
      E(Jmin)  =  p/2	
 	
 (p = dimy = dimd)	


If p is large, a few realizations are sufficient for determining E(Jmin) 	


Remark. If in addition errors are gaussian, the quantity 2E(Jmin) follows a χ2-probability 
distribution of order p. For that reason the criterion E(Jmin)  =  p/2 is often called the χ2 
criterion. Also Var(Jmin)  =  p/2 in the gaussian case.	


	
 	




How to  write the adjoint of a code  ?	

	
 	

	
 Operation  a = b x c	


	
 Input  b, c	
  Output  a  but also b, c	


	
  For clarity, we write	


	
  a = b x c	

	
  b’ = b	

	
  c’ = c	


	
 ∂J/∂a,  ∂J/∂b’,  ∂J/∂c’ available. We want to determine ∂J/∂b,  ∂J/∂c 	


	
  Chain rule	


	
  ∂J/∂b = (∂J/∂a)(∂a/∂b) + (∂J/∂b’)(∂b’/∂b) + (∂J/∂c’)(∂c’/∂b) 	

	
 	
                c	
                     1	
 	
   0	

	
 	

	
  ∂J/∂b = (∂J/∂a) c + ∂J/∂b’	


	
  Similarly	


	
 ∂J/∂c = (∂J/∂a) b + ∂J/∂c’	
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How to  write the adjoint of a code  ?	

	
 	

	
 Adjoint compilers	


	
 TAPENADE  (Laurent  Hascoet,  Institut  national  de  recherche  en 
informatique et en automatique)	


	
 FastOpt AD-Tool (Ralf Giering and Thomas Kaminski)	


	
 - ….	
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-  Variational Assimilation. Complements	


	
 	
 - Incremental Method	

	
 	
 - Mahalanobis Norm	

	
 	
 - How to write (and validate) an adjoint code	


-  Assimilation and (In)stability	


-  Quasi-Static Variational Assimilation	


-  Particle Filters    	
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If there is uncertainty on the state of the system, and dynamics of 
the system is perfectly known, uncertainty on the state along 
stable modes decreases over time, while uncertainty along 
unstable modes increases. 

  

 Stable (unstable) modes : perturbations to the basic state 
that decrease (increase) over time. 

  

  

  

  





 Consequence : Consider 4D-Var assimilation, or any form of smoother, 
which carries information both forward and backward in time, performed 
over time interval [t0, t1] over uniformly distributed noisy data. If 
assimilating model is perfect, estimation error is concentrated in stable 
modes at time t0, and in unstable modes at time t1. Error is smallest 
somewhere within interval [t0, t1]. 

 Similar result holds true for Kalman filter (or more generally any form 
of sequential assimilation), in which estimation error is concentrated in 
unstable modes at any time. 
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Linearized Lorenz’96. 5 days	


Jardak and Talagrand 



Trevisan et al., 2010, Q. J. R. Meteorol. Soc.	
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Lorenz (1963)	


 dx/dt = σ(y-x)	

	
 dy/dt = ρx - y - xz	

	
 dz/dt = -βz + xy	


	
 with parameter values σ = 10, ρ = 28, β = 8/3  ⇒  chaos	








	
 Twin  (strong  constraint)  experiment.  Observations  yk  = 
Hkxk + εk at successive times k,  and objective function of 
form     	


	
 	


J(ξ0)  = (1/2) Σk[yk - Hkξk]T Rk
-1 [yk - Hkξk]	


	
 xk  denotes  here  the  complete  state  vector,  and  Hk  is  the 
unit operator (all three components of xk are observed)  

   No ‘background’ term from the past, but observation y0 at 
time k = 0.	




Pires et al., Tellus, 1996 ; Lorenz system (1963) 



Minima in the variations of objective function correspond to solutions that have bifurcated 
from the observed solution, and to different folds in state space. 



 Quasi-Static Variational Assimilation (QSVA). Increase 
progressively length of the assimilation window, starting each 
new assimilation from the result of the previous one. This 
should ensure, at least if observations are in a sense 
sufficiently dense in time, that current estimation of the 
system always lies in the attractive basin of the absolute 
minimum of objective function (Pires et al., Swanson et al., 
Luong, Järvinen et al.) 

. 
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Pires et al., Tellus, 1996 ; Lorenz system (1963) 



Swanson, Vautard and Pires, 1998, Tellus, 50A, 369-390 



Cours à venir	


 Jeudi 17 mars 
Jeudi 24 mars  

 Jeudi 31 mars  
Jeudi 14 avril  
Jeudi 21 avril  
Jeudi 28 avril  
Jeudi 5 mai  
Jeudi 12 mai 

 	



