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Last course (April 21)

Assimilation variationnelle. Principe
Me¢ethode adjointe. Principe.

Assimilation variationnelle. Résultats

La Méthode inerd o]

Assimilation a contrainte faible



This course

- Variational Assimilation. Complements
- Incremental Method
- Mahalanobis Norm
- How to write (and validate) an adjoint code
- Value of objective function at minimum. y? test-

- Assimilation and (In)stability. Quasi-Static
Variational Assimilation



Incremental Method for Variational Assimilation

Variational assimilation, as it has been described, requires the use of
the adjoint of the full model.

Simplifying the adjoint as such can be very dangerous. The
computed gradient would not be exact, and experience shows that
optimization algorithms (and especially efficient ones) are very
sensitive to even slight misspecification of the gradient.

Principle of Incremental Method (Courtier et al., 1994, Q. J. R.
Meteorol. Soc.) : simplify simultaneously the (local tangent linear)
dynamics and the corresponding adjoint.



Incremental Method (continuation 1)

- Basic (nonlinear) model

§k+1 = M (&)

- Tangent linear model
08 = M 05,

where M, is jacobian of M, at point &,.
- Adjoint model
A=MTA  +...

Incremental Method. Simplify both M,” and M,’" consistently.



Incremental Method (continuation 2)

More precisely, for given solution & of nonlinear model, replace tangent
linear and adjoint models respectively by

5§k+1 =L, 5§k (2)
and
A=LTA,  +...

where L, 1s an appropriate simplification of jacobian M, .

It is then necessary, in order to ensure that the result of the adjoint
integration is the exact gradient of the objective function, to modify the basic
model in such a way that the solution emanating from &%+ &, is equal to
£+ 85, where 85, evolves according to (2). This makes the basic dynamics

exactly linear. ]



Incremental Method (continuation 3)

As concerns the observation operators in the objective function, a similar procedure
can be implemented if those operators are nonlinear. This leads to replacing H,(&,) by
H,(§)+ N, 065, where N, is an appropriate ‘simple’ linear operator (possibly, but not
necessarily, the jacobian of H, at point §%). The objective function depends only on the
initial 65, deviation from &, and reads

Ji(65) = (1/2) (x()b - 50(0) - 5&0)T [P ob]_l (xob - 50(0) - 05))
+ (172) 2,14, - Nk(S;—‘k]TRk-l [d, - NO&,]

where d, = y, - H,(§,") is the innovation at time k, and 65, evolves according to
0841 = Ly 05, 2)

With the choices made here, 7,(05,) is an exactly quadratic function of 0&,. The
minimizing perturbation 6&,,, defines a new initial state §V = §© + 6§, ,,, from which a
new solution & of the basic nonlinear equation is determined. The process is restarted

in the vicinity of that new solution.



Incremental Method (continuation 4)

This defines a system of two-level nested loops for minimization.
Advantage is that many degrees of freedom are available for defining the
simplified operators L, and N,, and for defining an appropriate trade-off
between practical implementability and physical usefulness and accuracy. It is
the incremental method which, together with the adjoint method, makes
variational assimilation possible.

First-Guess-At-the-right-Time 3D-Var (FGAT 3D-Var). Corresponds to L, =
I,. Assimilation 1s four-dimensional in that observations are compared to a
first-guess which evolves in time, but is three-dimensional in that no dynamics
other than the trivial dynamics expressed by the unit operator is present in the
minimization.



Conclusion on Sequential Assimilation

Pros

‘Natural’, and well adapted to many practical situations

Provides, at least relatively easily, explicit estimate of estimation
error

Cons

Carries information only forward in time (of no importance
if one is interested only in doing forecast)

In a strictly sequential assimilation (i.e., any individual piece

of information 1s discarded once it has been wused), optimality is
possible only if errors are uncorrelated in time.



Conclusion on Variational Assimilation

Pros

Carries information both forward and backward in time (important for
reassimilation of past data).

Can easily take into account temporal statistical dependence (Jarvinen et al.)
Does not require explicit computation of temporal evolution of estimation error
Very well adapted to some specific problems (e. g., identification of tracer sources)

Cons

Does not readily provide estimate of estimation error

Requires development and maintenance of adjoint codes. But the latter can
have other uses (sensitivity studies).

e Dual approach seems most promising. But little used.

e Can be implemented in ensemble form (see course 7).



Bayesian Estimation (see course 5)

Data of the form
z=Tx+§ &~ N0, S]

Known data vector z belongs to data space D, dimD = m,
Unknown state vector x belongs to state space X, dimX'=n
I'known (mxn)-matrix,  unknown ‘error’

Probability that x = §given? x=&=C=2z-1%&
P(E=z- T8 xexpl-(z- IS (z-TE)/2] x exp[ -(&§-x)" (P! (§-x4)/2]

where

X =(ITSY TSz
Pa=(I'TS-')!

Then conditional probability distribution is

P(x | 2) = N[xe, P4]
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Bayesian Estimation (continuation 1)

z=TIx+ ¢ E~ N0, S]
Then

P(x | z) = N[x9, P9]
with
X =(I'TS')' TSy

Pa=(ITS)!

Determinacy condition : rankI = n. Data contain information, directly or
indirectly, on every component of state vector x. Requires m > n.
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Variational form
P(x | 2) < exp[ -(z - TS (z- I'E)/2] = exp[ -(&-x)T (Po)y! (§-x9)/2 ]

Conditional expectation x* minimizes following scalar objective function, defined
on state space X~

EEX—= A5 = U2)[IE-)]" S [IE-7]

Pt=[9°7 /08"
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Ee X —= J5 = U2)[I5-)]" STIE-7]
S = E(&EY) is covariance matrix of data error &

Consider quantity D =z,TS1z,=zT[E(EEN]! 2,

where z,and z, are any two vectors in data space

Change of coordinates z = Tw
=Ty = S=E(CC") =E[T)(Tx)'1=TEQx")T"
D=w T [TEQxHT ' Tw,
D =w "[E(p)]! w,
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Expression D=z"18!"z
defines proper scalar product, and associated norm, on data space

Mahalanobis norm
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Prasanta Chandra Mahalanobis (1893 -1972)
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Objective function

HE = (12 [IE-z]' STIE-7]
Tnin =TI = (1/2) [Ix4 - z]" S [Tx“ - 7]
= (172) d" [E(ddD)]' d

where d is innovation

= E(T,..) = pl2 (p = dimy = dimd)

If p is large, a few realizations are sufficient for determining E(’/, . )

Remark. If in addition errors are gaussian, the quantity 2E(7

) follows a y?-probability
distribution of order p. For that reason the criterion E(7,.) = p/2 is often called the x>
criterion. Also Var(/,..) = p/2 in the gaussian case.

min
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How to write the adjoint of a code ?

Operation a =b x ¢
Input b, ¢ Output a but also b, ¢

For clarity, we write

a=bxc
b’=b
c’'=c¢

dJ/da, 0J/db’, JdJ/dc’ available. We want to determine 8J/db, JJ/dc

Chain rule

3/ db = (8J/3a)(dal db) + (3J/db’)(db’1db) + (3/dc’)(dc’ | Ib)
c 1 0

al/ob = (dJ/da) c + dJ/db’
Similarly

aJ/dc = (dJ/da) b + dJ/dc’

18



How to write the adjoint of a code ?
Adjoint compilers

TAPENADE (Laurent Hascoet, Institut national de recherche en
informatique et en automatique)

FastOpt AD-Tool (Ralf Giering and Thomas Kaminski)
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Gradient test

Positive gradient test Negative gradient test
10 10
10 ! ! ! b ; ! '

Gradient test

= (Gradient test

In(residue(c))
In(residue(c))

e - J(optimal control variable)

e = 273 zero machine
residue(a) = (J(X + adx) — J(x)) — aVI(x)dx
M. Jardak
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- Assimilation and (In)stability
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If there 1s uncertainty on the state of the system, and dynamics of
the system 1s perfectly known, uncertainty on the state along
stable modes decreases over time, while uncertainty along

unstable modes increases.

Stable (unstable) modes : perturbations to the basic state

that decrease (increase) over time.
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Consequence : Consider 4D-Var assimilation, or any form of smoother,
which carries information both forward and backward in time, performed
over time interval [f, ;] over uniformly distributed noisy data. If
assimilating model is perfect, estimation error is concentrated in stable
modes at time 7#,, and in unstable modes at time ¢,. Error is smallest

somewhere within interval [7,, ¢,].

Similar result holds true for Kalman filter (or more generally any form
of sequential assimilation), in which estimation error is concentrated in

unstable modes at any time.
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4DVar. =40, 6,=10"

4DVar-AUS. 1=40, 6,=10"
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Figure 3. Time average RMS error within 1, 3, 5 days assimilation windows as a function of t' = ¢t — 7, with o, = .2, 10~° for the model
configuration I = 40. Left panel: 4DVar. Right panel: 4DVar-AUS with N = 15. Solid lines refer to total assimilation error, dashed lines

refer to the error component in the stable subspace eis, ...,

Trevisan et al., 2010, Q. J. R. Meteorol. Soc.

€40.

26



1.0
0.8
0.6
041
0.2
001

0.2

-0.4

-0.6. 1

081

1.0 ' v v ’ i "
-0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 a)

Stable Manifold

Stable Manifold
o

b)

Unstable Manifold

Fig. 3. Variations of the error-free forward cost-function Ji(z. £, x) (Lorenz system) in the plane spanned by the stable
and unstable directions, as determined from the tangent linear system (see text), and for 7 =6 (panel (a)) and =8
(panel (b)) respectively. The metric has been distorted in order to make the stable and unstable manifolds orthogonal
to each other in the figure. The scale on the contour lines is logarithmic (decimal logarithm). Contour interval:

0.1. For clarity, negative contours, which would be present only in the central “valley” directed along the stable
manifold, have not been drawn.



Lorenz (1963)

dx/dt = o(y-x)
dyldt = px -y -xz
dz/dt = -z + xy

with parameter values o= 10, p =28, f=8/3 = chaos
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Fig. 2. Time variations, along the reference solution, of
the variable x(¢) of the Lorenz system.



Twin (strong constraint) experiment. Observations y, =
Hx, + ¢ at successive times k, and objective function of
form

3(50) = (1/2) Zk[yk - Hkgk]T Rk_l [yk - Hkék]

x, denotes here the complete state vector, and H, i1s the
unit operator (all three components of x, are observed)

No ‘background’ term from the past, but observation y, at
time k= 0.
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Fig. 4. Panel (a): Cross-section of the error-free forward
cost-function J (7, £, x) along the unstable manifold, for
various values of 7. Panel (b). As in panel (a), for t=9.7,
and with a display interval ten times as large, respectively
for the error-free forward cost-function J(z, £, x) (solid
curve) and for the error-contaminated cost-function
Jo(7, %, x) (dashed curve). In the latter case, the total
variance of the observational noise is E? = 75.

Pires et al., Tellus, 1996 ; Lorenz system (1963)
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Fig. 5. Variations of the coordinate x along the orbits originating from the minima P, 4, B, C (indicated in Fig. 4b)
of the error-free cost-function.

Minima in the variations of objective function correspond to solutions that have bifurcated
from the observed solution, and to different folds in state space.



Quasi-Static Variational Assimilation (QOSVA). Increase
progressively length of the assimilation window, starting each
new assimilation from the result of the previous one. This
should ensure, at least 1f observations are 1n a sense
sufficiently dense 1n time, that current estimation of the
system always lies in the attractive basin of the absolute
minimum of objective function (Pires et al., Swanson et al.,

Luong, Jarvinen et al.)



Quasi-Static Variational Assimilation (QSVA)

0 Data Assimilation over [0 T]with T=N .dt = M. dt T
4D-Var over [0 1] starting from the observations

0 T
_—)

4D-Var over [0 21] starting from the minimizer found above
s
0 27

Repeat the rule

4D-Var over [0 T] starting from the minimizer found above

0 and set the minimum as absolute T

0. Talagrand & M. Jardak Optimization for Bayesian Estimation




Cloud of points Linear tangent

u(C(z, x)) Cloud of points QSVA raw assimilation system Upper bound
=0 1 1 1 1
t=1 0.36 0.37 0.39 0.46
t=2 59x1072 5.74 45%1072 0.401
=3 33x10°7 294 29x10°7 0.397
=28 1.4x10°2 59.9 * 0.396

In the left column, the estimates are calculated from the ensemble of 100 assimilations (see also Fig. 7). The 2nd
column contains the values obtained from the raw assimilation. In the 3rd column, the estimates are obtained from
the tangent linear system and egs. (3.5-3.9) (the star indicates a computational overflow). The estimates in the right-

hand column are the upper bounds defined by eq. (3.13).
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Fig. 7. Projection of the 100 minimizing solutions, at the end of the assimilation period, onto the plane spanned by
the stable and unstable directions, defined as in Fig. 3. Values of r are indicated on the panels. The projection is not
an orthogonal projection, but a projection parallel to the local velocity vector (dx/dr. dy/dr, dz/dr) (central manifold ).

Pires et al., Tellus, 1996 ; Lorenz system (1963)
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